Academic literature on the topic 'Atomic force microscopes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Atomic force microscopes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Atomic force microscopes"

1

Novikov, Yu A., A. V. Rakov, and P. A. Todua. "Calibration of atomic force microscopes." Bulletin of the Russian Academy of Sciences: Physics 73, no. 4 (April 2009): 450–60. http://dx.doi.org/10.3103/s1062873809040030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

El Rifai, Osamah M., and Kamal Youcef-Toumi. "Robust Adaptive Control of Atomic Force Microscopes." IFAC Proceedings Volumes 37, no. 14 (September 2004): 669–74. http://dx.doi.org/10.1016/s1474-6670(17)31180-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ma, Huilian, Jorge Jimenez, and Raj Rajagopalan. "Brownian Fluctuation Spectroscopy Using Atomic Force Microscopes." Langmuir 16, no. 5 (March 2000): 2254–61. http://dx.doi.org/10.1021/la991059q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stukalov, Oleg, Chris A. Murray, Amy Jacina, and John R. Dutcher. "Relative humidity control for atomic force microscopes." Review of Scientific Instruments 77, no. 3 (March 2006): 033704. http://dx.doi.org/10.1063/1.2182625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lim, Joosup, and Bogdan I. Epureanu. "Sensitivity vector fields for atomic force microscopes." Nonlinear Dynamics 59, no. 1-2 (May 26, 2009): 113–28. http://dx.doi.org/10.1007/s11071-009-9525-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nakano, Katsushi. "A novel low profile atomic force microscope compatible with optical microscopes." Review of Scientific Instruments 69, no. 3 (March 1998): 1406–9. http://dx.doi.org/10.1063/1.1148774.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Murashita, Tooru. "Conductive transparent fiber probes for shear-force atomic force microscopes." Ultramicroscopy 106, no. 2 (January 2006): 146–51. http://dx.doi.org/10.1016/j.ultramic.2005.06.061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Butterworth, Jeffrey A., Lucy Y. Pao, and Daniel Y. Abramovitch. "Architectures for Tracking Control in Atomic Force Microscopes." IFAC Proceedings Volumes 41, no. 2 (2008): 8236–50. http://dx.doi.org/10.3182/20080706-5-kr-1001.01394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Park, Jae Hong, Jaesool Shim, and Dong-Yeon Lee. "A Compact Vertical Scanner for Atomic Force Microscopes." Sensors 10, no. 12 (November 30, 2010): 10673–82. http://dx.doi.org/10.3390/s101210673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Newman, Alan. "Beyond the Surface: Looking at Atomic Force Microscopes." Analytical Chemistry 68, no. 7 (April 1996): 267A—273A. http://dx.doi.org/10.1021/ac962502u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Atomic force microscopes"

1

Khan, Umar. "Control of atomic force microscopes." Thesis, University of Southampton, 2014. https://eprints.soton.ac.uk/372495/.

Full text
Abstract:
Atomic force microscopes or AFMs are instruments which use a mechanical probe to scan a sample and estimate surface topography with nanometer accuracy. The term atomic force originates from the fact that the imaging process relies upon the existence of the inter-atomic interaction force between the mechanical probe and sample surface. These instruments have established themselves as a vital cutting edge tool for investigation of matter at the nanometer scale. Their widespread usage is due not only to their superior resolution but also because they can operate in any medium namely air, liquid and vacuum. Another major advantage is that, unlike their predecessor instruments AFMs do not require their samples to be conductive. This fact alone has enabled in situ imaging of biological samples with unprecedented resolution and without sample alteration. Other instruments like scanning electron microscopes (SEMs) can also view biological samples, however they require the samples to be prepared and dried. While some sample structure may be preserved, AFMs have no such limitation. Despite the fact that AFMs offer all these advantages, the usage of a mechanical probe for image generation causes them to be inherently reliant upon a feedback control loop. This is because the probe motion must be controlled in a suitable manner to avoid letting its motion dynamics distort the sample image. In addition, since the mechanical probe must be sequentially moved over the sample point by point, the imaging times are long and range from a few seconds to in excess of ten minutes. Given that feedback control is an integral part of AFM operation, the end users are forced to manually tune Proportaional-Integral (PI) controllers which are used in most commercial AFMs. Since the vast majority of scientists using AFMs do not necessarily possess a knowledge of feedback control, they do this tuning though a manual trial and error procedure which consumes valuable research time. Although the control systems community has taken considerable interest in AFM control, the methods suggested often require high order controllers and are tested for a specific experimental set up. The primary objective of this research is therefore to develop a novel automated controller synthesis mechanism which has the potential of being used in a diverse range of AFM setups. The method of choice for this research is Multiple Model Adaptive Control (MMAC). The motivation for this decision as well as experimental verification is provided in detail in this thesis. Given the wide commercial usage of PI controllers, the same are used as a starting point for this work. The applicability of the method suggested is however by no means restricted to them, and in the future can be extended to incorporate more sophisticated controllers, for instance robust controllers. The second objective of this research is to investigate two novel methods which have the potential of substantially reducing the AFM imaging time. The first one suggests coarser scan trajectories to save time, and then estimates the sample image using a relatively new signal processing method called Compressive Sensing. The second method suggested uses the AFM's mechanical probe in a novel manner that can also substantially reduce imaging time.
APA, Harvard, Vancouver, ISO, and other styles
2

El, Rifai Osamah M. "Modeling and control of undesirable dynamics in atomic force microscopes." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/38256.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2002.
Includes bibliographical references (leaves 156-165).
The phenomenal resolution and versatility of the atomic force microscope (AFM), has made it a widely-used instrument in nanotechnology. In this thesis, a detailed model of AFM dynamics has been developed. It includes a new model for the piezoelectric scanner coupled longitudinal and lateral dynamics, creep, and hysteresis. Models for probe-sample interactions and cantilever dynamics were also included. The models were used to improve the dynamic response and hence image quality of contact-mode AFM. An extensive parametric study has been performed to experimentally analyze in-contact dynamics. Nonlinear variations in the frequency response were observed, in addition to changes in the pole-zero structure. The choice of scan parameters was found to have a major impact on image quality and feedback performance. Further, compensation for scanner creep was experimentally tested yielding a reduction in creep by a factor of 3 to 4 from the uncompensated system. Moreover, fundamental performance limitations in the AFM feedback system were identified. These limitations resulted in a severe bound on the maximum achievable feedback bandwidth, as well as a fundamental trade-off between step response overshoot and response time. A careful analysis has revealed that a PID controller has no real advantage over an integral controller.
(cont.) Therefore, a procedure for automatically selecting key scan parameters and controller gain was developed and experimentally tested for I-control. This approach, in contrast to the commonly used trial and error method, can substantially improve image quality and fidelity. In addition, a robust adaptive output controller (RAOC), was designed to guarantee global boundedness and asymptotic regulation in the presence and absence of disturbances, respectively. Simulations have shown that a substantial reduction in contact force can be achieved with the RAOC, in comparison with a well-tuned I-controller, yet with no increase in the maximum scan speed. Furthermore, a new method was developed to allow calibrating the scanner's vertical displacement up to its full range, in addition to characterizing scanner hysteresis. This work has identified and addressed crucial problems and proposed practical solutions to factors limiting the dynamic performance of the AFM.
by Osamah M. El Rifai.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
3

Hui, Hui. "Contribution to a Simulator of Arrays of Atomic Force Microscopes." Thesis, Besançon, 2013. http://www.theses.fr/2013BESA2031/document.

Full text
Abstract:
Dans cette thèse, nous établissons un modèle à deux échelles à la fois pour desmatrices de cantilevers unidimensionnels et bidimensionnels en régime de fonctionnementélastodynamique avec des applications possibles aux réseaux de microscopesà force atomique (AFM). Son élaboration est basée sur une analyseasymptotique pour les structures minces élastiques, une approximation à deuxéchelles et une mise à l’échelle utilisée pour l’homogénéisation des milieux fortementhétérogènes. Nous complétons la théorie de l’approximation à deux échellespour les problèmes aux limites du quatrième ordre posés dans des domaines mincespériodiques connexes seulement dans certaines directions. Notre modèle reproduitla dynamique globale du support ainsi que les mouvements locaux des cantilevers.Pour simplifier la suite du travail, nous concentrons nos travaux à l’étude de matricesde leviers constituées de lignes découplées en régime dynamique. Comme lesupport des leviers est élastique, l’effet du couplage entre levier est pris en compte.La vérification du modèle est soigneusement réalisée. Nous montrons que chaquemode propre peut être décomposé en produits d’un mode de base avec un modede levier. Nous présentons une méthode de discrétisation du modèle et effectuonssa vérification numérique en la comparant avec des résultats de simulation paréléments finis du problème d’élasticité tridimensionnel. Par ailleurs, nous avonsélaboré de nouveaux outils d’aide à la conception de réseaux d’AFM. Une boîte àoutils d’optimisation robuste est interfacée avec le modèle permettant d’optimiserun design avant micro-Fabrication. Un algorithme d’estimation de l’état statiquecombinant la mesure de déplacements mécaniques par interférométrie et le modèlea été introduit. Nous avons également synthétisé un régulateur quadratiquelinéaire (LQR) pour un réseau de cantilevers en mode dynamique comprenant actionneurset capteurs régulièrement espacées. Dans le but de mettre en oeuvre lecontrôle en temps réel, nous proposons une approximation semi-Décentralisée quipeut être réalisé par un circuit électronique distribué analogique. Plus précisément,notre processeur analogique peut être réalisé par un réseau périodique derésistances (PNR). La méthode d’approximation de commande est basée sur deuxconcepts généraux, à savoir sur un calcul fonctionnel (c’est-À-Dire des fonctionsd’opérateurs) et sur la formule de représentation d’une fonction d’opérateur deDunford-Schwartz. Cette méthode d’approximation est étendue pour la résolutiond’un problème de filtrage optimal robuste de type H∞ de la dynamique d’un réseaude leviers couplés avec sources aléatoires de bruit
In this dissertation, we establish a two-Scale model both for one-Dimensionaland two-Dimensional Cantilever Arrays in elastodynamic operating regime withpossible applications to Atomic Force Microscope (AFM) Arrays. Its derivationis based on an asymptotic analysis for thin elastic structures, a two-Scale approximationand a scaling used for strongly heterogeneous media homogenization. Wecomplete the theory of two-Scale approximation for fourth order boundary valueproblems posed in thin periodic domains connected in some directions only. Ourmodel reproduces the global dynamics as well as each of the cantilever motion. Forthe sake of simplicity, we present a simplified model of mechanical behavior of largecantilever arrays with decoupled rows in the dynamic operating regime. Since thesupporting bases are assumed to be elastic, cross-Talk effect between cantileversis taken into account. The verification of the model is carefully conducted. Weexplain not only how each eigenmode is decomposed into products of a base modewith a cantilever mode but also the method used for its discretization, and reportresults of its numerical validation with full three-Dimensional Finite Element simulations.We show new tools developed for Arrays of Microsystems and especiallyfor AFM array design. A robust optimization toolbox is interfaced to aid for designbefore the microfabrication process. A model based algorithm of static stateestimation using measurement of mechanical displacements by interferometry ispresented. We also synthesize a controller based on Linear Quadratic Regulator(LQR) methodology for a one-Dimensional cantilever array with regularly spacedactuators and sensors. With the purpose of implementing the control in real time,we propose a semi-Decentralized approximation that may be realized by an analogdistributed electronic circuit. More precisely, our analog processor is made by PeriodicNetwork of Resistances (PNR). The control approximation method is basedon two general concepts, namely on functions of operators and on the Dunford-Schwartz representation formula. This approximation method is extended to solvea robust H∞ filtering problem of the coupled cantilevers for time-Invariant systemwith random noise effects
APA, Harvard, Vancouver, ISO, and other styles
4

Cretegny, Laurent. "Use of atomic force microscopy for characterizing damage evolution during fatigue." Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/20141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Leang, Kam K. "Iterative learning control of hysteresis in piezo-based nano-positioners : theory and application in atomic force microscopes /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/7127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lawrence, Andrew James. "Development of a Hybrid Atomic Force and Scanning Magneto-Optic Kerr Effect Microscope for Investigation of Magnetic Domains." PDXScholar, 2011. https://pdxscholar.library.pdx.edu/open_access_etds/147.

Full text
Abstract:
We present the development of a far-field magneto-optical Kerr effect microscope. An inverted optical microscope was constructed to accommodate Kerr imaging and atomic force microscopy. In Kerr microscopy, magnetic structure is investigated by measuring the polarization rotation of light reflected from a sample in the presence of a magnetic field. Atomic force microscopy makes use of a probe which is scanned over a sample surface to map the topography. The design was created virtually in SolidWorks, a three-dimensional computer-aided drafting environment, to ensure compatibility and function of the various components, both commercial and custom-machined, required for the operation of this instrument. The various aspects of the microscope are controlled by custom circuitry and a field programmable gate array data acquisition card at the direction of the control code written in National Instrument LabVIEW. The microscope has proven effective for both Kerr and atomic force microscopy. Kerr images are presented which reveal the bit structure of magneto-optical disks, as are atomic force micrographs of an AFM calibration grid. Also discussed is the future direction of this project, which entails improving the resolution of the instrument beyond the diffraction limit through near-field optical techniques. Preliminary work on fiber probe designs is presented along with probe fabrication work and the system modifications necessary to utilize such probes.
APA, Harvard, Vancouver, ISO, and other styles
7

Swinford, Richard William. "An AFM-SIMS Nano Tomography Acquisition System." PDXScholar, 2017. https://pdxscholar.library.pdx.edu/open_access_etds/3485.

Full text
Abstract:
An instrument, adding the capability to measure 3D volumetric chemical composition, has been constructed by me as a member of the Sánchez Nano Laboratory. The laboratory's in situ atomic force microscope (AFM) and secondary ion mass spectrometry systems (SIMS) are functional and integrated as one instrument. The SIMS utilizes a Ga focused ion beam (FIB) combined with a quadrupole mass analyzer. The AFM is comprised of a 6-axis stage, three coarse axes and three fine. The coarse stage is used for placing the AFM tip anywhere inside a (13x13x5 mm3) (xyz) volume. Thus the tip can be moved in and out of the FIB processing region with ease. The planned range for the Z-axis piezo was 60 µm, but was reduced after it was damaged from arc events. The repaired Z-axis piezo is now operated at a smaller nominal range of 18 µm (16.7 µm after pre-loading), still quite respectable for an AFM. The noise floor of the AFM is approximately 0.4 nm Rq. The voxel size for the combined instrument is targeted at 50 nm or larger. Thus 0.4 nm of xyz uncertainty is acceptable. The instrument has been used for analyzing samples using FIB beam currents of 250 pA and 5.75 nA. Coarse tip approaches can take a long time so an abbreviated technique is employed. Because of the relatively long thro of the Z piezo, the tip can be disengaged by deactivating the servo PID. Once disengaged, it can be moved laterally out of the way of the FIB-SIMS using the coarse stage. This instrument has been used to acquire volumetric data on AlTiC using AFM tip diameters of 18.9 nm and 30.6 nm. Acquisition times are very long, requiring multiple days to acquire a 50-image stack. New features to be added include auto stigmation, auto beam shift, more software automation, etc. Longer term upgrades to include a new lower voltage Z-piezo with strain-gauge feedback and a new design to extend the life for the coarse XY nano-positioners. This AFM-SIMS instrument, as constructed, has proven to be a great proof of concept vehicle. In the future it will be used to analyze micro fossils and it will also be used as a part of an intensive teaching curriculum.
APA, Harvard, Vancouver, ISO, and other styles
8

Boijoux, Romain. "Influence de l'élasticité du substrat sur la genèse, propagation et coalescence des structures de cloquage de revêtements et films minces." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI085.

Full text
Abstract:
Le cloquage des films minces est un enjeu scientifique et industriel de premier plan, dans la mesure où il correspond au premier stade du délaminage a grande échelle du film, aboutissant généralement à la perte des propriétés fonctionnelles initialement conférées au matériau revêtu.L'influence de la souplesse du substrat sur ce phénomène est peu comprise à ce jour, alors que les systèmes industriels composés de films rigides sur substrats souples se multiplient. Cette étude se focalisera ainsi principalement sur l’influence de l’élasticité du substrat sur la genèse, propagation et coalescence des structures de cloquage, . L’approche expérimentale sera de générer des structures de cloquage élémentaires, de type ride droite, bulle ou « cordon de téléphone », et d’en contrôler la propagation, de manière à les faire interagir, se croiser, voire coalescer. La caractérisation morphologique de ces structures de cloquage se fera par microscopie à force atomique. Ces résultats expérimentaux seront confrontés à des simulations numériques par éléments finis réalisées en parallèle, permettant de tenir compte du couplage entre flambage du revêtement et délaminage de l’interface film/substrat. Les résultats obtenus permettront de mieux appréhender le phénomène de cloquage des revêtements et films minces. Cette étude répond ainsi principalement à trois questions : quelle est l’influence de l’élasticité du substrat sur la dynamique de propagation des cloques ? Comment se produisent leurs croisements aboutissant à des structures parfois singulières ? Cette élasticité favorise-t-elle la coalescence des cloques en cours de propagation, même si celles-ci ne se rencontreraient pas d’un point de vue purement balistique ?Enfin, l’intérêt technologique s’inscrit dans une démarche environnementale qui consiste à identifier les paramètres pertinents permettant d’inhiber le processus de cloquage, de le limiter, voire de le contrôler pour améliorer la durabilité des systèmes industriels
Thin films buckling is a scientific and industrial challenge of primary importance, since it correspond to the first stage of the buckling of the film at a large scale, leading to the loss of the mechanical property initially conferred to the coated material.The influence of the substrate elasticity on this phenomenon is not well understood today, whereas the proportion of industrial systems made of rigid films on soft substrates increase. This study focus principally on the influence of the substrate elasticity on the genesis, propagation and coalescence of the buckled structures. The experimental approach consist in the controlled generation of elementary buckling structures, such as straight-sided buckles, blisters or “telephone cords” buckles, to make them interact and even meet and merge each other. The morphological characterization of such buckling structures will be performed by the atomic force microscopy technique. These experimental results will be then compared to finite elements simulations performed together, allowing to take into account the coupling between the buckling of the film and the film/substrate interface delamination. The obtained results will allow a better understanding of the coating and thin film buckling phenomenon. Thus, this study answer in particular to three questions : how the substrate elasticity impact the propagation dynamic of the buckles ? How their crossing occur, leading sometimes to complex structures ? Is this elasticity helps the coalescence of the buckles, even if they does not match each other in a “ballistic” way ?Finally, the technological goal is part of an environmental approach that consist in identifying the parameters that can suppress, limit or control the buckling phenomenon for specific applications
APA, Harvard, Vancouver, ISO, and other styles
9

Payton, Oliver David. "High-speed atomic force microscopy under the microscope." Thesis, University of Bristol, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.574416.

Full text
Abstract:
SINCE its invention in 1986, the atomic force microscope (AFM) has revolutionised the field of nanotechnology and nanoscience. It is a tool that has enabled research into areas of medicine, advanced materials, biology, chemistry and physics. However due to its low frame rate it is a tool that has been limited to imaging small areas using a time lapse technique. It has only been in recent years that the frame rate of the device has been increased in a tool known as high-speed AFM (HSAFM). This increased frame rate allows, for the first time, biological processes to be viewed in real time or macro sized areas to be imaged with nanoscale resolution. The research presented here concentrates on a specific type of high-speed AFM developed at the University of Bristol called contact mode HSAFM. This thesis explains how the microscope is able to function, and presents a leap in image quality due to an increased understanding of the dynamics of the system. The future of the device is also discussed. III
APA, Harvard, Vancouver, ISO, and other styles
10

Ewald, Maxime. "High speed bio atomic force microscopy : application à l'étude de la structure et dynamique d'assemblage supramoléculaires : étude des interactions au niveau de la cellule." Thesis, Dijon, 2011. http://www.theses.fr/2011DIJOS043.

Full text
Abstract:
Le microscope à force atomique (AFM) fait partie des microscopies de champ proche dites à sonde locale. De par sa versatilité, un grand nombre de domaines des nanosciences tant en physique, que chimie ou biologie utilisent cette technique. Cependant, le champ d’investigation de la microscopie AFM classique est restreint temporellement et spatialement. En effet, en raison de sa limite de vitesse d’acquisition d’image et sa limite de caractérisation des interactions en surface, des études de dynamique moléculaire ou d’éléments sub-surface ne sont pas envisageables. Nous montrons donc que la caractérisation en volume est permise en utilisant une méthode d’imagerie non destructive, la microscopie de champ proche holographique ultrasonore (SNFUH). Cette méthode développée pour étudier à l.air et en liquide, a fourni des informations localisées en profondeur avec une haute résolution spatiale, en utilisant des fréquences de résonance dans la gamme du MHz. Une calibration a été effectuée sur des échantillons de structures enterrées ou non, réalisés par lithographie e-beam. Ces échantillons ont été utilisés pour ajuster les fréquences de résonance et comprendre la formation des images en mode acoustique (profondeur investiguée et inversion de contraste). Cet outil non invasif et innovant de caractérisation a donc été développé. Il présente un énorme potentiel pour des échantillons biologiques en termes de résolution et d’information. Les microscopes AFMclassique et acoustique SNFUH sont soumis à des contraintes de temps. Pour s’en affranchir, un prototype, le microscope à force atomique haute-vitesse (HS-AFM) a été développé par l’équipe du Professeur T. Ando à l’Université de Kanazawa (Japon). Il autorise ainsi le balayage à vitesse vidéo, i.e. 25 images/s, en milieu liquide. Nous avons amélioré le prototype avec une nouvelle génération de boucle d’asservissement et augmenté la zone de caractérisation. La résolution dépend fortement du levier utilisé. De plus une qualité d’image supérieure est obtenue grâce à l’utilisation de surpointes en carbone sur ces mêmes leviers. Finalement, nous montrons des résultats obtenus avec ces deux techniques de microscopies sur différents édi.ces biologiques en milieu liquide. Ainsi, avec le microscope AFM haute-vitesse, des dynamiques biomoléculaires ont pu être visualisées (ex : structures protéine-ADN) avec une résolution nanométrique. Puis une étude des changements conformationnels intracellulaires de kératinocytes vivantes dans leur milieu physiologique a été réalisée par microscopie acoustique SNFUH et montre la dégradation du matériel biologique. L’ensemble de ces résultats ouvre un nouveau champ d’investigation dans le domaine de la biologie
The atomic force microscope (AFM) made part of scanning near-field probe microscopy. Thanks to its versatility, many fields as physics, chemistry or biology use this technique. However, the field of investigation of the classical AFM microscope is limited temporally and spatially. Indeed, due to his scan speed limitation and surface interaction caracterisation limitation, studies of molecular dynamics and sub-surface elements are not possible. We show that the volume caracterisation is permitted using a non-destructive imaging method, called Scanning Near-Field by Ultrasound Holography (SNFUH). This tool developed for study in air and liquid has provided depth information as well as spatial resolution at the nanometer scale using resonant frequencies of about range of MHz. Calibration has been performed on samples of buried or not structures made by e-beam lithography and have been used to adjust the resonant frequency and understand the acoustic image formation (depth investigation and contrast in-version). We have developed a non-invasive and innovative tool of characterization for biology : he presents a huge potential for biological samples in terms of resolution and information. Classical AFM and acoustic SNFUH microscopes are time resolution limited. To overcome this time constraint, a prototype, High Speed Atomic Force Microscope (HS-AFM), has been developed by the team of Prof. T. Ando, Kanazawa University (Japan). It allows a scan rate at video speed, i.e. 25 frames/s, in liquid medium. We have improved the prototype, through a new generation of feedback control and increased the scan area. The resolution depends strongly of the probe used. Moreover a better image quality is obtained through the use of carbon tips on these cantilevers. Finally, we show our results obtained with these two microscopy techniques about biological buildings in liquid environment. Thereby, with the HS-AFM microscope, biomolecular dynamics have been visualized (e.g. protein-DNA structures) with nanometric resolution. Then a study about intracellular conformational changes of keratinocytes living cells in their physiological medium has been realized by acoustic microscopy SNFUH and show deterioration of biological components. All of these results provide new insights in biology field
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Atomic force microscopes"

1

García, Ricardo Castro. Amplitude modulation atomic force microscopy. Weinheim: Wiley-VCH, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Microcantilevers for atomic force microscope data storage. Boston, Mass: Kluwer Academic Publishers, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Paul, West, ed. Atomic force microscopy. Oxford: Oxford University Press, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Santos, Nuno C., and Filomena A. Carvalho, eds. Atomic Force Microscopy. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-8894-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Haugstad, Greg. Atomic Force Microscopy. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118360668.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Voigtländer, Bert. Atomic Force Microscopy. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13654-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Braga, Pier Carlo, and Davide Ricci. Atomic Force Microscopy. New Jersey: Humana Press, 2003. http://dx.doi.org/10.1385/1592596479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Morita, S. Noncontact Atomic Force Microscopy. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lanza, Mario, ed. Conductive Atomic Force Microscopy. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527699773.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Morita, S., R. Wiesendanger, and E. Meyer, eds. Noncontact Atomic Force Microscopy. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56019-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Atomic force microscopes"

1

Qi, Suijian, Changqing Yi, and Mengsu Yang. "Biosensors Using Atomic Force Microscopes." In Encyclopedia of Microfluidics and Nanofluidics, 155–64. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-5491-5_98.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Qi, Suijian, Changqing Yi, and Mengsu Yang. "Biosensors Using Atomic Force Microscopes." In Encyclopedia of Microfluidics and Nanofluidics, 1–10. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-3-642-27758-0_98-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hafizovic, Sadik, Kay-Uwe Kirstein, and Andreas Hierlemann. "Integrated Cantilevers and Atomic Force Microscopes." In Applied Scanning Probe Methods V, 1–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-37316-2_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Aguilera, Lidia, and Joan Grifoll-Soriano. "Design and Fabrication of a Logarithmic Amplifier for Scanning Probe Microscopes to Allow Wide-Range Current Measurements." In Conductive Atomic Force Microscopy, 243–62. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527699773.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Marshall, Daniel R., Eric M. Fray, James D. Mueller, L. Martin Courtney, John C. Podlesny, John B. Hayes, Tami L. Balter, and Jay Jahanmir. "A Closed-Loop Optical Scan Correction System for Scanning Probe Microscopes." In Atomic Force Microscopy/Scanning Tunneling Microscopy, 437–45. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-9322-2_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mathis, Wolfgang, Thomas Preisner, and Uzzal B. Bala. "Numerical Modelling and Simulation of Atomic Force Microscopes." In Modelling, Simulation and Software Concepts for Scientific-Technological Problems, 169–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20490-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tseng, Ampere A. "Nanoscale Scratching with Single and Dual Sources Using Atomic Force Microscopes." In Tip-Based Nanofabrication, 1–64. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9899-6_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Das, Sajal K., Hemanshu R. Pota, and Ian R. Petersen. "Intelligent Tracking Control System for Fast Image Scanning of Atomic Force Microscopes." In Chaos Modeling and Control Systems Design, 351–91. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13132-0_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Garcia, Antonio A., Patrick Oden, Uwe Knipping, Gary Ostroff, and Roberta Druyor. "Characterization of a β-Glucan Particle Using the Scanning Tunneling and Atomic Force Microscopes." In Synthetic Microstructures in Biological Research, 131–44. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4899-1630-3_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Voigtländer, Bert. "Introduction." In Atomic Force Microscopy, 1–13. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13654-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Atomic force microscopes"

1

Mokaberi, Babak, Jaehong Yun, Michael Wang, and Aristides A. G. Requicha. "Automated Nanomanipulation with Atomic Force Microscopes." In 2007 IEEE International Conference on Robotics and Automation. IEEE, 2007. http://dx.doi.org/10.1109/robot.2007.363181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ashhab, M., M. V. Salapaka, M. Dahleh, and I. Mezic. "Control of chaos in atomic force microscopes." In Proceedings of 16th American CONTROL Conference. IEEE, 1997. http://dx.doi.org/10.1109/acc.1997.611784.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

El Rifai, O. M., and K. Youcef-Toumi. "Dynamics of contact-mode atomic force microscopes." In Proceedings of 2000 American Control Conference (ACC 2000). IEEE, 2000. http://dx.doi.org/10.1109/acc.2000.879575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

El Rifai, K., O. El Rifai, and K. Youcef-Toumi. "On dual actuation in atomic force microscopes." In Proceedings of the 2004 American Control Conference. IEEE, 2004. http://dx.doi.org/10.23919/acc.2004.1384390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Allegrini, Maria, Cesare Ascoli, Carlo Frediani, and Tullio Mariani. "Laser light effects on force sensors in atomic-force microscopes." In 1992 Shanghai International Symposium on Quantum Optics, edited by Yuzhu Wang, Yiqiu Wang, and Zugeng Wang. SPIE, 1992. http://dx.doi.org/10.1117/12.130412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pao, Lucy Y., Jeffrey A. Butterworth, and Daniel Y. Abramovitch. "Combined Feedforward/Feedback Control of Atomic Force Microscopes." In 2007 American Control Conference. IEEE, 2007. http://dx.doi.org/10.1109/acc.2007.4282338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

El-Rifai, O. M., and K. Youcef-Toumi. "Creep in piezoelectric scanners of atomic force microscopes." In Proceedings of 2002 American Control Conference. IEEE, 2002. http://dx.doi.org/10.1109/acc.2002.1024515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Arafat, Haider N., Ali H. Nayfeh, and Elihab M. Abdel-Rahman. "Modal Interactions in Contact-Mode Atomic Force Microscopes." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14938.

Full text
Abstract:
Atomic force microscopes (AFM) are used to estimate material and surface properties. When using contact-mode AFM, the specimen or the probe is excited near a natural frequency of the system to estimate the linear coefficient of the contact stiffness. Because higher modes offer lower thermal noise, higher quality factors, and higher sensitivity to stiff samples, their use in this procedure is more desirable. However, these modes are candidates for internal resonances, where the energy being fed into one mode may be channeled to another mode. If such interactions are ignored, the results obtained from the probe may be distorted. The method of multiple scales is used to derive an approximate analytical expression to the probe response in the presence of two-to-one autoparametric resonance between the second and third modes. We examine characteristics of this solution in relation to a single-mode response and consider its implications in AFM measurements.
APA, Harvard, Vancouver, ISO, and other styles
9

Shen, Sheng, Anastassios Mavrokefalos, Poetro Sambegoro, and Gang Chen. "Probing Nanoscale Heat and Force Interactions Using Atomic Force Microscopes (AFM)." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-23329.

Full text
Abstract:
Many devices and instruments such as magnetic hard disk drives and atomic force microscopes (AFM) rely on the stable operation of their small probing heads at nanoscale gaps. Due to the small scale of the probing heads, the force interactions (Casimir force and electrostatic force) between the small probes and the surrounding become more significant. The local heating caused by read/write electric currents in hard disk drives or probing laser beams in AFM on the probes inevitably leads to the heat transfer between them and the surrounding. The nanoscale heat and force interactions play a critical role in the performances of those instruments. In this paper, we use a bimaterial AFM cantilever to measure the nanoscale air heat conduction, radiation and force between a microsphere and a substrate. The resulting “heat transfer-distance” and “force-distance” curves clearly show the strong dependence of nanoscale interactions with gap distances.
APA, Harvard, Vancouver, ISO, and other styles
10

El Rifai, O. M., and K. Youcef-Toumi. "On automating atomic force microscopes: an adaptive control approach." In 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601). IEEE, 2004. http://dx.doi.org/10.1109/cdc.2004.1430268.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Atomic force microscopes"

1

Day, R. D., and P. E. Russell. Atomic Force Microscope. Office of Scientific and Technical Information (OSTI), December 1988. http://dx.doi.org/10.2172/476627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Davis, D. T. Atomic force microscope: Enhanced sensitivity. Office of Scientific and Technical Information (OSTI), June 1995. http://dx.doi.org/10.2172/93754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Turner, Joseph A. Materials Characterization by Atomic Force Microscopy. Fort Belvoir, VA: Defense Technical Information Center, April 2003. http://dx.doi.org/10.21236/ada414116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Snyder, Shelly R., and Henry S. White. Scanning Tunneling Microscopy, Atomic Force Microscopy, and Related Techniques. Fort Belvoir, VA: Defense Technical Information Center, February 1992. http://dx.doi.org/10.21236/ada246852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Houston, J. E., and J. G. Fleming. Non-contact atomic-level interfacial force microscopy. Office of Scientific and Technical Information (OSTI), February 1997. http://dx.doi.org/10.2172/453500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Quate, Calvin F. Sub-Micron Lithography with the Atomic Force Microscope. Fort Belvoir, VA: Defense Technical Information Center, May 2000. http://dx.doi.org/10.21236/ada379939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Smith, Ralph C., Andrew G. Hatch, Tathagata De, Murti V. Salapaka, Julie K. Raye, and Ricardo C. del Rosario. Model Development for Atomic Force Microscope Stage Mechanisms. Fort Belvoir, VA: Defense Technical Information Center, January 2005. http://dx.doi.org/10.21236/ada440129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Quate, Calvin F., Leland T. Edwards, and Steve Minne. Sub-Micron Lithography with the Atomic Force Microscope. Fort Belvoir, VA: Defense Technical Information Center, April 1998. http://dx.doi.org/10.21236/ada342660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Burgens, LaTashia. The Atomic Force Microscopic (AFM) Characterization of Nanomaterials. Fort Belvoir, VA: Defense Technical Information Center, June 2009. http://dx.doi.org/10.21236/ada550815.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Crone, Joshua C., Santiago Solares, and Peter W. Chung. Simulated Frequency and Force Modulation Atomic Force Microscopy on Soft Samples. Fort Belvoir, VA: Defense Technical Information Center, June 2007. http://dx.doi.org/10.21236/ada469876.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography