Academic literature on the topic 'Asymmetrical flow field-flow fractionation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Asymmetrical flow field-flow fractionation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Asymmetrical flow field-flow fractionation"

1

Yohannes, G., S. K. Wiedmer, M. Jussila, and M. L. Riekkola. "Fractionation of Humic Substances by Asymmetrical Flow Field-Flow Fractionation." Chromatographia 61, no. 7-8 (March 4, 2005): 359–64. http://dx.doi.org/10.1365/s10337-005-0510-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hee Moon, Myeong, P. Stephen Williams, Dukjin Kang, and Inmi Hwang. "Field and flow programming in frit-inlet asymmetrical flow field-flow fractionation." Journal of Chromatography A 955, no. 2 (May 2002): 263–72. http://dx.doi.org/10.1016/s0021-9673(02)00226-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kang, Dukjin, and Myeong Hee Moon. "Miniaturization of Frit Inlet Asymmetrical Flow Field-Flow Fractionation." Analytical Chemistry 76, no. 13 (July 2004): 3851–55. http://dx.doi.org/10.1021/ac0496704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Moon, Myeong Hee, and Inmi Hwang. "HYDRODYNAMIC VS. FOCUSING RELAXATION IN ASYMMETRICAL FLOW FIELD-FLOW FRACTIONATION." Journal of Liquid Chromatography & Related Technologies 24, no. 20 (December 31, 2001): 3069–83. http://dx.doi.org/10.1081/jlc-100107720.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

LIU, Pan-Pan, Can QUAN, Hong-Mei LI, and Jun-Su JIN. "Characterization of Nanoparticle Diameter by Asymmetrical Flow Field-Flow Fractionation." CHINESE JOURNAL OF ANALYTICAL CHEMISTRY (CHINESE VERSION) 41, no. 7 (2013): 1063. http://dx.doi.org/10.3724/sp.j.1096.2013.21224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Andreev, Victor P., Yuri V. Stepanov, and J. C. Giddings. "Field-flow fractionation with asymmetrical electroosmotic flow. I. Uncharged particles." Journal of Microcolumn Separations 9, no. 3 (1997): 163–68. http://dx.doi.org/10.1002/(sici)1520-667x(1997)9:3<163::aid-mcs4>3.0.co;2-#.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Andreev, V. P., and Y. V. Stepanov. "Field-Flow Fractionation with Asymmetrical Electroosmotic Flow. II. Charged Particles." Journal of Liquid Chromatography & Related Technologies 20, no. 16-17 (September 1997): 2873–86. http://dx.doi.org/10.1080/10826079708005598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Oh, Sunok, Dukjin Kang, Sung-Min Ahn, Richard J. Simpson, Bong-Hee Lee, and Myeong Hee Moon. "Miniaturized asymmetrical flow field-flow fractionation: Application to biological vesicles." Journal of Separation Science 30, no. 7 (May 2007): 1082–87. http://dx.doi.org/10.1002/jssc.200600394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Osorio-Macías, Daniel E., Dongsup Song, Johan Thuvander, Raúl Ferrer-Gallego, Jaeyeong Choi, J. Mauricio Peñarrieta, Lars Nilsson, Seungho Lee, and Björn Bergenståhl. "Fractionation of Nanoparticle Matter in Red Wines Using Asymmetrical Flow Field-Flow Fractionation." Journal of Agricultural and Food Chemistry 68, no. 49 (November 25, 2020): 14564–76. http://dx.doi.org/10.1021/acs.jafc.9b07251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yang, Joon Seon, and Myeong Hee Moon. "Flow optimisations with increased channel thickness in asymmetrical flow field-flow fractionation." Journal of Chromatography A 1581-1582 (December 2018): 100–104. http://dx.doi.org/10.1016/j.chroma.2018.10.053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Asymmetrical flow field-flow fractionation"

1

Fraunhofer, Wolfgang. "Asymmetrical flow field-flow-fractionation in pharmaceutical analytics." Diss., lmu, 2003. http://nbn-resolving.de/urn:nbn:de:bvb:19-84503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bruijnsvoort, Michel van. "Characterisation of polymers and particles by asymmetrical flow Field-Flow Fractionation." [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2002. http://dare.uva.nl/document/61720.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nilsson, Mikael. "Ribosomes and subunits from Escherichia coli studied by asymmetrical flow field-flow fractionation." Lund : Technical Analytical Chemistry, Lund University, 1998. http://catalog.hathitrust.org/api/volumes/oclc/39761331.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ngaza, Nyashadzashe. "Thermal field-flow fractionation (Thermal FFF) and asymmetrical flow field-flow fractionation (AF4) as new tools for the analysis of block copolymers and their respective homopolymers." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/95836.

Full text
Abstract:
Thesis (MSc)--Stellenbosch University, 2014.
ENGLISH ABSTRACT: Polystyrene-block-poly(ethylene oxide) (PS-b-PEO) copolymers contain a hydrophilic PEO block and a hydrophobic PS block. PS and PEO have different affinities for most organic solvents and as a result, the PS-b-PEO copolymers are difficult to characterize in solution. In order to achieve a complete characterization of their molecular heterogeneity different techniques have been used. Recently FFF has become a cutting edge technology for polymer analysis because it possesses a number of advantages over conventional SEC and other liquid chromatographic techniques. The mild operating conditions allow the analysis of delicate and sensitive complex analytes such as complex polymer assemblies. The ability to analyze polymers with ultrahigh molar masses has also contributed to its significance in the characterization of polymers. In this study, the FFF behaviour of PS-b-PEO copolymers as well as PS and PEO homopolymers was investigated using Thermal FFF in different organic solvents and AF4. The aim of the study was the correlation of the thermodynamic quality of the solvents and the elution behaviour of the polymers. Unfortunately, PEO homopolymers have been found to interact with the membrane in AF4. Therefore, they were best characterized in organic solvents using Thermal FFF. In contrast to AF4 no specific interactions occurred due to the absence of a membrane. Results for Thermal FFF showed that in all utilized solvents, PS and PEO homopolymers were separated in the direction of increasing molar mass. For PS-b-PEO copolymers the retention in selective (good) solvents for PS was dependent on the molar mass of the PS block in the block copolymer. This was explained by the fact that in poor solvents PEO adopts a collapsed coil conformation while PS is present in extended random coil conformation. Results also showed that polymer retention was dependent on the temperature programme utilized. The fractionations by Thermal FFF indicated that some of the PS-b-PEO copolymer samples contained PS and PEO homopolymers as by-products. After semi-preparative fractionation these homopolymers were qualitatively identified using FTIR spectroscopy.
AFRIKAANSE OPSOMMING: Polistireen-blok-poli(etileenoksied) (PS-b-PEO) ko-polimere bevat 'n hidrofiliese politetileen oksied (PEO) blok en 'n hidrofobiese polistireen (PS) blok. PS en PEO het verskillende affiniteite vir die meeste organiese oplosmiddels, dit bemoeilik die karakterisering van PS-b-PEO ko-polimere in oplossing. Ten einde 'n volledige karakterisering van hul molekulêre heterogeniteit te bepaal moet ‘n verskeidenheid van tegnieke gebruik word. Onlangs het veldvloeifraksionering (FFF) baie grond gewen tov polimeer analise, aangesien dit verskeie voordele het bo tradisionele chromatografiese tegnieke soos grootte-uitsluitingschromatografie (SEC). Die ligte operasionele omstandighede laat die ontleding van ‘n verskeidenheid van polimere toe, enige iets van delikate polimeer komplekse tot ultra hoë molekulêre massa. In hierdie studie is die FFF gedrag van PS-b-PEO ko-polimere asook PS en PEO homopolimere ondersoek met behulp van Termiese FFF(ThFFF) in verskillende organiese oplosmiddels en onsimmetriese vloei-veldvloeifraksionering(AF4). Die doel van die studie was om die verband tussen die termodinamiese gehalte van die oplosmiddels en die eluering gedrag van die polimere te bepaal. Analise van PEO homopolimere was onsuksesvol aangesien daar interaksie was met die membraan. PEO is dus net geanaliseer in organise oplosmiddels met behulp van ThFFF, aangesien daar geen membraan is nie. Analise met ThFFF het gewys dat skeiding plaasvind volgens ‘n toename in molekulêre massa in organise oplosmiddels. Vir PS-b-PEO ko-polimere die retensie in selektiewe (goeie) oplosmiddels vir PS was afhanklik van die molekulêre massa van die PS blok in die ko-polimeer. ‘n Moontlike teorie is dat die PEO blok ‘n ineengestorte spoel struktuur vorm terwyl die PS blok ‘n uitgestrekte lukraake vorm aan neem. Resultate het ook getoon dat die polimeer retensie afhanklik was van die temperatuur program wat gebruik is. Die fraksionering deur ThFFF het aangedui dat sommige van die PS-b-PEO kopolimeer monsters bestaan het uit PS en PEO homopolimere as by-produkte. Hierdie is kwalitatief bewys deur analise van die fraksies na fraksionering van die ko-polimere met behulp van FTIR spektroskopie.
APA, Harvard, Vancouver, ISO, and other styles
5

Whitley, Annie R. "Method Development for Detecting and Characterizing Manufactured Silver Nanoparticles in Soil Pore Water Using Asymmetrical Flow Field-Flow Fractionation." UKnowledge, 2012. http://uknowledge.uky.edu/pss_etds/9.

Full text
Abstract:
Recent advances in nanotechnology have led to the production of materials with nanoscale dimensions (nm) and properties distinctly different from their bulk (>100 nm) counterparts. With increased use, it is inevitable that nanomaterials will accumulate in the environment and there is concern that the novel properties of nanomaterials could result in detrimental environmental and human health effects. In particular, there has been concern recently regarding the use of silver (Ag) based nanomaterials as antimicrobial agents in consumer and medical products. Current regulations dealing with the discharge of metals into the environment are based on total concentrations with no consideration for the form (e.g., ionic, nanoparticle, colloid) which can largely determine toxicity. Methods for the identification and characterization of nanoparticulates within complex matrices are lacking and the development of robust methods for this purpose are considered a high priority research area. This research focuses on the development and application of a novel method for characterizing Ag manufactured nanoparticles (MNPs) within terrestrial environments, in particular in soil pore water, with applications relevant to other metal MNPs as well. The method was then applied to understand the dynamics and behavior of Ag MNPs in soil and soil amended with sewage sludge biosolids.
APA, Harvard, Vancouver, ISO, and other styles
6

Nagapetyan, Tigran [Verfasser], and Oleg [Akademischer Betreuer] Iliev. "Efficient algorithms for asymmetric flow field flow fractionation / Tigran Nagapetyan. Betreuer: Oleg Iliev." Kaiserslautern : Technische Universität Kaiserslautern, 2014. http://d-nb.info/1052020356/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Juna, Shazia, and Anton Huber. "Translational diffusion coefficients and hydrodynamic radii of normal corn starch in aqueous media from asymmetrical flow field-flow fractionation experiments." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-186242.

Full text
Abstract:
Starch is a highly disperse material with broad distributions of molecular sizes and geometries. Its dissolution in aqueous media is difficult to achieve and it tends to form aggregates through both inter- and intra-molecular interactions. Asymmetrical flow field-flow fractionation (AF4) is a suitable technique for the separation of such macromolecular and colloidal systems. A major advantage of AF4 is the direct correlation of translational diffusion coefficients with retention time and experimental parameters. In this article, the hydrodynamic and diffusive mobility of normal corn starch dissolved in 0.035 M KSCN was investigated by systematically varying the cross flow rates (applied forces); the translational diffusion coeffcients for normal corn starch in aqueous medium were found to range between 9.9 x 10-9 cm2/s and ~2.5 x 10-7 cm2/s with varying Fcr rates. Diffusion coefficient ranges shifted to higher diffusion co-efficient values at higher cross flow rates (applied forces). This behaviour, which may be attributed to the increased retention of very large starch molecules/particles at high Fcr rates, is further confirmed by the decrease in apparent molar mass and mass recovery values.
APA, Harvard, Vancouver, ISO, and other styles
8

Juna, Shazia, and Anton Huber. "Translational diffusion coefficients and hydrodynamic radii of normal corn starch in aqueous media from asymmetrical flow field-flow fractionation experiments." Diffusion fundamentals 15 (2011) 7, S. 1-8, 2011. https://ul.qucosa.de/id/qucosa%3A13843.

Full text
Abstract:
Starch is a highly disperse material with broad distributions of molecular sizes and geometries. Its dissolution in aqueous media is difficult to achieve and it tends to form aggregates through both inter- and intra-molecular interactions. Asymmetrical flow field-flow fractionation (AF4) is a suitable technique for the separation of such macromolecular and colloidal systems. A major advantage of AF4 is the direct correlation of translational diffusion coefficients with retention time and experimental parameters. In this article, the hydrodynamic and diffusive mobility of normal corn starch dissolved in 0.035 M KSCN was investigated by systematically varying the cross flow rates (applied forces); the translational diffusion coeffcients for normal corn starch in aqueous medium were found to range between 9.9 x 10-9 cm2/s and ~2.5 x 10-7 cm2/s with varying Fcr rates. Diffusion coefficient ranges shifted to higher diffusion co-efficient values at higher cross flow rates (applied forces). This behaviour, which may be attributed to the increased retention of very large starch molecules/particles at high Fcr rates, is further confirmed by the decrease in apparent molar mass and mass recovery values.
APA, Harvard, Vancouver, ISO, and other styles
9

Makan, Ashwell Craig. "Asymmetric flow field flow fractionation (AF4) of polymers with focus on polybutadienes and polyrotaxanes." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/19997.

Full text
Abstract:
Thesis (MSc)-- Stellenbosch University, 2012.
ENGLISH ABSTRACT: Over the past two decades, field flow fractionation (FFF), as a polymer characterization technique, has become cutting edge technology. The demand for molar mass and size characterisation of complex polymer systems has increased, especially in cases where classical calibration techniques such as size exclusion chromatography (SEC) has shown several shortcomings. FFF is a technique resembling chromatography. It has several significant advantages over SEC, especially for the characterisation of ultrahigh molar mass (UHMM), branched and gel-containing polymers. In this study, polybutadienes, which often contain the abovementioned species, were analysed by SEC and asymmetric flow field flow fractionation (AF4). Both separation techniques were coupled to refractive index and multi-angle laser light scattering detection. Similarly, polyrotaxanes, which are polymers with complex and unique molecular architectures, were also investigated. Results showed that AF4 can explicitly be used as a superior tool over SEC. In the case of UHMM polybutadienes, much higher molar masses could be detected by AF4, due to the absence of shear degradation which is often encountered in SEC. Gel-containing species could be detected by AF4 as no filtering is required prior to injection. Abnormal retention behaviour, a phenomenon often encountered in UHMM branched polymers, was observed in SEC analysis of the polyrotaxanes materials. AF4 provided sufficient separation from low to high molar masses, without out any irregularities.
AFRIKAANSE OPSOMMING: Gedurende die afgelope twee dekades het veldvloeifraksionering (FFF) as ‘n polimeerkarakteriseringstegniek groot veld gewen. Die aanvraag na molekulêre massa en groottekarakterisering van komplekse polimeersisteme het toegeneem, veral in die gevalle waar klassieke kalibrasietegnieke soos grootte-uitsluitingschromatografie (SEC) etlike tekortkominge getoon het. FFF is ‘n tegniek soortgelyk aan chromatografie, en het voorheen bewys dat dit oor ‘n redelike aantal voordele bo SEC beskik, veral in die geval van ultrahoë molekulêre massa- (UHMM-), vertakte- en jelbevattende spesies. In die huidige studie is polibutadieenpolimere, wat dikwels bogenoemde spesies bevat, geanaliseer met behulp van SEC en onsimmetriese vloei-veldvloeifraksionering (AF4). Beide skeidingstegnieke is gekoppel aan ‘n brekingsindeks en multihoek-laserligverstrooiingsdetektors. Op dieselfde wyse is polirotaksane (polyrotaxanes) met komplekse molekulêre argitektuur bestudeer. Daar is bewys dat AF4 uitsluitlik gebruik kan word as ‘n meer geskikte tegniek bo SEC. Baie hoër molekulêre massas kon deur middel van AF4 vir UHMM polibutadieenpolimere raakgesien word as gevolg van die verminderde afbrekende degradasie wat dikwels voorkom met SEC. Jel-bevattende spesies is suksesvol geïdentifiseer met behulp van AF4 waartydens geen filtrering vir analise nodig was nie. Abnormale retensie was sigbaar tydens SEC analise van monsters van polirotaksane, wat dikwels voorkom in vertakte polimere. In teenstelling het AF4 bewys dat ‘n bevredigende skeiding van klein na groot molekulêre massas, sonder enige tekortkominge, moontlik is.
APA, Harvard, Vancouver, ISO, and other styles
10

Nguyen, Phuong Thanh. "Study of the aquatic dissolved organic matter from the Seine River catchment (France) by optical spectroscopy combined to asymmetrical flow field-flow fractionation." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0154/document.

Full text
Abstract:
Le but principal de cette thèse était d'étudier les caractéristiques de la matière organique dissoute (MOD) dans le bassin versant de la Seine. Ce travail a été réalisé dans le cadre du programme de recherche PIREN-Seine. Les travaux présentés ici visaient plus particulièrement à identifier les sources de MOD et à suivre son évolution dans les zones d’étude. L’analyse des propriétés optiques (UV-Visible, fluorescence) de la MOD, couplée aux traitements PARAFAC et ACP, a permis de discriminer différentes sources de MOD et de mettre en évidence des variations spatio-temporelles de ses propriétés. L’axe Seine, en aval de Paris, a notamment été caractérisé par l'activité biologique la plus forte. La MOD du bassin de l’Oise a montré des caractéristiques plus "humiques", tandis que le bassin de la Marne a été caractérisé par un troisième type spécifique de MOD. Il a d’autre part été mis en évidence la présence de MODs spécifiques dans chaque zone pour les échantillons prélevés en périodes d’étiage, alors qu’une distribution homogène des composants a été obtenue pour l’ensemble des échantillons prélevés en période de crue.Le rôle environnemental des colloïdes naturels étant étroitement lié à leur taille, il a d’autre part été développé une technique analytique/séparative originale pour l’étude de ce matériel complexe, un fractionnement par couplage flux/force avec flux asymétrique (AF4). Le fractionnement par AF4 des échantillons a confirmé la variabilité spatio-temporelle en composition et en taille de la MOD d'un site de prélèvement à un autre et a permis de distinguer différentes sources de MOD colloïdale confirmant les résultats de l’étude de ses propriétés optiques
The main goal of this thesis was to investigate the characteristics of dissolvedorganic matter (DOM) within the Seine River catchment in the Northern part of France. ThisPhD thesis was performed within the framework of the PIREN-Seine research program. Theapplication of UV/visible absorbance and EEM fluorescence spectroscopy combined toPARAFAC and PCA analyses allowed us to identify different sources of DOM andhighlighted spatial and temporal variations of DOM properties. The Seine River wascharacterized by the strongest biological activity. DOM from the Oise basin seemed to havemore "humic" characteristics, while the Marne basin was characterized by a third specifictype of DOM. For samples collected during low-water periods, the distributions of the 7components determined by PARAFAC treatment varied between the studied sub-basins,highlighting different organic materials in each zone. A homogeneous distribution of thecomponents was obtained for the samples collected in period of flood.Then, a semi-quantitative asymmetrical flow field-flow fractionation (AF4) methodology wasdeveloped to fractionate DOM. The following optimized parameters were determined: across-flow rate of 2 ml min-1 during the focus step with a focusing time of 2 min and anexponential gradient of cross-flow from 3.5 to 0.2 ml min-1 during the elution step. Thefluorescence properties of various size-based fractions of DOM were evaluated by applyingthe optimized AF4 methodology to fractionate 13 samples, selected from the three sub-basins.The fluorescence properties of these fractions were analysed, allowing us to discriminatebetween the terrestrial or autochthonous origin of DOM
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Asymmetrical flow field-flow fractionation"

1

Podzimek, Stepan. Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470877975.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Podzimek, Stepan. Light scattering, size exclusion chromatography, and asymmetric flow field flow fractionation: Powerful tools for the characterization of polymers, proteins and nanoparticles. Hoboken, N.J: Wiley, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Williams, S. Kim R., and Karin D. Caldwell, eds. Field-Flow Fractionation in Biopolymer Analysis. Vienna: Springer Vienna, 2012. http://dx.doi.org/10.1007/978-3-7091-0154-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Greyling, Guilaume, and Harald Pasch. Thermal Field-Flow Fractionation of Polymers. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-10650-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Beyers, M. E. Flow-field interference produced by an asymmetrical support strut. Ottawa, Ont: National Research Council Canada, Institute for Aerospace Research, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Field-flow fractionation: Analysis of macromolecules and particles. New York: M. Dekker, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Podzimek, Stepan. Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation: Powerful Tools for the Characterization of Polymers, Proteins and Nanoparticles. Wiley & Sons, Incorporated, John, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Podzimek, Stepan. Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation: Powerful Tools for the Characterization of Polymers, Proteins and Nanoparticles. Wiley & Sons, Incorporated, John, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Podzimek, Stepan. Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation: Powerful Tools for the Characterization of Polymers, Proteins and Nanoparticles. Wiley & Sons, Incorporated, John, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

(Editor), Martin E. Schimpf, Karin Caldwell (Editor), and J. Calvin Giddings (Editor), eds. Field-Flow Fractionation Handbook. Wiley-Interscience, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Asymmetrical flow field-flow fractionation"

1

Liu, Jun, Qing Zhu, Steven J. Shire, and Barthélemy Demeule. "Assessing and Improving Asymmetric Flow Field-Flow Fractionation of Therapeutic Proteins." In Field-Flow Fractionation in Biopolymer Analysis, 89–101. Vienna: Springer Vienna, 2011. http://dx.doi.org/10.1007/978-3-7091-0154-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bayramov, Nadir, Tigran Nagapetyan, and Rene Pinnau. "Fast Optimal Control of Asymmetric Flow Field Flow Fractionation Processes." In 2013 Proceedings of the Conference on Control and its Applications, 207–13. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2013. http://dx.doi.org/10.1137/1.9781611973273.28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Flack, Kenneth, Luis A. Jimenez, and Wenwan Zhong. "Analysis of the Distribution Profiles of Circulating MicroRNAs by Asymmetrical Flow Field Flow Fractionation." In Methods in Molecular Biology, 161–68. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-6524-3_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yuan, Mingyu, Chengjun Huang, Wenbing Fan, Xiaonan Yang, and Mingxiao Li. "Simulation Design of Exosomes Separation Microfluid Device Based on Asymmetrical Flow Field-Flow Fractionation." In Lecture Notes in Electrical Engineering, 91–95. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-13-3381-1_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Moquin, Alexandre, Françoise M. Winnik, and Dusica Maysinger. "Separation Science: Principles and Applications for the Analysis of Bionanoparticles by Asymmetrical Flow Field-Flow Fractionation (AF4)." In Methods in Molecular Biology, 325–41. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-336-7_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Engert, Julia, Roman Mathaes, and Gerhard Winter. "Asymmetrical Flow Field Flow Fractionation: A Useful Tool for the Separation of Protein Pharmaceuticals and Particulate Systems." In Advances in Delivery Science and Technology, 467–88. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-4029-5_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Yongfu, Krishna Kuppannan, and David M. Meunier. "Characterization of Biopolymer Stability by Size-Exclusion Chromatography and Asymmetric Flow Field-Flow Fractionation." In ACS Symposium Series, 145–69. Washington, DC: American Chemical Society, 2018. http://dx.doi.org/10.1021/bk-2018-1281.ch008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nguyen, Phuong Thanh, Marie-Ange Cordier, Fabienne Ibalot, and Edith Parlanti. "Optical Properties and Asymmetric Flow Field-Flow Fractionation of Dissolved Organic Matter from the Arcachon Bay (French Atlantic Coast)." In Functions of Natural Organic Matter in Changing Environment, 153–58. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5634-2_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gao, Wei, Jamie Cohen, Francis Acholla, and Wenyu Su. "Development of Asymmetrical Flow Field Fractionation with On-line Advanced Detections for Particle Size Distribution Analysis of Silica Colloidal Particles." In ACS Symposium Series, 111–43. Washington, DC: American Chemical Society, 2018. http://dx.doi.org/10.1021/bk-2018-1281.ch007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schimpf, Martin E. "Field-Flow Fractionation." In Ewing’s Analytical Instrumentation Handbook, Fourth Edition, 777–96. Fourth edition / [edited by] Nelu Grinberg, Sonia Rodriguez. | Boca Raton : CRC Press, Taylor & Francis Group, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9781315118024-27.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Asymmetrical flow field-flow fractionation"

1

Exner, A., B. S. Seidel, W. Faubel, U. Panne, and R. Nießner. "Characterization of hydrocolloids by asymmetric flow field-flow fractionation." In PHOTOACOUSTIC AND PHOTOTHERMAL PHENOMENA. ASCE, 1999. http://dx.doi.org/10.1063/1.58184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

de Carsalade du pont, Valentin, Enrica Alasonati, Sophie Vaslin-Reimann, Michel Martin, Mauricio Hoyos, and Paola Fisicaro. "Asymmetric field flow fractionation applied to the nanoparticles characterization: Study of the parameters governing the retention in the channel." In 19th International Congress of Metrology (CIM2019), edited by Sandrine Gazal. Les Ulis, France: EDP Sciences, 2019. http://dx.doi.org/10.1051/metrology/201923001.

Full text
Abstract:
In this work we study the parameters which are often modified to optimize the separation in asymmetrical field flow fractionation, and we observe their impact on the retention behavior of the analyte. The aim of the work is to improve our knowledge of the phenomena which govern the behavior of the analytes in the channel and to have a better understanding of the limits of the actual theoretical model in order to improve it. Results illustrate that the ionic strength influences the effect of the cross flow rate on the retention time of the particle. The question of the determination of the channel thickness was also addressed.
APA, Harvard, Vancouver, ISO, and other styles
3

ZATTONI, A., B. RODA, M. GUARDIGLI, D. MELUCCI, P. RESCHIGLIAN, and A. RODA. "CHEMILUMINESCENCE DETECTION FOR FIELD-FLOW FRACTIONATION." In Bioluminescence and Chemiluminescence - Progress and Current Applications - 12th International Symposium on Bioluminescence (BL) and Chemiluminescence (CL). WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776624_0048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gale, Bruce K., and Himanshu J. Sant. "Nanoparticle analysis using microscale field flow fractionation." In MOEMS-MEMS 2007 Micro and Nanofabrication. SPIE, 2007. http://dx.doi.org/10.1117/12.713794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fruhstorfer, Peter, and Reinhard Niessner. "Flow-field-flow-fractionation as a new tool for fractionating aquatic colloids." In European Symposium on Optics for Environmental and Public Safety, edited by Tuan Vo-Dinh. SPIE, 1995. http://dx.doi.org/10.1117/12.224091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xuejun, Zhang, and Chen Xiangwei. "Development Detector for Field Flow Fractionation Based on Wavelet Analysis." In 2010 International Conference on Digital Manufacturing and Automation (ICDMA). IEEE, 2010. http://dx.doi.org/10.1109/icdma.2010.80.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gawanmeh, Amjad, Anas Alazzam, Bobby Mathew, Mohammad Abutayeh, and Hyung Jin Sung. "Formalizing the movement of microparticles in a continuous flow microfluidic device for field flow fractionation." In 2015 17th International Conference on E-Health Networking, Application & Services (HealthCom). IEEE, 2015. http://dx.doi.org/10.1109/healthcom.2015.7454483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Carpino, F., M. Zborowski, and P. Williams. "Quadrupole Magnetic Field-Flow Fractionation for the Analysis of Magnetic Nanoparticles." In INTERMAG 2006 - IEEE International Magnetics Conference. IEEE, 2006. http://dx.doi.org/10.1109/intmag.2006.376316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mathew, Bobby, Anas Alazzam, and Saud A. Khashan. "Microfabrication of multi-layered electrodes for dielectrophoresis-based field flow fractionation." In SPIE Microtechnologies, edited by Sander van den Driesche. SPIE, 2015. http://dx.doi.org/10.1117/12.2179007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gale, B. K., K. D. Caldwell, and A. B. Frazier. "Characterization of a Micromachined Electrical Field-Flow Fractionation (µ-EFFF) System." In 1998 Solid-State, Actuators, and Microsystems Workshop. San Diego, CA USA: Transducer Research Foundation, Inc., 1998. http://dx.doi.org/10.31438/trf.hh1998.79.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Asymmetrical flow field-flow fractionation"

1

Giddings, J. C. Field-flow fractionation of chromosomes. Office of Scientific and Technical Information (OSTI), April 1993. http://dx.doi.org/10.2172/6434224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Giddings, J. C. Field-flow fractionation of chromosomes. Office of Scientific and Technical Information (OSTI), September 1991. http://dx.doi.org/10.2172/5745557.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Giddings, J. C. Field-flow fractionation of chromosomes. Office of Scientific and Technical Information (OSTI), September 1990. http://dx.doi.org/10.2172/6370502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

John P. Selegue. Field-Flow Fractionation of Carbon Nanotubes and Related Materials. Office of Scientific and Technical Information (OSTI), November 2011. http://dx.doi.org/10.2172/1029463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Giddings, J. Field-flow fractionation in the analysis of energy-related materials. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/5414274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Giddings, J. C. Field-flow fractionation of chromosomes. Progress report, July 1, 1989--January 31, 1992. Office of Scientific and Technical Information (OSTI), September 1991. http://dx.doi.org/10.2172/10131222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Giddings, J. C. Field-flow fractionation of chromosomes. Final technical report, July 1, 1989--January 31, 1993. Office of Scientific and Technical Information (OSTI), April 1993. http://dx.doi.org/10.2172/10159548.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography