Academic literature on the topic 'Asymptotic cones'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Asymptotic cones.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Asymptotic cones"

1

Sisto, Alessandro. "Tree-graded asymptotic cones." Groups, Geometry, and Dynamics 7, no. 3 (2013): 697–735. http://dx.doi.org/10.4171/ggd/203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Riley, T. R. "Higher connectedness of asymptotic cones." Topology 42, no. 6 (2003): 1289–352. http://dx.doi.org/10.1016/s0040-9383(03)00002-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Erschler, A., and D. Osin. "Fundamental groups of asymptotic cones." Topology 44, no. 4 (2005): 827–43. http://dx.doi.org/10.1016/j.top.2005.02.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kalogeropoulos, N. "Asymptotic cones and quantum gravity." Journal of Physics: Conference Series 490 (March 11, 2014): 012223. http://dx.doi.org/10.1088/1742-6596/490/1/012223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

BRIDSON, MARTIN R. "ASYMPTOTIC CONES AND POLYNOMIAL ISOPERIMETRIC INEQUALITIES." Topology 38, no. 3 (1999): 543–54. http://dx.doi.org/10.1016/s0040-9383(98)00032-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mazet, Laurent. "MINIMAL HYPERSURFACES ASYMPTOTIC TO SIMONS CONES." Journal of the Institute of Mathematics of Jussieu 16, no. 1 (2015): 39–58. http://dx.doi.org/10.1017/s1474748015000110.

Full text
Abstract:
In this paper, we prove that, up to similarity, there are only two minimal hypersurfaces in $\mathbb{R}^{n+2}$ that are asymptotic to a Simons cone, i.e., the minimal cone over the minimal hypersurface $\sqrt{\frac{p}{n}}\mathbb{S}^{p}\times \sqrt{\frac{n-p}{n}}\mathbb{S}^{n-p}$ of $\mathbb{S}^{n+1}$.
APA, Harvard, Vancouver, ISO, and other styles
7

Sun, Xiang, and Jean-Marie Morvan. "Asymptotic cones of embedded singular spaces." Geometry, Imaging and Computing 2, no. 1 (2015): 47–76. http://dx.doi.org/10.4310/gic.2015.v2.n1.a3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Thomas, Simon, and Boban Velickovic. "Asymptotic Cones of Finitely Generated Groups." Bulletin of the London Mathematical Society 32, no. 2 (2000): 203–8. http://dx.doi.org/10.1112/s0024609399006621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dydak, J., and J. Higes. "Asymptotic cones and Assouad-Nagata dimension." Proceedings of the American Mathematical Society 136, no. 06 (2008): 2225–33. http://dx.doi.org/10.1090/s0002-9939-08-09149-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kramer, Linus, Saharon Shelah, Katrin Tent, and Simon Thomas. "Asymptotic cones of finitely presented groups." Advances in Mathematics 193, no. 1 (2005): 142–73. http://dx.doi.org/10.1016/j.aim.2004.04.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Asymptotic cones"

1

Kar, Aditi. "Discrete Groups and CAT(0) Asymptotic Cones." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1227638797.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Scheele, Lars [Verfasser], and Katrin [Akademischer Betreuer] Tent. "Iterated asymptotic cones / Lars Scheele. Betreuer: Katrin Tent." Münster : Universitäts- und Landesbibliothek der Westfälischen Wilhelms-Universität, 2011. http://d-nb.info/1027017045/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mascarenhas, Helena. "Convolution type operators on cones and asymptotic spectral theory." Doctoral thesis, [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=970638809.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Appleby, Paul [Verfasser]. "Mean curvature flow of surfaces asymptotic to minimal cones / Paul Appleby." Berlin : Freie Universität Berlin, 2011. http://d-nb.info/1025510003/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Takisaka, Toru. "Large Scale Geometries of Infinite Strings." Kyoto University, 2018. http://hdl.handle.net/2433/232221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Baligh, Mohammadhadi. "Analysis of the Asymptotic Performance of Turbo Codes." Thesis, University of Waterloo, 2006. http://hdl.handle.net/10012/883.

Full text
Abstract:
Battail [1989] shows that an appropriate criterion for the design of long block codes is the closeness of the normalized weight distribution to a Gaussian distribution. A subsequent work shows that iterated product of single parity check codes satisfy this criterion [1994]. Motivated by these earlier works, in this thesis, we study the effect of the interleaver on the performance of turbo codes for large block lengths, $N\rightarrow\infty$. A parallel concatenated turbo code that consists of two or more component codes is considered. We demonstrate that for $N\rightarrow\infty$,
APA, Harvard, Vancouver, ISO, and other styles
7

Watson, Simon P. "On the asymptotics of the Dirichlet Laplacian : cones, corners and conduction." Thesis, University of Bristol, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kapanadze, David, Bert-Wolfgang Schulze, and Ingo Witt. "Coordinate invariance of the cone algebra with asymptotics." Universität Potsdam, 2000. http://opus.kobv.de/ubp/volltexte/2008/2567/.

Full text
Abstract:
The cone algebra with discrete asymptotics on a manifold with conical singularities is shown to be invariant under natural coordinate changes, where the symbol structure (i.e., the Fuchsian interior symbol, conormal symbols of all orders) follows a corresponding transformation rule.
APA, Harvard, Vancouver, ISO, and other styles
9

Riley, Timothy Rupert. "Asymptotic invariants of infinite discrete groups." Thesis, University of Oxford, 2002. http://ora.ox.ac.uk/objects/uuid:30f42f4c-e592-44c2-9954-7d9e8c1f3d13.

Full text
Abstract:
<b>Asymptotic cones.</b> A finitely generated group has a word metric, which one can scale and thereby view the group from increasingly distant vantage points. The group coalesces to an "asymptotic cone" in the limit (this is made precise using techniques of non-standard analysis). The reward is that in place of the discrete group one has a continuous object "that is amenable to attack by geometric (e.g. topological, infinitesimal) machinery" (to quote Gromov). We give coarse geometric conditions for a metric space X to have N-connected asymptotic cones. These conditions are expressed in terms
APA, Harvard, Vancouver, ISO, and other styles
10

Le, Boudec Adrien. "Géométrie des groupes localement compacts. Arbres. Action !" Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112036.

Full text
Abstract:
Dans le Chapitre 1 nous étudions les groupes localement compacts lacunaires hyperboliques. Nous caractérisons les groupes ayant un cône asymptotique qui est un arbre réel et dont l'action naturelle est focale. Nous étudions également la structure des groupes lacunaires hyperboliques, et montrons que dans le cas unimodulaire les sous-groupes ne satisfont pas de loi. Nous appliquons au Chapitre 2 les résultats précédents pour résoudre le problème de l'existence de points de coupure dans un cône asymptotique dans le cas des groupes de Lie connexes. Dans le Chapitre 3 nous montrons que le groupe d
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Asymptotic cones"

1

M, Teboulle, ed. Asymptotic cones and functions in optimization and variational inequalities. Springer, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Auslender, Alfred, and Marc Teboulle. Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Auslender, Alfred, and Marc Teboulle. Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer-Verlag, 2003. http://dx.doi.org/10.1007/b97594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Goodin, Robert E., and Kai Spiekermann. Extensions. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198823452.003.0003.

Full text
Abstract:
The classic Condorcet Jury Theorem comes with demanding assumptions. This chapter shows that similar results can be derived if the assumptions are weakened. First, if the Competence Assumption is weakened by allowing for heterogeneous voter competence, the Asymptotic Result of the jury theorem still obtains (though the Non-asymptotic Result does only under very specific assumptions). Second, the number of alternatives can be more than two for a structurally similar jury theorem, using plurality voting. Third, different decision procedures, such as the Borda count or the Condorcet pairwise crit
APA, Harvard, Vancouver, ISO, and other styles
6

Keshav, Satish, and Alexandra Kent. Dyspepsia. Edited by Patrick Davey and David Sprigings. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199568741.003.0025.

Full text
Abstract:
Dyspepsia is a term encompassing several symptoms of the upper gastrointestinal (GI) tract, including acid reflux, heartburn, nausea, vomiting, and abdominal pain or discomfort. Up to 40% of the population suffer with dyspepsia; 5%–10% will consult their GP, and 1% will undergo endoscopic assessment. Over-the-counter medications cost patients £100 million annually, and prescribed drugs cost the NHS over £463 million annually. There is a steady rise in incidence with increasing age. Helicobacter pylori is present in 40% of the UK population, with many individuals acquiring the infection in chil
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Asymptotic cones"

1

Chow, Bennett, Sun-Chin Chu, David Glickenstein, et al. "Asymptotic cones and Sharafutdinov retraction." In Mathematical Surveys and Monographs. American Mathematical Society, 2010. http://dx.doi.org/10.1090/surv/163/13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fiddes, S. P., and J. H. B. Smith. "Asymptotic Separation from Slender Cones at Incidence." In Boundary-Layer Separation. Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-83000-6_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Boutet de Monvel, L. "Toeplitz Operators — An Asymptotic Quantization of Symplectic Cones." In Stochastic Processes and their Applications. Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2117-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gasperin, Anthony. "Topology of Asymptotic Cones and Non-deterministic Polynomial Time Computations." In Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39053-1_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Maz’ya, Vladimir, Serguei Nazarov, and Boris A. Plamenevskij. "Asymptotic Behaviour of Intensity Factors for Vertices of Corners and Cones Coming Close." In Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains. Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8434-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tsfasman, M. A., and S. G. Vlăduţ. "Asymptotic Results." In Algebraic-Geometric Codes. Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3810-9_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tsfasman, M. A., and S. G. Vlăduţ. "Asymptotic Problems." In Algebraic-Geometric Codes. Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3810-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Witt, Ingo. "Cone Conormal Asymptotics." In Partial Differential Equations and Spectral Theory. Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8231-6_38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Polyzou, W. N., and Gordon J. Aiello. "Euclidean Relativistic Quantum Mechanics: Scattering Asymptotic Conditions." In Light Cone 2016. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65732-5_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gómez-Rocha, María, and Stanisław D. Głazek. "Asymptocic Freedom of Gluons in Hamiltonian Dynamics." In Light Cone 2015. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50699-9_36.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Asymptotic cones"

1

Tang, Yinhang, Xiang Sun, Di Huang, Jean-Marie Morvan, Yunhong Wang, and Liming Chen. "3D face recognition with asymptotic cones based principal curvatures." In 2015 International Conference on Biometrics (ICB). IEEE, 2015. http://dx.doi.org/10.1109/icb.2015.7139111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Liepins, Atis A., and Javier Arnez. "Lateral Influence Coefficients for a Thin Conical Shell Frustum." In ASME 2015 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/pvp2015-45298.

Full text
Abstract:
Thin conical shell components are often used in vertical process vessels, bins, and water storage tanks. When exposed to the elements, such structures may be subjected to lateral wind forces and seismic accelerations. For calculations of lateral response of such structures with simplified models, in the form of vertical beams, lateral influence coefficients for thin conical frustum shells are useful. To compute lateral influence coefficient for conical frusta, asymmetric solutions of shell equations for cones are needed. The literature on asymmetric solutions for conical shells is sparse. Hoff
APA, Harvard, Vancouver, ISO, and other styles
3

Ota, Takahiro, and Hiroyoshi Morita. "Asymptotic optimality of antidictionary codes." In 2010 IEEE International Symposium on Information Theory - ISIT. IEEE, 2010. http://dx.doi.org/10.1109/isit.2010.5513281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bocharova, Irina, Boris Kudryashov, Rolf Johannesson, and Victor Zyablov. "Asymptotic performances of woven graph codes." In 2008 IEEE International Symposium on Information Theory - ISIT. IEEE, 2008. http://dx.doi.org/10.1109/isit.2008.4595142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Reznik, Y. A., and W. Szpankowski. "Asymptotic average redundancy of adaptive block codes." In IEEE International Symposium on Information Theory, 2003. Proceedings. IEEE, 2003. http://dx.doi.org/10.1109/isit.2003.1228093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Matas, David, and Meritxell Lamarca. "Asymptotic MAP upper bounds for LDPC codes." In 2016 IEEE International Symposium on Information Theory (ISIT). IEEE, 2016. http://dx.doi.org/10.1109/isit.2016.7541828.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kejing Liu and Javier Garcia-Frias. "Asymptotic analysis of LDGM-based quantum codes." In 2009 43rd Annual Conference on Information Sciences and Systems (CISS). IEEE, 2009. http://dx.doi.org/10.1109/ciss.2009.5054696.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tsirova, Natalia. "Relativistic asymptotics of the deuteron and pion form factors." In LIGHT CONE 2008 Relativistic Nuclear and Particle Physics. Sissa Medialab, 2009. http://dx.doi.org/10.22323/1.061.0054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chun-Hao Hsu and A. Anastasopoulos. "Asymptotic weight distributions of irregular repeat-accumulate codes." In GLOBECOM '05. IEEE Global Telecommunications Conference, 2005. IEEE, 2005. http://dx.doi.org/10.1109/glocom.2005.1577833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cassuto, Yuval, and Simon Litsyn. "Symbol-pair codes: Algebraic constructions and asymptotic bounds." In 2011 IEEE International Symposium on Information Theory - ISIT. IEEE, 2011. http://dx.doi.org/10.1109/isit.2011.6033982.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!