Academic literature on the topic 'Atg18'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Atg18.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Atg18"

1

Sawa-Makarska, Justyna, Verena Baumann, Nicolas Coudevylle, Sören von Bülow, Veronika Nogellova, Christine Abert, Martina Schuschnig, Martin Graef, Gerhard Hummer, and Sascha Martens. "Reconstitution of autophagosome nucleation defines Atg9 vesicles as seeds for membrane formation." Science 369, no. 6508 (September 3, 2020): eaaz7714. http://dx.doi.org/10.1126/science.aaz7714.

Full text
Abstract:
Autophagosomes form de novo in a manner that is incompletely understood. Particularly enigmatic are autophagy-related protein 9 (Atg9)–containing vesicles that are required for autophagy machinery assembly but do not supply the bulk of the autophagosomal membrane. In this study, we reconstituted autophagosome nucleation using recombinant components from yeast. We found that Atg9 proteoliposomes first recruited the phosphatidylinositol 3-phosphate kinase complex, followed by Atg21, the Atg2-Atg18 lipid transfer complex, and the E3-like Atg12–Atg5-Atg16 complex, which promoted Atg8 lipidation. Furthermore, we found that Atg2 could transfer lipids for Atg8 lipidation. In selective autophagy, these reactions could potentially be coupled to the cargo via the Atg19-Atg11-Atg9 interactions. We thus propose that Atg9 vesicles form seeds that establish membrane contact sites to initiate lipid transfer from compartments such as the endoplasmic reticulum.
APA, Harvard, Vancouver, ISO, and other styles
2

Hegedűs, Krisztina, Péter Nagy, Zoltán Gáspári, and Gábor Juhász. "The Putative HORMA Domain Protein Atg101 Dimerizes and Is Required for Starvation-Induced and Selective Autophagy inDrosophila." BioMed Research International 2014 (2014): 1–13. http://dx.doi.org/10.1155/2014/470482.

Full text
Abstract:
The large-scale turnover of intracellular material including organelles is achieved by autophagy-mediated degradation in lysosomes. Initiation of autophagy is controlled by a protein kinase complex consisting of an Atg1-family kinase, Atg13, FIP200/Atg17, and the metazoan-specific subunit Atg101. Here we show that loss of Atg101 impairs both starvation-induced and basal autophagy inDrosophila. This leads to accumulation of protein aggregates containing the selective autophagy cargo ref(2)P/p62. Mapping experiments suggest that Atg101 binds to the N-terminal HORMA domain of Atg13 and may also interact with two unstructured regions of Atg1. Another HORMA domain-containing protein, Mad2, forms a conformational homodimer. We show thatDrosophilaAtg101 also dimerizes, and it is predicted to fold into a HORMA domain. Atg101 interacts with ref(2)P as well, similar to Atg13, Atg8a, Atg16, Atg18, Keap1, and RagC, a known regulator of Tor kinase which coordinates cell growth and autophagy. These results raise the possibility that the interactions and dimerization of the putative HORMA domain protein Atg101 play critical roles in starvation-induced autophagy and proteostasis, by promoting the formation of protein aggregate-containing autophagosomes.
APA, Harvard, Vancouver, ISO, and other styles
3

Efe, Jem A., Roberto J. Botelho, and Scott D. Emr. "Atg18 Regulates Organelle Morphology and Fab1 Kinase Activity Independent of Its Membrane Recruitment by Phosphatidylinositol 3,5-Bisphosphate." Molecular Biology of the Cell 18, no. 11 (November 2007): 4232–44. http://dx.doi.org/10.1091/mbc.e07-04-0301.

Full text
Abstract:
The lipid kinase Fab1 governs yeast vacuole homeostasis by generating PtdIns(3,5)P2on the vacuolar membrane. Recruitment of effector proteins by the phospholipid ensures precise regulation of vacuole morphology and function. Cells lacking the effector Atg18p have enlarged vacuoles and high PtdIns(3,5)P2levels. Although Atg18 colocalizes with Fab1p, it likely does not directly interact with Fab1p, as deletion of either kinase activator—VAC7 or VAC14—is epistatic to atg18Δ: atg18Δvac7Δ cells have no detectable PtdIns(3,5)P2. Moreover, a 2xAtg18 (tandem fusion) construct localizes to the vacuole membrane in the absence of PtdIns(3,5)P2, but requires Vac7p for recruitment. Like the endosomal PtdIns(3)P effector EEA1, Atg18 membrane binding may require a protein component. When the lipid requirement is bypassed by fusing Atg18 to ALP, a vacuolar transmembrane protein, vac14Δ vacuoles regain normal morphology. Rescue is independent of PtdIns(3,5)P2, as mutation of the phospholipid-binding site in Atg18 does not prevent vacuole fission and properly regulates Fab1p activity. Finally, the vacuole-specific type-V myosin adapter Vac17p interacts with Atg18p, perhaps mediating cytoskeletal attachment during retrograde transport. Atg18p is likely a PtdIns(3,5)P2“sensor,” acting as an effector to remodel membranes as well as regulating its synthesis via feedback that might involve Vac7p.
APA, Harvard, Vancouver, ISO, and other styles
4

Strømhaug, Per E., Fulvio Reggiori, Ju Guan, Chao-Wen Wang, and Daniel J. Klionsky. "Atg21 Is a Phosphoinositide Binding Protein Required for Efficient Lipidation and Localization of Atg8 during Uptake of Aminopeptidase I by Selective Autophagy." Molecular Biology of the Cell 15, no. 8 (August 2004): 3553–66. http://dx.doi.org/10.1091/mbc.e04-02-0147.

Full text
Abstract:
Delivery of proteins and organelles to the vacuole by autophagy and the cytoplasm to vacuole targeting (Cvt) pathway involves novel rearrangements of membrane resulting in the formation of vesicles that fuse with the vacuole. The mechanism of vesicle formation and the origin of the membrane are complex issues still to be resolved. Atg18 and Atg21 are proteins essential to vesicle formation and together with Ygr223c form a novel family of phosphoinositide binding proteins that are associated with the vacuole and perivacuolar structures. Their localization requires the activity of Vps34, suggesting that phosphatidylinositol(3)phosphate may be essential for their function. The activity of Atg18 is vital for all forms of autophagy, whereas Atg21 is required for the Cvt pathway but not for nitrogen starvation-induced autophagy. The loss of Atg21 results in the absence of Atg8 from the pre-autophagosomal structure (PAS), which may be ascribed to a reduced rate of conjugation of Atg8 to phosphatidylethanolamine. A similar defect in localization of a second ubiquitin-like conjugate, Atg12-Atg5, suggests that Atg21 may be involved in the recruitment of membrane to the PAS.
APA, Harvard, Vancouver, ISO, and other styles
5

Aslan, Erhan, Nurçin Küçükoğlu, and Muhittin Arslanyolu. "A comparative in-silico analysis of autophagy proteins in ciliates." PeerJ 5 (January 17, 2017): e2878. http://dx.doi.org/10.7717/peerj.2878.

Full text
Abstract:
Autophagy serves as a turnover mechanism for the recycling of redundant and/or damaged macromolecules present in eukaryotic cells to re-use them under starvation conditions via a double-membrane structure known as autophagosome. A set of eukaryotic genes called autophagy-related genes (ATGs) orchestrate this highly elaborative process. The existence of these genes and the role they play in different eukaryotes are well-characterized. However, little is known of their role in some eukaryotes such as ciliates. Here, we report the computational analyses of ATG genes in five ciliate genomes to understand their diversity. Our results show that Oxytricha trifallax is the sole ciliate which has a conserved Atg12 conjugation system (Atg5-Atg12-Atg16). Interestingly, Oxytricha Atg16 protein includes WD repeats in addition to its N-terminal Atg16 domain as is the case in multicellular organisms. Additionally, phylogenetic analyses revealed that E2-like conjugating protein Atg10 is only present in Tetrahymena thermophila. We fail to find critical autophagy components Atg5, Atg7 and Atg8 in the parasitic ciliate Ichthyophthirius multifiliis. Contrary to previous reports, we also find that ciliate genomes do not encode typical Atg1 since all the candidate sequences lack an Atg1-specific C-terminal domain which is essential for Atg1 complex formation. Consistent with the absence of Atg1, ciliates also lack other members of the Atg1 complex. However, the presence of Atg6 in all ciliates examined here may rise the possibility that autophagosome formation could be operated through Atg6 in ciliates, since Atg6 has been shown as an alternative autophagy inducer. In conclusion, our results highlight that Atg proteins are partially conserved in ciliates. This may provide a better understanding for the autophagic destruction of the parental macronucleus, a developmental process also known as programmed nuclear death in ciliates.
APA, Harvard, Vancouver, ISO, and other styles
6

Nakatogawa, Hitoshi. "Two ubiquitin-like conjugation systems that mediate membrane formation during autophagy." Essays in Biochemistry 55 (September 27, 2013): 39–50. http://dx.doi.org/10.1042/bse0550039.

Full text
Abstract:
In autophagy, the autophagosome, a transient organelle specialized for the sequestration and lysosomal or vacuolar transport of cellular constituents, is formed via unique membrane dynamics. This process requires concerted actions of a distinctive set of proteins named Atg (autophagy-related). Atg proteins include two ubiquitin-like proteins, Atg12 and Atg8 [LC3 (light-chain 3) and GABARAP (γ-aminobutyric acid receptor-associated protein) in mammals]. Sequential reactions by the E1 enzyme Atg7 and the E2 enzyme Atg10 conjugate Atg12 to the lysine residue in Atg5, and the resulting Atg12–Atg5 conjugate forms a complex with Atg16. On the other hand, Atg8 is first processed at the C-terminus by Atg4, which is related to ubiquitin-processing/deconjugating enzymes. Atg8 is then activated by Atg7 (shared with Atg12) and, via the E2 enzyme Atg3, finally conjugated to the amino group of the lipid PE (phosphatidylethanolamine). The Atg12–Atg5–Atg16 complex acts as an E3 enzyme for the conjugation reaction of Atg8; it enhances the E2 activity of Atg3 and specifies the site of Atg8–PE production to be autophagy-related membranes. Atg8–PE is suggested to be involved in autophagosome formation at multiple steps, including membrane expansion and closure. Moreover, Atg4 cleaves Atg8–PE to liberate Atg8 from membranes for reuse, and this reaction can also regulate autophagosome formation. Thus these two ubiquitin-like systems are intimately involved in driving the biogenesis of the autophagosomal membrane.
APA, Harvard, Vancouver, ISO, and other styles
7

Noda, Nobuo. "Structural basis of Atg conjugation systems essential for autophagy." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C302. http://dx.doi.org/10.1107/s2053273314096971.

Full text
Abstract:
Autophagy is an evolutionarily-conserved, intracellular degradation system for which two ubiquitin-like modifiers, Atg8 and Atg12, play essential roles. After processed by Atg4, the exposed C-terminal glycine of Atg8 is activated by Atg7 (E1) and is then transferred to Atg3 (E2), and is finally conjugated with a phospholipid, phosphatidylethanolamine (PE) through an amide bond. Whereas, Atg12 is activated by the same E1, Atg7, without processing, and is then transferred to Atg10 (E2), and is finally conjugated with Atg5 through an isopeptide bond. Atg12-Atg5 conjugates, together with Atg16, function as an E3-like enzyme to facilitate the conjugation reaction between Atg8 and PE. During autophagy, Atg8-PE conjugates play a critical role in selective cargo recognition in addition to autophagosome formation. We determined the structures of all these Atg proteins and their complexes mainly by X-ray crystallography, and performed structure-based biochemical analyses on them [1,2]. These studies established the molecular mechanisms of Atg8 and Atg12 modification reactions that have many unique features compared with canonical ubiquitin-like systems. Furthermore, we found a conserved motif named the Atg8-family interacting motif (AIM), through which Atg8 recognizes specific cargoes and selectively incorporates them into autophagosomes for degradation [3].
APA, Harvard, Vancouver, ISO, and other styles
8

Kabeya, Yukiko, Yoshiaki Kamada, Misuzu Baba, Hirosato Takikawa, Mitsuru Sasaki, and Yoshinori Ohsumi. "Atg17 Functions in Cooperation with Atg1 and Atg13 in Yeast Autophagy." Molecular Biology of the Cell 16, no. 5 (May 2005): 2544–53. http://dx.doi.org/10.1091/mbc.e04-08-0669.

Full text
Abstract:
In eukaryotic cells, nutrient starvation induces the bulk degradation of cellular materials; this process is called autophagy. In the yeast Saccharomyces cerevisiae, most of the ATG (autophagy) genes are involved in not only the process of degradative autophagy, but also a biosynthetic process, the cytoplasm to vacuole (Cvt) pathway. In contrast, the ATG17 gene is required specifically in autophagy. To better understand the function of Atg17, we have performed a biochemical characterization of the Atg17 protein. We found that the atg17Δ mutant under starvation condition was largely impaired in autophagosome formation and only rarely contained small autophagosomes, whose size was less than one-half of normal autophagosomes in diameter. Two-hybrid analyses and coimmunoprecipitation experiments demonstrated that Atg17 physically associates with Atg1-Atg13 complex, and this binding was enhanced under starvation conditions. Atg17-Atg1 binding was not detected in atg13Δ mutant cells, suggesting that Atg17 interacts with Atg1 through Atg13. A point mutant of Atg17, Atg17C24R, showed reduced affinity for Atg13, resulting in impaired Atg1 kinase activity and significant defects in autophagy. Taken together, these results indicate that Atg17-Atg13 complex formation plays an important role in normal autophagosome formation via binding to and activating the Atg1 kinase.
APA, Harvard, Vancouver, ISO, and other styles
9

Tamura, Naoki, Masahide Oku, Moemi Ito, Nobuo N. Noda, Fuyuhiko Inagaki, and Yasuyoshi Sakai. "Atg18 phosphoregulation controls organellar dynamics by modulating its phosphoinositide-binding activity." Journal of Cell Biology 202, no. 4 (August 12, 2013): 685–98. http://dx.doi.org/10.1083/jcb.201302067.

Full text
Abstract:
The PROPPIN family member Atg18 is a phosphoinositide-binding protein that is composed of a seven β-propeller motif and is part of the conserved autophagy machinery. Here, we report that the Atg18 phosphorylation in the loops in the propellar structure of blade 6 and blade 7 decreases its binding affinity to phosphatidylinositol 3,5-bisphosphate in the yeast Pichia pastoris. Dephosphorylation of Atg18 was necessary for its association with the vacuolar membrane and caused septation of the vacuole. Upon or after dissociation from the vacuolar membrane, Atg18 was rephosphorylated, and the vacuoles fused and formed a single rounded structure. Vacuolar dynamics were regulated according to osmotic changes, oxidative stresses, and nutrient conditions inducing micropexophagy via modulation of Atg18 phosphorylation. This study reveals how the phosphoinositide-binding activity of the PROPPIN family protein Atg18 is regulated at the membrane association domain and highlights the importance of such phosphoregulation in coordinated intracellular reorganization.
APA, Harvard, Vancouver, ISO, and other styles
10

Melani, Mariana, Ayelén Valko, Nuria M. Romero, Milton O. Aguilera, Julieta M. Acevedo, Zambarlal Bhujabal, Joel Perez-Perri, et al. "Zonda is a novel early component of the autophagy pathway in Drosophila." Molecular Biology of the Cell 28, no. 22 (November 2017): 3070–81. http://dx.doi.org/10.1091/mbc.e16-11-0767.

Full text
Abstract:
Autophagy is an evolutionary conserved process by which eukaryotic cells undergo self-digestion of cytoplasmic components. Here we report that a novel Drosophila immunophilin, which we have named Zonda, is critically required for starvation-induced autophagy. We show that Zonda operates at early stages of the process, specifically for Vps34-mediated phosphatidylinositol 3-phosphate (PI3P) deposition. Zonda displays an even distribution under basal conditions and, soon after starvation, nucleates in endoplasmic reticulum–associated foci that colocalize with omegasome markers. Zonda nucleation depends on Atg1, Atg13, and Atg17 but does not require Vps34, Vps15, Atg6, or Atg14. Zonda interacts physically with Atg1 through its kinase domain, as well as with Atg6 and Vps34. We propose that Zonda is an early component of the autophagy cascade necessary for Vps34-dependent PI3P deposition and omegasome formation.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Atg18"

1

Stephan, Joseph. "An Evolutionary Proteomics Approach For The Identification Of Pka Targets In Saccharomyces Cerevisiae Identifies Atg1 And Atg13, Two Proteins That Play A Central Role In The Regulation Of Autophagy By The Ras/Pka Pathway And The Tor Pathway." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1218042573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jenzer, Céline. "Physiopathologie de l’autophagie au cours du développement embryonnaire chez Caenorhabditis elegans." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS201.

Full text
Abstract:
La macroautophagie est un processus cellulaire qui permet la dégradation et le recyclage de constituants cytoplasmiques par formation de vésicules à double membrane, les autophagosomes qui fusionnent ensuite avec les lysosomes. Ce processus intervient dans divers processus physiologiques tels que le développement, la longévité, la mort cellulaire et dans des pathologies humaines comme des cancers ou maladies neurodégénératives. Mes travaux de thèse ont révélé l’existence de rôles séquentiels et spécifiques des protéines autophagiques, LGG-1 et LGG-2, homologues d’Atg8/LC3 chez le nématode Caenorhabditis elegans. Cette étude a été réalisée dans l’embryon précoce sur une population particulière d’autophagosomes responsables d’un processus physiologique stéréotypé : la dégradation des mitochondries paternelles au moment de la fécondation. Nous avons montré que LGG-1 est recruté au niveau des autophagosomes précoces et permet le recrutement de LGG-2 qui intervient plus tardivement dans le processus autophagique pour permettre la fusion des autophagosomes avec les lysosomes. De plus, la fonction de LGG-1 peut être complémentée par son homologue humain témoignant de l’intérêt du système modèle C. elegans pour l’analyse des homologues d’Atg8.Par ailleurs, des études récentes ont démontré que la protéine autophagique LC3 était recrutée au cours de la phagocytose des corps apoptotiques. Ce processus a été appelé LAP pour LC3-associated phagocytosis. Par des approches génétiques et cellulaires, utilisant la microscopie optique et électronique, j’ai montré qu’il existait une implication différente de protéines autophagiques LGG-1 et LGG-2 dans la dégradation des corps apoptotiques chez C. elegans. La protéine LGG-2, spécifiquement, joue un rôle dans la cellule phagocytaire afin de dégrader le corps apoptotique. Ces travaux suggèrent également une implication de l’autophagie dans le corps apoptotique pour permettre la phagocytose
Macroautophagy is a major ubiquitous catabolic process which allows the bulk degradation and recycling of cytoplasmic constituents by formation of double membrane vesicles called autophagosomes which then fuse with lysosomes. This process is involved in a large variety of physiological processes such as development, anti-aging, cell death and in human pathologies like cancers or neurodegenerative diseases. My thesis work revealed the existence of sequential and specific roles of autophagic proteins LGG-1 and LGG-2, homologs of Atg8/LC3 in Caenorhabditis elegans. In this study, we focused on a particular population of autophagosomes involved in a physiological process in early embryos: the degradation of paternal mitochondria during fertilization. We showed that LGG-1 is recruited at the early autophagosomes and allows LGG -2 recruitment which acts later in the autophagic process to allow the fusion of autophagosomes with lysosomes. Moreover, the function of LGG -1 can be complemented with its human homologs revealing the interest of the C. elegans model system for analyzing Atg8 homologs.Furthermore, recent studies have identified the recruitment of autophagic proteins during phagocytosis of apoptotic cells in the so called LC3-associated phagocytosis (LAP). By genetic and cellular approaches, using optical and electron microscopy, I showed that there is a different involvement of autophagic proteins, LGG-1 and LGG-2 in the degradation of apoptotic cells in C. elegans. LGG-2 protein, specifically, plays a role in phagocytic cell to degrade apoptotic corpses. Moreover, this work suggest a function of autophagy in the apoptotic corpses to allow phagocytosis
APA, Harvard, Vancouver, ISO, and other styles
3

[Verfasser], Archna, and Michael [Akademischer Betreuer] Steinert. "Role of ATG12-ATG5 conjugate in autophagy regulation / Archna ; Betreuer: Michael Steinert." Braunschweig : Technische Universität Braunschweig, 2017. http://d-nb.info/1175817538/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Khaliq, Samira. "Characterization of Atg18p and its role in cellular trafficking in Saccharomyces cerevisiae." Thesis, University of Birmingham, 2013. http://etheses.bham.ac.uk//id/eprint/4010/.

Full text
Abstract:
Ptdins3P and PtdIns(3,5)P2 are phosphoinositides which act as signaling lipids in eukaryotic cells, mediating trafficking through spatio-temporal regulation of effector proteins. Atg18p, a yeast PROPPIN, binds PtdIns3P and PtdIns(3,5)P2 and this study focuses on characterization of Atg18p in order to gain insight into its functions. In vivo localization of GFP-Atg18p under various conditions indicates that the localization of Atg18p is under dual control of lipid binding as well as protein interactions, especially Vac7p. In vivo investigations of Atg18p mutants (in the highly conserved lipid binding domain) indicate that Atg18p lipid binding is slightly distinct from K. lactis Hsv2p lipid binding. In addition, Fourier transform ion cyclotron resonance mass spectrometry data indicates that Atg18p-lipid binding could be affected through possible modifications. The experiments carried out in this research also show that Atg18p binds Vps41p and Apl5p independently, through particular sites which overlap its lipid binding domain and hence offers a plausible explanation for in vivo localization of Atg18p during various processes e.g salt stress and autophagy.
APA, Harvard, Vancouver, ISO, and other styles
5

Leveque, Maude. "Elucidating the canonical and non-canonical functions of the autophagy protein TgATG8 in the apicomplexan parasite Toxoplasma gondii." Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT031.

Full text
Abstract:
L'autophagie est un processus d'auto-dégradation conservé chez la plupart des eucaryotes. Généralement induit par un stress nutritif, il requiert la formation d'un compartiment à double membrane appelé l’autophagosome qui séquestre et transporte des composants intracellulaires dégradés et recyclés dans le lysosome. La protéine ATG8, qui occupe une position centrale dans ce processus, est recrutée aux membranes de l’autophagosome par un système de conjugaison très régulé. Toxoplasma gondii est un protozoaire parasite appartenant au phylum des Apicomplexes, qui contient une machinerie d'autophagie réduite. Suite à un stress nutritif, ce parasite intracellulaire obligatoire est néanmoins capable de générer des autophagosomes décorés par TgATG8. De façon surprenante, en condition normale de croissance intracellulaire, cette protéine se localise principalement à l’apicoplaste, un plaste non photosynthétique acquis par endosymbiose secondaire qui contient des voies métaboliques essentielles à la survie du parasite. Le but de ma thèse a été d’élucider les fonctions canoniques et non canoniques d‘ATG8 chez Toxoplasma. La première partie de cette étude porte sur la caractérisation fonctionnelle et spatio-temporelle de l'association de TgATG8 avec l’apicoplaste. Nous avons montré que TgATG8 est recrutée aux extrémités de l’apicoplaste en élongation, ce qui permet le maintien de l’organelle à travers les générations en le connectant aux centrosomes pour une répartition dans les deux cellules filles. La deuxième partie de ce travail vise à isoler et identifier par spectrométrie de masse des partenaires putatifs de TgATG8 qui seraient impliqués dans l’autophagie ou dans le rôle non-canonique à l’apicoplaste. Nous avons analysé la localisation subcellulaire de neuf candidats et des caractérisations fonctionnelles ont été entreprises pour trois protéines. Bien que nous n’ayons pas pu confirmer leurs interactions avec TgATG8, cela a permis l'identification de nouvelles protéines parasitaires: une phospholipase à l’apicoplaste essentielle à la survie du parasite, un régulateur potentiel du cycle cellulaire et un composant du cytosquelette du parasite
Autophagy is a self-degradative process evolutionary conserved among eukaryotes. Typically induced by starvation, it involves the formation of a double membrane compartment called the autophagosome to sequester and deliver intracellular components for lysosomal degradation and recycling. The protein ATG8 occupies a central position in this process and is recruited to autophagosomal membranes by a highly regulated conjugation system. Toxoplasma gondii is a parasitic protist belonging to the Apicomplexa phylum, which possesses a reduced autophagy machinery. This obligate intracellular parasite is nevertheless able to generate TgATG8-decorated autophagosomes upon nutrient stress. Surprisingly, during normal intracellular parasite growth, TgATG8 mainly localizes to the apicoplast, a non-photosynthetic plastid acquired by secondary endosymbiosis which hosts essential metabolic pathways. My thesis aimed to elucidate the canonical and non-canonical roles of ATG8 in Toxoplasma. The first part of this study is the functional and spatio-temporal characterization of TgATG8 association with the apicoplast. We showed TgATG8 is recruited to both ends of the elongating plastid during parasite division, and allows the maintenance of the organelle across generations by permitting its centrosome-driven distribution into the two daughter cells. The second part of this work is the isolation and mass spectrometry-based identification of putative TgATG8-interacting proteins that would be involved in autophagy-related or non-canonical functions. We analyzed the subcellular localization of nine candidates and functional studies were conducted for three proteins. Although we were unable to confirm their interactions with TgATG8, this approach allowed the identification of novel and important parasite proteins: an essential apicoplast phospholipase, a potential regulator of the cell cycle, and a component of the parasite cytoskeleton
APA, Harvard, Vancouver, ISO, and other styles
6

Chew, Leon Harold. "Structural characterization of the Atg1 kinase complex by single particle electron microscopy." Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/45666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mayrhofer, Peter [Verfasser], and Thomas [Akademischer Betreuer] Wollert. "Atg11 initiates selective autophagy in yeast by tethering Atg9 vesicles / Peter Mayrhofer ; Betreuer: Thomas Wollert." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2019. http://d-nb.info/1209472384/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yeh, Yuh-Ying. "The regulation of Atg1 protein kinase activity is important to the autophagy process in Saccharomyces cerevisiae." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1290439442.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Matscheko, Nena Magdalena [Verfasser], and Stefan [Akademischer Betreuer] Jentsch. "Revealing the molecular mechanism of Atg11 and the initation of selective autophagy / Nena Magdalena Matscheko ; Betreuer: Stefan Jentsch." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2016. http://d-nb.info/1171705336/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sanwald, Julia [Verfasser], Dieter [Gutachter] Willbold, and Björn [Gutachter] Stork. "The ATG8 Protein GABARAP in Secretion, Transport, and Autophagy / Julia Sanwald ; Gutachter: Dieter Willbold, Björn Stork." Düsseldorf : Universitäts- und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2021. http://d-nb.info/1225146569/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Atg18"

1

Abert, Christine, and Sascha Martens. "Studies of Receptor-Atg8 Interactions During Selective Autophagy." In Methods in Molecular Biology, 189–96. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-8873-0_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Miller, Alexia S., and Jürgen Bosch. "Targeting the Atg8 Conjugation Pathway for Novel Anti-Apicomplexan Drug Discovery." In Comprehensive Analysis of Parasite Biology: From Metabolism to Drug Discovery, 213–29. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527694082.ch9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pérez-Pérez, María Esther, Ascensión Andrés-Garrido, and José L. Crespo. "Biochemical Analysis of Autophagy in Algae and Plants by Monitoring the Electrophoretic Mobility of ATG8." In Methods in Molecular Biology, 151–59. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3759-2_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Proikas‐Cezanne, Tassula, and Simon G. Pfisterer. "Chapter 16 Assessing Mammalian Autophagy by WIPI‐1/Atg18 Puncta Formation." In Methods in Enzymology, 247–60. Elsevier, 2009. http://dx.doi.org/10.1016/s0076-6879(08)03616-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"ATG1." In Encyclopedia of Signaling Molecules, 474. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67199-4_100290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Noda, Nobuo N., and Fuyuhiko Inagaki. "Architecture of the Atg12–Atg5–Atg16 Complex and its Molecular Role in Autophagy." In Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging, 57–65. Elsevier, 2014. http://dx.doi.org/10.1016/b978-0-12-405529-2.00003-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

H., Oliver, Jeannine Mohrluder, and Dieter Willbol. "Atg8 Family Proteins — Autophagy and Beyond." In Autophagy - A Double-Edged Sword - Cell Survival or Death? InTech, 2013. http://dx.doi.org/10.5772/55647.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kharaziha, P., and T. Panaretakis. "Dynamics of Atg5–Atg12–Atg16L1 Aggregation and Deaggregation." In Methods in Enzymology, 247–55. Elsevier, 2017. http://dx.doi.org/10.1016/bs.mie.2016.09.059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Weiergräber, O. H., M. Schwarten, B. Strodel, and D. Willbold. "Investigating Structure and Dynamics of Atg8 Family Proteins." In Methods in Enzymology, 115–42. Elsevier, 2017. http://dx.doi.org/10.1016/bs.mie.2016.09.056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fracchiolla, D., B. Zens, and S. Martens. "In Vitro Reconstitution of Atg8 Conjugation and Deconjugation." In Methods in Enzymology, 377–90. Elsevier, 2017. http://dx.doi.org/10.1016/bs.mie.2016.09.066.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Atg18"

1

Roossink, Frank, Aniek Boers, Bea Wisman, Ed Schuuring, Ate van der Zee, and Steven de Jong. "Abstract 3463: The role of Atg13 in response to radiotherapy in cervical cancer cells." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-3463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Poole, Daniel, Ashari Kananngara, Vajira Weerasekara, Colten McEwan, Alexandra Thornock, Misael Lazaro, Joshua Youngs, and Joshua Andersen. "Abstract 1941: The regulation of ATG9A-mediated autophagy by an ULK1-independent ATG13 complex." In Proceedings: AACR Annual Meeting 2021; April 10-15, 2021 and May 17-21, 2021; Philadelphia, PA. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.am2021-1941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Setz, C., Y. Brand, S. Levano, and D. Bodmer. "Induktion von Mitophagie in der HEI-OC1 auditorischen Zelllinie sowie Aktivierung von Atg12/LC3 im Corti-Organ." In Abstract- und Posterband – 89. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Forschung heute – Zukunft morgen. Georg Thieme Verlag KG, 2018. http://dx.doi.org/10.1055/s-0038-1640604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cho, Dong-Hyung, Yoon Kyung Jo, Seung Cheol Kim, In Ja Park, and Jin Cheon Kim. "Abstract 1168: Increased expression of ATG10 in colorectal cancer is associated with lymphovascular invasion and lymph node metastasis ." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-1168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

He, Jun, Jing-Jie Yu, and Bing-Hua Jiang. "Abstract 4429: EGR1-MIR152pathway overcomes acquired cisplatin resistance in ovarian cancer cells by inhibiting cyto-protective autophagy via ATG14." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-4429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chan, Hsiu-Han, Mohane Selvaraj Coumar, Siao-Muk Cheng, Shing-Ling Tsai, Chun-Hui Lin, Shang-Hung Chen, Euphemia Leung, and Chun Hei Antonio Cheung. "Abstract 3303: Survivin negatively-regulates autophagy through interference with the formation of Atg5-Atg12-Atg16L complex in breast cancer cells." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-3303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rodríguez, A., EJ Zurita, AR Durán, R. Bustamante, A. Sánchez, MΆ Saavedra, C. Arroyo, G. Medina, and LJ Jara. "AB0126 Autophagy and systemic lupus erythematosus: clinical significance of ATG14+, FOXP3+, and CD25+ expression on T regulatory cells and nk cells." In Annual European Congress of Rheumatology, 14–17 June, 2017. BMJ Publishing Group Ltd and European League Against Rheumatism, 2017. http://dx.doi.org/10.1136/annrheumdis-2017-eular.6883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Setz, C., Y. Brand, S. Levano, and D. Bodmer. "Induction of mitophagy in the HEI-OC1 auditory cell line and activation of the Atg12/LC3 pathway in the organ of Corti." In Abstract- und Posterband – 89. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Forschung heute – Zukunft morgen. Georg Thieme Verlag KG, 2018. http://dx.doi.org/10.1055/s-0038-1640605.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chung, Seung J., Neeraj Saxena, and Dipali Sharma. "Abstract 1673: Adiponectin induces autophagic cell death in breast cancer cells through SIRT1 mediated deacetylation of LKB1 leading to ATG1 activation." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-1673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jara, L., E. Zurita, A. Durán, G. Medina, C. Arroyo, MA Saavedra, A. Sanchez, R. Bustamante, and A. Rodriguez. "AB0149 Prolactin and autophagy in systemic lupus erythematosus: clinical significance of correlation between PRL-R+ (receptor), CD19+, ATG14+, and CD25+ expression on B and T regulatory cells." In Annual European Congress of Rheumatology, 14–17 June, 2017. BMJ Publishing Group Ltd and European League Against Rheumatism, 2017. http://dx.doi.org/10.1136/annrheumdis-2017-eular.6887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography