Academic literature on the topic 'Asymmetrical flow field-flow fractionation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Asymmetrical flow field-flow fractionation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Asymmetrical flow field-flow fractionation"
Yohannes, G., S. K. Wiedmer, M. Jussila, and M. L. Riekkola. "Fractionation of Humic Substances by Asymmetrical Flow Field-Flow Fractionation." Chromatographia 61, no. 7-8 (March 4, 2005): 359–64. http://dx.doi.org/10.1365/s10337-005-0510-2.
Full textHee Moon, Myeong, P. Stephen Williams, Dukjin Kang, and Inmi Hwang. "Field and flow programming in frit-inlet asymmetrical flow field-flow fractionation." Journal of Chromatography A 955, no. 2 (May 2002): 263–72. http://dx.doi.org/10.1016/s0021-9673(02)00226-1.
Full textKang, Dukjin, and Myeong Hee Moon. "Miniaturization of Frit Inlet Asymmetrical Flow Field-Flow Fractionation." Analytical Chemistry 76, no. 13 (July 2004): 3851–55. http://dx.doi.org/10.1021/ac0496704.
Full textMoon, Myeong Hee, and Inmi Hwang. "HYDRODYNAMIC VS. FOCUSING RELAXATION IN ASYMMETRICAL FLOW FIELD-FLOW FRACTIONATION." Journal of Liquid Chromatography & Related Technologies 24, no. 20 (December 31, 2001): 3069–83. http://dx.doi.org/10.1081/jlc-100107720.
Full textLIU, Pan-Pan, Can QUAN, Hong-Mei LI, and Jun-Su JIN. "Characterization of Nanoparticle Diameter by Asymmetrical Flow Field-Flow Fractionation." CHINESE JOURNAL OF ANALYTICAL CHEMISTRY (CHINESE VERSION) 41, no. 7 (2013): 1063. http://dx.doi.org/10.3724/sp.j.1096.2013.21224.
Full textAndreev, Victor P., Yuri V. Stepanov, and J. C. Giddings. "Field-flow fractionation with asymmetrical electroosmotic flow. I. Uncharged particles." Journal of Microcolumn Separations 9, no. 3 (1997): 163–68. http://dx.doi.org/10.1002/(sici)1520-667x(1997)9:3<163::aid-mcs4>3.0.co;2-#.
Full textAndreev, V. P., and Y. V. Stepanov. "Field-Flow Fractionation with Asymmetrical Electroosmotic Flow. II. Charged Particles." Journal of Liquid Chromatography & Related Technologies 20, no. 16-17 (September 1997): 2873–86. http://dx.doi.org/10.1080/10826079708005598.
Full textOh, Sunok, Dukjin Kang, Sung-Min Ahn, Richard J. Simpson, Bong-Hee Lee, and Myeong Hee Moon. "Miniaturized asymmetrical flow field-flow fractionation: Application to biological vesicles." Journal of Separation Science 30, no. 7 (May 2007): 1082–87. http://dx.doi.org/10.1002/jssc.200600394.
Full textOsorio-Macías, Daniel E., Dongsup Song, Johan Thuvander, Raúl Ferrer-Gallego, Jaeyeong Choi, J. Mauricio Peñarrieta, Lars Nilsson, Seungho Lee, and Björn Bergenståhl. "Fractionation of Nanoparticle Matter in Red Wines Using Asymmetrical Flow Field-Flow Fractionation." Journal of Agricultural and Food Chemistry 68, no. 49 (November 25, 2020): 14564–76. http://dx.doi.org/10.1021/acs.jafc.9b07251.
Full textYang, Joon Seon, and Myeong Hee Moon. "Flow optimisations with increased channel thickness in asymmetrical flow field-flow fractionation." Journal of Chromatography A 1581-1582 (December 2018): 100–104. http://dx.doi.org/10.1016/j.chroma.2018.10.053.
Full textDissertations / Theses on the topic "Asymmetrical flow field-flow fractionation"
Fraunhofer, Wolfgang. "Asymmetrical flow field-flow-fractionation in pharmaceutical analytics." Diss., lmu, 2003. http://nbn-resolving.de/urn:nbn:de:bvb:19-84503.
Full textBruijnsvoort, Michel van. "Characterisation of polymers and particles by asymmetrical flow Field-Flow Fractionation." [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2002. http://dare.uva.nl/document/61720.
Full textNilsson, Mikael. "Ribosomes and subunits from Escherichia coli studied by asymmetrical flow field-flow fractionation." Lund : Technical Analytical Chemistry, Lund University, 1998. http://catalog.hathitrust.org/api/volumes/oclc/39761331.html.
Full textNgaza, Nyashadzashe. "Thermal field-flow fractionation (Thermal FFF) and asymmetrical flow field-flow fractionation (AF4) as new tools for the analysis of block copolymers and their respective homopolymers." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/95836.
Full textENGLISH ABSTRACT: Polystyrene-block-poly(ethylene oxide) (PS-b-PEO) copolymers contain a hydrophilic PEO block and a hydrophobic PS block. PS and PEO have different affinities for most organic solvents and as a result, the PS-b-PEO copolymers are difficult to characterize in solution. In order to achieve a complete characterization of their molecular heterogeneity different techniques have been used. Recently FFF has become a cutting edge technology for polymer analysis because it possesses a number of advantages over conventional SEC and other liquid chromatographic techniques. The mild operating conditions allow the analysis of delicate and sensitive complex analytes such as complex polymer assemblies. The ability to analyze polymers with ultrahigh molar masses has also contributed to its significance in the characterization of polymers. In this study, the FFF behaviour of PS-b-PEO copolymers as well as PS and PEO homopolymers was investigated using Thermal FFF in different organic solvents and AF4. The aim of the study was the correlation of the thermodynamic quality of the solvents and the elution behaviour of the polymers. Unfortunately, PEO homopolymers have been found to interact with the membrane in AF4. Therefore, they were best characterized in organic solvents using Thermal FFF. In contrast to AF4 no specific interactions occurred due to the absence of a membrane. Results for Thermal FFF showed that in all utilized solvents, PS and PEO homopolymers were separated in the direction of increasing molar mass. For PS-b-PEO copolymers the retention in selective (good) solvents for PS was dependent on the molar mass of the PS block in the block copolymer. This was explained by the fact that in poor solvents PEO adopts a collapsed coil conformation while PS is present in extended random coil conformation. Results also showed that polymer retention was dependent on the temperature programme utilized. The fractionations by Thermal FFF indicated that some of the PS-b-PEO copolymer samples contained PS and PEO homopolymers as by-products. After semi-preparative fractionation these homopolymers were qualitatively identified using FTIR spectroscopy.
AFRIKAANSE OPSOMMING: Polistireen-blok-poli(etileenoksied) (PS-b-PEO) ko-polimere bevat 'n hidrofiliese politetileen oksied (PEO) blok en 'n hidrofobiese polistireen (PS) blok. PS en PEO het verskillende affiniteite vir die meeste organiese oplosmiddels, dit bemoeilik die karakterisering van PS-b-PEO ko-polimere in oplossing. Ten einde 'n volledige karakterisering van hul molekulêre heterogeniteit te bepaal moet ‘n verskeidenheid van tegnieke gebruik word. Onlangs het veldvloeifraksionering (FFF) baie grond gewen tov polimeer analise, aangesien dit verskeie voordele het bo tradisionele chromatografiese tegnieke soos grootte-uitsluitingschromatografie (SEC). Die ligte operasionele omstandighede laat die ontleding van ‘n verskeidenheid van polimere toe, enige iets van delikate polimeer komplekse tot ultra hoë molekulêre massa. In hierdie studie is die FFF gedrag van PS-b-PEO ko-polimere asook PS en PEO homopolimere ondersoek met behulp van Termiese FFF(ThFFF) in verskillende organiese oplosmiddels en onsimmetriese vloei-veldvloeifraksionering(AF4). Die doel van die studie was om die verband tussen die termodinamiese gehalte van die oplosmiddels en die eluering gedrag van die polimere te bepaal. Analise van PEO homopolimere was onsuksesvol aangesien daar interaksie was met die membraan. PEO is dus net geanaliseer in organise oplosmiddels met behulp van ThFFF, aangesien daar geen membraan is nie. Analise met ThFFF het gewys dat skeiding plaasvind volgens ‘n toename in molekulêre massa in organise oplosmiddels. Vir PS-b-PEO ko-polimere die retensie in selektiewe (goeie) oplosmiddels vir PS was afhanklik van die molekulêre massa van die PS blok in die ko-polimeer. ‘n Moontlike teorie is dat die PEO blok ‘n ineengestorte spoel struktuur vorm terwyl die PS blok ‘n uitgestrekte lukraake vorm aan neem. Resultate het ook getoon dat die polimeer retensie afhanklik was van die temperatuur program wat gebruik is. Die fraksionering deur ThFFF het aangedui dat sommige van die PS-b-PEO kopolimeer monsters bestaan het uit PS en PEO homopolimere as by-produkte. Hierdie is kwalitatief bewys deur analise van die fraksies na fraksionering van die ko-polimere met behulp van FTIR spektroskopie.
Whitley, Annie R. "Method Development for Detecting and Characterizing Manufactured Silver Nanoparticles in Soil Pore Water Using Asymmetrical Flow Field-Flow Fractionation." UKnowledge, 2012. http://uknowledge.uky.edu/pss_etds/9.
Full textNagapetyan, Tigran [Verfasser], and Oleg [Akademischer Betreuer] Iliev. "Efficient algorithms for asymmetric flow field flow fractionation / Tigran Nagapetyan. Betreuer: Oleg Iliev." Kaiserslautern : Technische Universität Kaiserslautern, 2014. http://d-nb.info/1052020356/34.
Full textJuna, Shazia, and Anton Huber. "Translational diffusion coefficients and hydrodynamic radii of normal corn starch in aqueous media from asymmetrical flow field-flow fractionation experiments." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-186242.
Full textJuna, Shazia, and Anton Huber. "Translational diffusion coefficients and hydrodynamic radii of normal corn starch in aqueous media from asymmetrical flow field-flow fractionation experiments." Diffusion fundamentals 15 (2011) 7, S. 1-8, 2011. https://ul.qucosa.de/id/qucosa%3A13843.
Full textMakan, Ashwell Craig. "Asymmetric flow field flow fractionation (AF4) of polymers with focus on polybutadienes and polyrotaxanes." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/19997.
Full textENGLISH ABSTRACT: Over the past two decades, field flow fractionation (FFF), as a polymer characterization technique, has become cutting edge technology. The demand for molar mass and size characterisation of complex polymer systems has increased, especially in cases where classical calibration techniques such as size exclusion chromatography (SEC) has shown several shortcomings. FFF is a technique resembling chromatography. It has several significant advantages over SEC, especially for the characterisation of ultrahigh molar mass (UHMM), branched and gel-containing polymers. In this study, polybutadienes, which often contain the abovementioned species, were analysed by SEC and asymmetric flow field flow fractionation (AF4). Both separation techniques were coupled to refractive index and multi-angle laser light scattering detection. Similarly, polyrotaxanes, which are polymers with complex and unique molecular architectures, were also investigated. Results showed that AF4 can explicitly be used as a superior tool over SEC. In the case of UHMM polybutadienes, much higher molar masses could be detected by AF4, due to the absence of shear degradation which is often encountered in SEC. Gel-containing species could be detected by AF4 as no filtering is required prior to injection. Abnormal retention behaviour, a phenomenon often encountered in UHMM branched polymers, was observed in SEC analysis of the polyrotaxanes materials. AF4 provided sufficient separation from low to high molar masses, without out any irregularities.
AFRIKAANSE OPSOMMING: Gedurende die afgelope twee dekades het veldvloeifraksionering (FFF) as ‘n polimeerkarakteriseringstegniek groot veld gewen. Die aanvraag na molekulêre massa en groottekarakterisering van komplekse polimeersisteme het toegeneem, veral in die gevalle waar klassieke kalibrasietegnieke soos grootte-uitsluitingschromatografie (SEC) etlike tekortkominge getoon het. FFF is ‘n tegniek soortgelyk aan chromatografie, en het voorheen bewys dat dit oor ‘n redelike aantal voordele bo SEC beskik, veral in die geval van ultrahoë molekulêre massa- (UHMM-), vertakte- en jelbevattende spesies. In die huidige studie is polibutadieenpolimere, wat dikwels bogenoemde spesies bevat, geanaliseer met behulp van SEC en onsimmetriese vloei-veldvloeifraksionering (AF4). Beide skeidingstegnieke is gekoppel aan ‘n brekingsindeks en multihoek-laserligverstrooiingsdetektors. Op dieselfde wyse is polirotaksane (polyrotaxanes) met komplekse molekulêre argitektuur bestudeer. Daar is bewys dat AF4 uitsluitlik gebruik kan word as ‘n meer geskikte tegniek bo SEC. Baie hoër molekulêre massas kon deur middel van AF4 vir UHMM polibutadieenpolimere raakgesien word as gevolg van die verminderde afbrekende degradasie wat dikwels voorkom met SEC. Jel-bevattende spesies is suksesvol geïdentifiseer met behulp van AF4 waartydens geen filtrering vir analise nodig was nie. Abnormale retensie was sigbaar tydens SEC analise van monsters van polirotaksane, wat dikwels voorkom in vertakte polimere. In teenstelling het AF4 bewys dat ‘n bevredigende skeiding van klein na groot molekulêre massas, sonder enige tekortkominge, moontlik is.
Nguyen, Phuong Thanh. "Study of the aquatic dissolved organic matter from the Seine River catchment (France) by optical spectroscopy combined to asymmetrical flow field-flow fractionation." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0154/document.
Full textThe main goal of this thesis was to investigate the characteristics of dissolvedorganic matter (DOM) within the Seine River catchment in the Northern part of France. ThisPhD thesis was performed within the framework of the PIREN-Seine research program. Theapplication of UV/visible absorbance and EEM fluorescence spectroscopy combined toPARAFAC and PCA analyses allowed us to identify different sources of DOM andhighlighted spatial and temporal variations of DOM properties. The Seine River wascharacterized by the strongest biological activity. DOM from the Oise basin seemed to havemore "humic" characteristics, while the Marne basin was characterized by a third specifictype of DOM. For samples collected during low-water periods, the distributions of the 7components determined by PARAFAC treatment varied between the studied sub-basins,highlighting different organic materials in each zone. A homogeneous distribution of thecomponents was obtained for the samples collected in period of flood.Then, a semi-quantitative asymmetrical flow field-flow fractionation (AF4) methodology wasdeveloped to fractionate DOM. The following optimized parameters were determined: across-flow rate of 2 ml min-1 during the focus step with a focusing time of 2 min and anexponential gradient of cross-flow from 3.5 to 0.2 ml min-1 during the elution step. Thefluorescence properties of various size-based fractions of DOM were evaluated by applyingthe optimized AF4 methodology to fractionate 13 samples, selected from the three sub-basins.The fluorescence properties of these fractions were analysed, allowing us to discriminatebetween the terrestrial or autochthonous origin of DOM
Books on the topic "Asymmetrical flow field-flow fractionation"
Podzimek, Stepan. Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470877975.
Full textPodzimek, Stepan. Light scattering, size exclusion chromatography, and asymmetric flow field flow fractionation: Powerful tools for the characterization of polymers, proteins and nanoparticles. Hoboken, N.J: Wiley, 2011.
Find full textWilliams, S. Kim R., and Karin D. Caldwell, eds. Field-Flow Fractionation in Biopolymer Analysis. Vienna: Springer Vienna, 2012. http://dx.doi.org/10.1007/978-3-7091-0154-4.
Full textGreyling, Guilaume, and Harald Pasch. Thermal Field-Flow Fractionation of Polymers. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-10650-8.
Full textBeyers, M. E. Flow-field interference produced by an asymmetrical support strut. Ottawa, Ont: National Research Council Canada, Institute for Aerospace Research, 1993.
Find full textField-flow fractionation: Analysis of macromolecules and particles. New York: M. Dekker, 1988.
Find full textPodzimek, Stepan. Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation: Powerful Tools for the Characterization of Polymers, Proteins and Nanoparticles. Wiley & Sons, Incorporated, John, 2011.
Find full textPodzimek, Stepan. Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation: Powerful Tools for the Characterization of Polymers, Proteins and Nanoparticles. Wiley & Sons, Incorporated, John, 2011.
Find full textPodzimek, Stepan. Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation: Powerful Tools for the Characterization of Polymers, Proteins and Nanoparticles. Wiley & Sons, Incorporated, John, 2011.
Find full text(Editor), Martin E. Schimpf, Karin Caldwell (Editor), and J. Calvin Giddings (Editor), eds. Field-Flow Fractionation Handbook. Wiley-Interscience, 2000.
Find full textBook chapters on the topic "Asymmetrical flow field-flow fractionation"
Liu, Jun, Qing Zhu, Steven J. Shire, and Barthélemy Demeule. "Assessing and Improving Asymmetric Flow Field-Flow Fractionation of Therapeutic Proteins." In Field-Flow Fractionation in Biopolymer Analysis, 89–101. Vienna: Springer Vienna, 2011. http://dx.doi.org/10.1007/978-3-7091-0154-4_6.
Full textBayramov, Nadir, Tigran Nagapetyan, and Rene Pinnau. "Fast Optimal Control of Asymmetric Flow Field Flow Fractionation Processes." In 2013 Proceedings of the Conference on Control and its Applications, 207–13. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2013. http://dx.doi.org/10.1137/1.9781611973273.28.
Full textFlack, Kenneth, Luis A. Jimenez, and Wenwan Zhong. "Analysis of the Distribution Profiles of Circulating MicroRNAs by Asymmetrical Flow Field Flow Fractionation." In Methods in Molecular Biology, 161–68. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-6524-3_15.
Full textYuan, Mingyu, Chengjun Huang, Wenbing Fan, Xiaonan Yang, and Mingxiao Li. "Simulation Design of Exosomes Separation Microfluid Device Based on Asymmetrical Flow Field-Flow Fractionation." In Lecture Notes in Electrical Engineering, 91–95. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-13-3381-1_16.
Full textMoquin, Alexandre, Françoise M. Winnik, and Dusica Maysinger. "Separation Science: Principles and Applications for the Analysis of Bionanoparticles by Asymmetrical Flow Field-Flow Fractionation (AF4)." In Methods in Molecular Biology, 325–41. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-336-7_30.
Full textEngert, Julia, Roman Mathaes, and Gerhard Winter. "Asymmetrical Flow Field Flow Fractionation: A Useful Tool for the Separation of Protein Pharmaceuticals and Particulate Systems." In Advances in Delivery Science and Technology, 467–88. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-4029-5_15.
Full textLi, Yongfu, Krishna Kuppannan, and David M. Meunier. "Characterization of Biopolymer Stability by Size-Exclusion Chromatography and Asymmetric Flow Field-Flow Fractionation." In ACS Symposium Series, 145–69. Washington, DC: American Chemical Society, 2018. http://dx.doi.org/10.1021/bk-2018-1281.ch008.
Full textNguyen, Phuong Thanh, Marie-Ange Cordier, Fabienne Ibalot, and Edith Parlanti. "Optical Properties and Asymmetric Flow Field-Flow Fractionation of Dissolved Organic Matter from the Arcachon Bay (French Atlantic Coast)." In Functions of Natural Organic Matter in Changing Environment, 153–58. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5634-2_27.
Full textGao, Wei, Jamie Cohen, Francis Acholla, and Wenyu Su. "Development of Asymmetrical Flow Field Fractionation with On-line Advanced Detections for Particle Size Distribution Analysis of Silica Colloidal Particles." In ACS Symposium Series, 111–43. Washington, DC: American Chemical Society, 2018. http://dx.doi.org/10.1021/bk-2018-1281.ch007.
Full textSchimpf, Martin E. "Field-Flow Fractionation." In Ewing’s Analytical Instrumentation Handbook, Fourth Edition, 777–96. Fourth edition / [edited by] Nelu Grinberg, Sonia Rodriguez. | Boca Raton : CRC Press, Taylor & Francis Group, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9781315118024-27.
Full textConference papers on the topic "Asymmetrical flow field-flow fractionation"
Exner, A., B. S. Seidel, W. Faubel, U. Panne, and R. Nießner. "Characterization of hydrocolloids by asymmetric flow field-flow fractionation." In PHOTOACOUSTIC AND PHOTOTHERMAL PHENOMENA. ASCE, 1999. http://dx.doi.org/10.1063/1.58184.
Full textde Carsalade du pont, Valentin, Enrica Alasonati, Sophie Vaslin-Reimann, Michel Martin, Mauricio Hoyos, and Paola Fisicaro. "Asymmetric field flow fractionation applied to the nanoparticles characterization: Study of the parameters governing the retention in the channel." In 19th International Congress of Metrology (CIM2019), edited by Sandrine Gazal. Les Ulis, France: EDP Sciences, 2019. http://dx.doi.org/10.1051/metrology/201923001.
Full textZATTONI, A., B. RODA, M. GUARDIGLI, D. MELUCCI, P. RESCHIGLIAN, and A. RODA. "CHEMILUMINESCENCE DETECTION FOR FIELD-FLOW FRACTIONATION." In Bioluminescence and Chemiluminescence - Progress and Current Applications - 12th International Symposium on Bioluminescence (BL) and Chemiluminescence (CL). WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776624_0048.
Full textGale, Bruce K., and Himanshu J. Sant. "Nanoparticle analysis using microscale field flow fractionation." In MOEMS-MEMS 2007 Micro and Nanofabrication. SPIE, 2007. http://dx.doi.org/10.1117/12.713794.
Full textFruhstorfer, Peter, and Reinhard Niessner. "Flow-field-flow-fractionation as a new tool for fractionating aquatic colloids." In European Symposium on Optics for Environmental and Public Safety, edited by Tuan Vo-Dinh. SPIE, 1995. http://dx.doi.org/10.1117/12.224091.
Full textXuejun, Zhang, and Chen Xiangwei. "Development Detector for Field Flow Fractionation Based on Wavelet Analysis." In 2010 International Conference on Digital Manufacturing and Automation (ICDMA). IEEE, 2010. http://dx.doi.org/10.1109/icdma.2010.80.
Full textGawanmeh, Amjad, Anas Alazzam, Bobby Mathew, Mohammad Abutayeh, and Hyung Jin Sung. "Formalizing the movement of microparticles in a continuous flow microfluidic device for field flow fractionation." In 2015 17th International Conference on E-Health Networking, Application & Services (HealthCom). IEEE, 2015. http://dx.doi.org/10.1109/healthcom.2015.7454483.
Full textCarpino, F., M. Zborowski, and P. Williams. "Quadrupole Magnetic Field-Flow Fractionation for the Analysis of Magnetic Nanoparticles." In INTERMAG 2006 - IEEE International Magnetics Conference. IEEE, 2006. http://dx.doi.org/10.1109/intmag.2006.376316.
Full textMathew, Bobby, Anas Alazzam, and Saud A. Khashan. "Microfabrication of multi-layered electrodes for dielectrophoresis-based field flow fractionation." In SPIE Microtechnologies, edited by Sander van den Driesche. SPIE, 2015. http://dx.doi.org/10.1117/12.2179007.
Full textGale, B. K., K. D. Caldwell, and A. B. Frazier. "Characterization of a Micromachined Electrical Field-Flow Fractionation (µ-EFFF) System." In 1998 Solid-State, Actuators, and Microsystems Workshop. San Diego, CA USA: Transducer Research Foundation, Inc., 1998. http://dx.doi.org/10.31438/trf.hh1998.79.
Full textReports on the topic "Asymmetrical flow field-flow fractionation"
Giddings, J. C. Field-flow fractionation of chromosomes. Office of Scientific and Technical Information (OSTI), April 1993. http://dx.doi.org/10.2172/6434224.
Full textGiddings, J. C. Field-flow fractionation of chromosomes. Office of Scientific and Technical Information (OSTI), September 1991. http://dx.doi.org/10.2172/5745557.
Full textGiddings, J. C. Field-flow fractionation of chromosomes. Office of Scientific and Technical Information (OSTI), September 1990. http://dx.doi.org/10.2172/6370502.
Full textJohn P. Selegue. Field-Flow Fractionation of Carbon Nanotubes and Related Materials. Office of Scientific and Technical Information (OSTI), November 2011. http://dx.doi.org/10.2172/1029463.
Full textGiddings, J. Field-flow fractionation in the analysis of energy-related materials. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/5414274.
Full textGiddings, J. C. Field-flow fractionation of chromosomes. Progress report, July 1, 1989--January 31, 1992. Office of Scientific and Technical Information (OSTI), September 1991. http://dx.doi.org/10.2172/10131222.
Full textGiddings, J. C. Field-flow fractionation of chromosomes. Final technical report, July 1, 1989--January 31, 1993. Office of Scientific and Technical Information (OSTI), April 1993. http://dx.doi.org/10.2172/10159548.
Full text