To see the other types of publications on this topic, follow the link: Atomic Hong-Ou-Mandel.

Journal articles on the topic 'Atomic Hong-Ou-Mandel'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 43 journal articles for your research on the topic 'Atomic Hong-Ou-Mandel.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Lopes, R., A. Imanaliev, A. Aspect, M. Cheneau, D. Boiron, and C. I. Westbrook. "Atomic Hong–Ou–Mandel experiment." Nature 520, no. 7545 (2015): 66–68. http://dx.doi.org/10.1038/nature14331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kobayashi, Toshiki, Rikizo Ikuta, Shuto Yasui, et al. "Frequency-domain Hong–Ou–Mandel interference." Nature Photonics 10, no. 7 (2016): 441–44. http://dx.doi.org/10.1038/nphoton.2016.74.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Volkovich, Sergey, and Sharon Shwartz. "Subattosecond x-ray Hong–Ou–Mandel metrology." Optics Letters 45, no. 10 (2020): 2728. http://dx.doi.org/10.1364/ol.382044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mährlein, S., S. Oppel, R. Wiegner, and J. von Zanthier. "Hong–Ou–Mandel interference without beam splitters." Journal of Modern Optics 64, no. 9 (2016): 921–29. http://dx.doi.org/10.1080/09500340.2016.1242790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gianani, Ilaria, Emanuele Polino, Marco Sbroscia, et al. "Hong–Ou–Mandel control through spectral shaping." Journal of Optics 20, no. 8 (2018): 085201. http://dx.doi.org/10.1088/2040-8986/aad01a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kim, C. M., Y. W. Kim, I. Kim, and Y. J. Park. "Eavesdropping attack with a Hong-Ou-Mandel interferometer." Optics and Spectroscopy 103, no. 1 (2007): 82–85. http://dx.doi.org/10.1134/s0030400x07070132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Imany, Poolad, Ogaga D. Odele, Mohammed S. Alshaykh, Hsuan-Hao Lu, Daniel E. Leaird, and Andrew M. Weiner. "Frequency-domain Hong–Ou–Mandel interference with linear optics." Optics Letters 43, no. 12 (2018): 2760. http://dx.doi.org/10.1364/ol.43.002760.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Agne, Sascha, Jeongwan Jin, Katanya B. Kuntz, Filippo M. Miatto, Jean-Philippe Bourgoin, and Thomas Jennewein. "Hong-Ou-Mandel interference of unconventional temporal laser modes." Optics Express 28, no. 14 (2020): 20943. http://dx.doi.org/10.1364/oe.396183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Giovannetti, V. "Entanglement and statistics in Hong-Ou-Mandel interferometry." Laser Physics 16, no. 10 (2006): 1406–10. http://dx.doi.org/10.1134/s1054660x06100033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Papoular, D. J., P. Clade, S. V. Polyakov, C. F. McCormick, A. L. Migdall, and P. D. Lett. "Measuring optical tunneling times using a Hong-Ou-Mandel interferometer." Optics Express 16, no. 20 (2008): 16005. http://dx.doi.org/10.1364/oe.16.016005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Harnchaiwat, Natapon, Feng Zhu, Niclas Westerberg, Erik Gauger, and Jonathan Leach. "Tracking the polarisation state of light via Hong-Ou-Mandel interferometry." Optics Express 28, no. 2 (2020): 2210. http://dx.doi.org/10.1364/oe.382622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kim, Junki, Junho Jeong, Changhyun Jung, et al. "Observation of Hong-Ou-Mandel interference with scalable Yb+-photon interfaces." Optics Express 28, no. 26 (2020): 39727. http://dx.doi.org/10.1364/oe.409667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Yepiz-Graciano, Pablo, Alí Michel Angulo Martínez, Dorilian Lopez-Mago, Hector Cruz-Ramirez, and Alfred B. U’Ren. "Spectrally resolved Hong–Ou–Mandel interferometry for quantum-optical coherence tomography." Photonics Research 8, no. 6 (2020): 1023. http://dx.doi.org/10.1364/prj.388693.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kim, Heonoh, Danbi Kim, Jiho Park, and Han Seb Moon. "Hong–Ou–Mandel interference of two independent continuous-wave coherent photons." Photonics Research 8, no. 9 (2020): 1491. http://dx.doi.org/10.1364/prj.393246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Xu, Xinan, Zhenda Xie, Jiangjun Zheng, et al. "Near-infrared Hong-Ou-Mandel interference on a silicon quantum photonic chip." Optics Express 21, no. 4 (2013): 5014. http://dx.doi.org/10.1364/oe.21.005014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Tsujimoto, Yoshiaki, Yukihiro Sugiura, Motoki Tanaka, et al. "High visibility Hong-Ou-Mandel interference via a time-resolved coincidence measurement." Optics Express 25, no. 11 (2017): 12069. http://dx.doi.org/10.1364/oe.25.012069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Mährlein, Simon, Joachim von Zanthier, and Girish S. Agarwal. "Complete three photon Hong-Ou-Mandel interference at a three port device." Optics Express 23, no. 12 (2015): 15833. http://dx.doi.org/10.1364/oe.23.015833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Zhang, Yingwen, Duncan England, Andrei Nomerotski, and Benjamin Sussman. "High speed imaging of spectral-temporal correlations in Hong-Ou-Mandel interference." Optics Express 29, no. 18 (2021): 28217. http://dx.doi.org/10.1364/oe.432191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Xue, Yinghong, Akio Yoshizawa, and Hidemi Tsuchida. "Hong−Ou−Mandel dip measurements of polarization-entangled photon pairs at 1550 nm." Optics Express 18, no. 8 (2010): 8182. http://dx.doi.org/10.1364/oe.18.008182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Moschandreou, Eleftherios, Jeffrey I. Garcia, Brian J. Rollick, Bing Qi, Raphael Pooser, and George Siopsis. "Experimental Study of Hong–Ou–Mandel Interference Using Independent Phase Randomized Weak Coherent States." Journal of Lightwave Technology 36, no. 17 (2018): 3752–59. http://dx.doi.org/10.1109/jlt.2018.2850282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Thomas, Peter J., Jessica Y. Cheung, Christopher J. Chunnilall, and Malcolm H. Dunn. "Measurement of photon indistinguishability to a quantifiable uncertainty using a Hong-Ou-Mandel interferometer." Applied Optics 49, no. 11 (2010): 2173. http://dx.doi.org/10.1364/ao.49.002173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Jachura, Michał, and Radosław Chrapkiewicz. "Shot-by-shot imaging of Hong–Ou–Mandel interference with an intensified sCMOS camera." Optics Letters 40, no. 7 (2015): 1540. http://dx.doi.org/10.1364/ol.40.001540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Lingaraju, Navin B., Hsuan-Hao Lu, Suparna Seshadri, et al. "Quantum frequency combs and Hong–Ou–Mandel interferometry: the role of spectral phase coherence." Optics Express 27, no. 26 (2019): 38683. http://dx.doi.org/10.1364/oe.379749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Giovannini, D., J. Romero, and M. J. Padgett. "Interference of probability amplitudes: a simple demonstration within the Hong–Ou–Mandel experiment." Journal of Optics 16, no. 3 (2014): 032002. http://dx.doi.org/10.1088/2040-8978/16/3/032002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Nomerotski, Andrei, Michael Keach, Paul Stankus, Peter Svihra, and Stephen Vintskevich. "Counting of Hong-Ou-Mandel Bunched Optical Photons Using a Fast Pixel Camera." Sensors 20, no. 12 (2020): 3475. http://dx.doi.org/10.3390/s20123475.

Full text
Abstract:
The uses of a silicon-pixel camera with very good time resolution (∼nanosecond) for detecting multiple, bunched optical photons is explored. We present characteristics of the camera and describe experiments proving its counting capabilities. We use a spontaneous parametric down-conversion source to generate correlated photon pairs, and exploit the Hong-Ou-Mandel (HOM) interference effect in a fiber-coupled beam splitter to bunch the pair onto the same output fiber. It is shown that the time and spatial resolution of the camera enables independent detection of two photons emerging simultaneousl
APA, Harvard, Vancouver, ISO, and other styles
26

Wang, Chao, Fang-Xiang Wang, Hua Chen, et al. "Realistic Device Imperfections Affect the Performance of Hong-Ou-Mandel Interference With Weak Coherent States." Journal of Lightwave Technology 35, no. 23 (2017): 4996–5002. http://dx.doi.org/10.1109/jlt.2017.2764140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Nagali, Eleonora, Linda Sansoni, Fabio Sciarrino, et al. "Optimal quantum cloning of orbital angular momentum photon qubits through Hong–Ou–Mandel coalescence." Nature Photonics 3, no. 12 (2009): 720–23. http://dx.doi.org/10.1038/nphoton.2009.214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Ma, Xiaoxin, Liang Cui, and Xiaoying Li. "Hong–Ou–Mandel interference between independent sources of heralded ultrafast single photons: influence of chirp." Journal of the Optical Society of America B 32, no. 5 (2015): 946. http://dx.doi.org/10.1364/josab.32.000946.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Khodadad Kashi, Anahita, and Michael Kues. "Spectral Hong–Ou–Mandel Interference between Independently Generated Single Photons for Scalable Frequency‐Domain Quantum Processing." Laser & Photonics Reviews 15, no. 5 (2021): 2000464. http://dx.doi.org/10.1002/lpor.202000464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Yang, Li-Kai, Han Cai, Tao Peng, and Da-Wei Wang. "Entanglement generation and manipulation in the Hong-Ou-Mandel experiment: a hidden scenario beyond two-photon interference." Journal of Physics B: Atomic, Molecular and Optical Physics 51, no. 12 (2018): 125501. http://dx.doi.org/10.1088/1361-6455/aac184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Thomas, Oliver F., Will McCutcheon, and Dara P. S. McCutcheon. "A general framework for multimode Gaussian quantum optics and photo-detection: Application to Hong–Ou–Mandel interference with filtered heralded single photon sources." APL Photonics 6, no. 4 (2021): 040801. http://dx.doi.org/10.1063/5.0044036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Abouraddy, Ayman F., Timothy M. Yarnall, and Giovanni Di Giuseppe. "Phase-unlocked Hong-Ou-Mandel interferometry." Physical Review A 87, no. 6 (2013). http://dx.doi.org/10.1103/physreva.87.062106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Ray, Megan R., and S. J. van Enk. "Verifying entanglement in the Hong-Ou-Mandel dip." Physical Review A 83, no. 4 (2011). http://dx.doi.org/10.1103/physreva.83.042318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Garcia-Escartin, Juan Carlos, and Pedro Chamorro-Posada. "swap test and Hong-Ou-Mandel effect are equivalent." Physical Review A 87, no. 5 (2013). http://dx.doi.org/10.1103/physreva.87.052330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Ali Khan, Irfan, and John C. Howell. "Hong-Ou-Mandel cloning: Quantum copying without an ancilla." Physical Review A 70, no. 1 (2004). http://dx.doi.org/10.1103/physreva.70.010303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Hach, Edwin E., Stefan F. Preble, Ali W. Elshaari, Paul M. Alsing, and Michael L. Fanto. "Scalable Hong-Ou-Mandel manifolds in quantum-optical ring resonators." Physical Review A 89, no. 4 (2014). http://dx.doi.org/10.1103/physreva.89.043805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Kim, Heonoh, Osung Kwon, Wonsik Kim, and Taesoo Kim. "Spatial two-photon interference in a Hong-Ou-Mandel interferometer." Physical Review A 73, no. 2 (2006). http://dx.doi.org/10.1103/physreva.73.023820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Cosme, Olavo, S. Pádua, Fabio A. Bovino, A. Mazzei, Fabio Sciarrino, and Francesco De Martini. "Hong-Ou-Mandel interferometer with one and two photon pairs." Physical Review A 77, no. 5 (2008). http://dx.doi.org/10.1103/physreva.77.053822.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Li, Jun, Ming-Ti Zhou, Bo Jing, et al. "Hong-Ou-Mandel Interference between Two Deterministic Collective Excitations in an Atomic Ensemble." Physical Review Letters 117, no. 18 (2016). http://dx.doi.org/10.1103/physrevlett.117.180501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Leong, Victor, Sandoko Kosen, Bharath Srivathsan, Gurpreet Kaur Gulati, Alessandro Cerè, and Christian Kurtsiefer. "Hong-Ou-Mandel interference between triggered and heralded single photons from separate atomic systems." Physical Review A 91, no. 6 (2015). http://dx.doi.org/10.1103/physreva.91.063829.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Perrier, Maxime, Ziyad Amodjee, Pierre Dussarrat, et al. "Thermal counting statistics in an atomic two-mode squeezed vacuum state." SciPost Physics 7, no. 1 (2019). http://dx.doi.org/10.21468/scipostphys.7.1.002.

Full text
Abstract:
We measure the population distribution in one of the atomic twin beams generated by four-wave mixing in an optical lattice. Although the produced two-mode squeezed vacuum state is pure, each individual mode is described as a statistical mixture. We confirm the prediction that the particle number follows an exponential distribution when only one spatio-temporal mode is selected. We also show that this distribution accounts well for the contrast of an atomic Hong–Ou–Mandel experiment. These experiments constitute an important validation of our twin beam source in view of a future test of a Bell
APA, Harvard, Vancouver, ISO, and other styles
42

Karimi, Ebrahim, Daniel Giovannini, Eliot Bolduc, et al. "Exploring the quantum nature of the radial degree of freedom of a photon via Hong-Ou-Mandel interference." Physical Review A 89, no. 1 (2014). http://dx.doi.org/10.1103/physreva.89.013829.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Ghosh, Sutapa, Nicholas Rivera, Gadi Eisenstein, and Ido Kaminer. "Creating heralded hyper-entangled photons using Rydberg atoms." Light: Science & Applications 10, no. 1 (2021). http://dx.doi.org/10.1038/s41377-021-00537-2.

Full text
Abstract:
AbstractEntangled photon pairs are a fundamental component for testing the foundations of quantum mechanics, and for modern quantum technologies such as teleportation and secured communication. Current state-of-the-art sources are based on nonlinear processes that are limited in their efficiency and wavelength tunability. This motivates the exploration of physical mechanisms for entangled photon generation, with a special interest in mechanisms that can be heralded, preferably at telecommunications wavelengths. Here we present a mechanism for the generation of heralded entangled photons from R
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!