Academic literature on the topic 'At n- dimensional torus'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'At n- dimensional torus.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "At n- dimensional torus"
Miller, David. "Noncharacteristic Embeddings of the n-Dimensional Torus in the (n + 2)-Dimensional Torus." Transactions of the American Mathematical Society 342, no. 1 (1994): 215. http://dx.doi.org/10.2307/2154691.
Full textMiller, David. "Noncharacteristic embeddings of the $n$-dimensional torus in the $(n+2)$-dimensional torus." Transactions of the American Mathematical Society 342, no. 1 (1994): 215–40. http://dx.doi.org/10.1090/s0002-9947-1994-1179398-7.
Full textAndujar-Munoz, Francisco J., Juan A. Villar-Ortiz, Jose L. Sanchez, Francisco Jose Alfaro, and Jose Duato. "N-Dimensional Twin Torus Topology." IEEE Transactions on Computers 64, no. 10 (2015): 2847–61. http://dx.doi.org/10.1109/tc.2014.2378267.
Full textBaladi, V., D. Rockmore, N. Tongring, and C. Tresser. "Renormalization on the n-dimensional torus." Nonlinearity 5, no. 5 (1992): 1111–36. http://dx.doi.org/10.1088/0951-7715/5/5/005.
Full textHu, Xiaomin, Yingzhi Tian, Xiaodong Liang, and Jixiang Meng. "Matching preclusion for n -dimensional torus networks." Theoretical Computer Science 687 (July 2017): 40–47. http://dx.doi.org/10.1016/j.tcs.2017.05.002.
Full textLi, Jing, Yuxing Yang, and Xiaohui Gao. "Hamiltonicity of the Torus Network Under the Conditional Fault Model." International Journal of Foundations of Computer Science 28, no. 03 (2017): 211–27. http://dx.doi.org/10.1142/s0129054117500149.
Full textDE MARCO, GIANLUCA, and ADELE A. RESCIGNO. "TIGHTER TIME BOUNDS ON BROADCASTING IN TORUS NETWORKS IN PRESENCE OF DYNAMIC FAULTS." Parallel Processing Letters 10, no. 01 (2000): 39–49. http://dx.doi.org/10.1142/s0129626400000068.
Full textHu, Xiaomin, Yingzhi Tian, Xiaodong Liang, and Jixiang Meng. "Strong matching preclusion for n-dimensional torus networks." Theoretical Computer Science 635 (July 2016): 64–73. http://dx.doi.org/10.1016/j.tcs.2016.05.008.
Full textNeeb, Karl-Hermann. "On the Classification of Rational Quantum Tori and the Structure of Their Automorphism Groups." Canadian Mathematical Bulletin 51, no. 2 (2008): 261–82. http://dx.doi.org/10.4153/cmb-2008-027-7.
Full textRieffel, Marc A. "Projective Modules over Higher-Dimensional Non-Commutative Tori." Canadian Journal of Mathematics 40, no. 2 (1988): 257–338. http://dx.doi.org/10.4153/cjm-1988-012-9.
Full textDissertations / Theses on the topic "At n- dimensional torus"
Barbos, Aneta E. [Verfasser]. "Energy decay law in n-dimensional Gowdy spacetimes with torus topology / Aneta Barbos." Berlin : Freie Universität Berlin, 2010. http://d-nb.info/102508800X/34.
Full textFigueiredo, Lilyane Gonzaga. "Reticulados em toros euclidianos n-dimensionais e em g-toros planos hiperbólicos." Universidade Federal de Uberlândia, 2011. https://repositorio.ufu.br/handle/123456789/16790.
Full textYamamoto, Yasuhiro. "Studies of Toroidal Flows Driven by Electron Cyclotron Heating in Three-Dimensional Torus Plasmas." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263655.
Full textMcKee, David Wesley. "n-Dimensional prediction of RT-SOA QoS." Thesis, University of Leeds, 2017. http://etheses.whiterose.ac.uk/18658/.
Full textSaeed, Muhammad Saqib. "A Mechanism for Representing N-Dimensional Software Process Models in One-Dimensional Documents." Thesis, Blekinge Tekniska Högskola, Avdelningen för programvarusystem, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-3238.
Full textElliott, Joshua Wright 1980. "Three dimensional N = 2 supersymmetry on the lattice." Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97947.
Full textKhorsravi, Mehrdad. "Some N-Dimensional analytic geometry : angles and more." Honors in the Major Thesis, University of Central Florida, 2002. http://digital.library.ucf.edu/cdm/ref/collection/ETH/id/281.
Full textSantos, Jonas Deyson Brito dos. "RenderizaÃÃo com amostragem adaptativa no domÃnio N-dimensional." Universidade Federal do CearÃ, 2013. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=9642.
Full textChongburee, Wachira. "Digital Transmission by Hermite N-Dimensional Antipodal Scheme." Diss., Virginia Tech, 2004. http://hdl.handle.net/10919/11110.
Full textBicho, Luís Manuel Balsa. "Existence of minimizers for n-dimensional nonconvex integrals." Doctoral thesis, Universidade de Évora, 2013. http://hdl.handle.net/10174/15228.
Full textBooks on the topic "At n- dimensional torus"
Ohmori, Kantaro. Six-Dimensional Superconformal Field Theories and Their Torus Compactifications. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-3092-6.
Full textGregson, R. A. M. 1928-, ed. N-dimensional nonlinear psychophysics. L. Erlbaum Associates, 1992.
Find full textauthor, Bolle Philippe, ed. Quasi-periodic solutions of nonlinear wave equations in the D-dimensional torus. European Mathematical Society, 2020.
Find full textLawson, C. L. Some properties of n-dimensional triangulations. Jet Propulsion Laboratory California Institute ofTechnology, 1985.
Find full textPettersson, Kerstin. Strong n-generators in some one-dimensional domains. Univ., 1998.
Find full textP, Banks Stephen. On the inversion of the n-dimensional Laplace transform. University of Sheffield, Dept. of Automatic Control and Systems Engineering, 1992.
Find full textDiacu, Florin. Relative equilibria in the 3-dimensional curved n-body problem. American Mathematical Society, 2013.
Find full textHavel, K. N bodies--no problem: Unrestricted two and three dimensional solutions. Grevyt Press, 2005.
Find full textBanks, Stephen P. Existence of periodic solutions in n-dimensional retarded functional differential equations. University of Sheffield, Dept. of Control Engineering, 1987.
Find full textOdling, Noelle E. Structural analysis and three-dimensional modelling at Gamsberg, N. W. Cape. Dept. of Geology, University of Cape Town, 1987.
Find full textBook chapters on the topic "At n- dimensional torus"
Duato, Jose, and Pedero Lopez. "Highly adaptive wormhole routing algorithms for n-dimensional torus." In DIMACS Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society, 1995. http://dx.doi.org/10.1090/dimacs/021/08.
Full textOhmori, Kantaro. "Circle and Torus Compactifications." In Six-Dimensional Superconformal Field Theories and Their Torus Compactifications. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-3092-6_3.
Full textLizzi, Fedele, and Alexandr Pinzul. "Dimensional Deception for the Noncommutative Torus." In Springer Proceedings in Physics. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24748-5_13.
Full textZhunussova, Zhanat. "Two-Dimensional Dispersed Composites on a Square Torus." In Trends in Mathematics. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-42539-4_34.
Full textDelmas, Olivier, and Stéphane Perennes. "Circuit-switched gossiping in 3-dimensional torus networks." In Lecture Notes in Computer Science. Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/3-540-61626-8_48.
Full textShapiro, Victor L. "Quasilinear Ellipticity on the N-Torus." In Nonlinear and Convex Analysis. CRC Press, 2023. http://dx.doi.org/10.1201/9781003420040-17.
Full textOhmori, Kantaro. "Six-Dimensional Superconformal Field Theories." In Six-Dimensional Superconformal Field Theories and Their Torus Compactifications. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-3092-6_2.
Full textVorobjev, Yuri. "Riccati Equation Over Torus and Semiclassical Quantization of Multiperiodic Motion." In Quantization and Infinite-Dimensional Systems. Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2564-6_23.
Full textBendikov, Alexander D., and Igor V. Pavlov. "On the Poisson Equation on the Infinite Dimensional Torus." In Potential Theory. Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-0981-9_4.
Full textBourbaki, Nicolas. "N Dimensional Spaces." In Elements of the History of Mathematics. Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-61693-8_14.
Full textConference papers on the topic "At n- dimensional torus"
Chakravarthy, Animesh, and Debasish Ghose. "Steering Opinions over n-Dimensional Spherical Manifolds." In 2024 IEEE 63rd Conference on Decision and Control (CDC). IEEE, 2024. https://doi.org/10.1109/cdc56724.2024.10886840.
Full textZhu, Kangqi, Nan Hua, and Xiaoping Zheng. "Achieving High-Precision Time Synchronization in Optical Satellite Networks under High-Dimensional Time-Invariant Twisted Torus Topology." In 2024 IEEE Opto-Electronics and Communications Conference (OECC). IEEE, 2024. https://doi.org/10.1109/oecc54135.2024.10975561.
Full textAndujar, Francisco J., Juan A. Villar, Jose L. Sanchez, Francisco J. Alfaro, and Jose Duato. "Optimal Configuration for N-Dimensional Twin Torus Networks." In 2014 IEEE 13th International Symposium on Network Computing and Applications (NCA). IEEE, 2014. http://dx.doi.org/10.1109/nca.2014.14.
Full textHolzenspies, P., E. Schepers, W. Bach, et al. "A communication model based on an n-dimensional torus architecture using deadlock-free wormhole routing." In Proceedings. Euromicro Symposium on Digital System Design. IEEE, 2003. http://dx.doi.org/10.1109/dsd.2003.1231920.
Full textMahmoudian, Nina, and Derek A. Paley. "Synchronization on the N-torus with noisy measurements." In 2011 American Control Conference. IEEE, 2011. http://dx.doi.org/10.1109/acc.2011.5991250.
Full textIWAKIRI, Masahide. "QUANDLE COCYCLE INVARIANTS OF TORUS LINKS." In Intelligence of Low Dimensional Topology 2006 - The International Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812770967_0008.
Full textCruzeiro, Ana Bela, and Paul Malliavin. "Stochastic parallel transport on the d-dimensional torus." In Proceedings of a Satellite Conference of ICM 2006. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812791559_0001.
Full textWeizhen Mao, Jie Chen, and W. Watson. "Efficient subtorus processor allocation in a multi-dimensional torus." In Eighth International Conference on High-Performance Computing in Asia-Pacific Region (HPCASIA'05). IEEE, 2005. http://dx.doi.org/10.1109/hpcasia.2005.35.
Full textLiu, Di, Jing Li, and Shurong Zuo. "The Disjoint Path Covers of Two-Dimensional Torus Networks." In 2018 15th International Symposium on Pervasive Systems, Algorithms and Networks (I-SPAN). IEEE, 2018. http://dx.doi.org/10.1109/i-span.2018.00045.
Full textLienhardt, P. "Subdivisions of n-dimensional spaces and n-dimensional generalized maps." In the fifth annual symposium. ACM Press, 1989. http://dx.doi.org/10.1145/73833.73859.
Full textReports on the topic "At n- dimensional torus"
Lawrence, Jim. Finite unions of closed subgroups of the n-dimensional torus. National Bureau of Standards, 1988. http://dx.doi.org/10.6028/nist.ir.88-3777.
Full textPark, Jong-kyu, Allen H. Boozer, and Alan H. Glasser. Computation of Three Dimensional Tokamak and Spherical Torus Equilibria. Office of Scientific and Technical Information (OSTI), 2007. http://dx.doi.org/10.2172/963554.
Full textAlghanemi, Azeb, and Hichem Chtioui. Prescribing Scalar Curvatures on n-dimensional Manifolds, 4 ≤ n ≤ 6. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, 2020. http://dx.doi.org/10.7546/crabs.2020.02.03.
Full textFredrickson, E., N. Gorelenkov, W. Heidbrink, et al. �-Suppression of Alfv�n Cascade Modes in the National Spherical Torus Experiment. Office of Scientific and Technical Information (OSTI), 2007. http://dx.doi.org/10.2172/962716.
Full textRaychev, Nikolay. Hyper-n-Dimensional Neural Network Model with Desargues Monoids. Web of Open Science, 2020. http://dx.doi.org/10.37686/emj.v1i1.28.
Full textQiu, Zongan. Non-critical superstrings from two dimensional N = 1 supergravity. Office of Scientific and Technical Information (OSTI), 1990. http://dx.doi.org/10.2172/6172609.
Full textBoehm, Albert R. The Correlation Structure of Randomly Oriented 1,2,....,N Dimensional Waves. Defense Technical Information Center, 1997. http://dx.doi.org/10.21236/ada329463.
Full textSuen, Guozhen, Yanhua Chua, and Jincan Xian. Solvability Results for Convex, Quasi-n-Dimensional Curves in Quantitative Statistical Systems In D-Dimensional Space. Web of Open Science, 2020. http://dx.doi.org/10.37686/qrl.v1i1.4.
Full textHosokawa, Kiyonori. A Recursion Operator for the Geodesic Flow on N-Dimensional Sphere. GIQ, 2014. http://dx.doi.org/10.7546/giq-15-2014-152-161.
Full textJoseph, Anosh. Lattice formulation of three-dimensional N=4 gauge theory with fundamental matter fields. Office of Scientific and Technical Information (OSTI), 2013. http://dx.doi.org/10.2172/1086767.
Full text