To see the other types of publications on this topic, follow the link: Atomic layer deposition.

Journal articles on the topic 'Atomic layer deposition'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Atomic layer deposition.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Godlewski, Marek. "Atomic layer deposition." Semiconductor Science and Technology 27, no. 7 (2012): 070301. http://dx.doi.org/10.1088/0268-1242/27/7/070301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Szyszka, Bernd, and Hugo Tholense. "Atomic Layer Deposition." JOT Journal für Oberflächentechnik 51, no. 9 (2011): 48–51. http://dx.doi.org/10.1365/s35144-011-0169-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pimenoff, Joe. "Atomic Layer Deposition." Vakuum in Forschung und Praxis 24, no. 6 (2012): 10–13. http://dx.doi.org/10.1002/vipr.201200502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Leskela, Markku, Emma Salmi, and Mikko Ritala. "Atomic Layer Deposited Protective Layers." Materials Science Forum 879 (November 2016): 1086–92. http://dx.doi.org/10.4028/www.scientific.net/msf.879.1086.

Full text
Abstract:
This paper reviews the use of Atomic Layer Deposition (ALD) in protective coatings. Because of the growth principle ALD allows the deposition of dense conformal films on substrates of different size and shape. Recently, ALD has received increasingly interest in deposition of protective coatings. In protective coatings oxides are the most common materials and especially Al, Ti, and Ta oxides have been applied. The use of nanolaminates enables improving the protection properties. Since ALD films are pinhole-free and often thin they are used to protect against moisture, radiation, out-gassing but
APA, Harvard, Vancouver, ISO, and other styles
5

Pécz, B., Zs Baji, Z. Lábadi, and A. Kovács. "ZnO layers deposited by Atomic Layer Deposition." Journal of Physics: Conference Series 471 (November 29, 2013): 012015. http://dx.doi.org/10.1088/1742-6596/471/1/012015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Solanki, Raj. "Atomic Layer Deposition of Copper Seed Layers." Electrochemical and Solid-State Letters 3, no. 10 (1999): 479. http://dx.doi.org/10.1149/1.1391185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Poodt, Paul, David C. Cameron, Eric Dickey, et al. "Spatial atomic layer deposition: A route towards further industrialization of atomic layer deposition." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 30, no. 1 (2012): 010802. http://dx.doi.org/10.1116/1.3670745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Leskelä, Markku, Mikko Ritala, and Ola Nilsen. "Novel materials by atomic layer deposition and molecular layer deposition." MRS Bulletin 36, no. 11 (2011): 877–84. http://dx.doi.org/10.1557/mrs.2011.240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Scarel, G., E. Bonera, C. Wiemer, et al. "Atomic-layer deposition of Lu2O3." Applied Physics Letters 85, no. 4 (2004): 630–32. http://dx.doi.org/10.1063/1.1773360.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Reijnen, L., B. Meester, A. Goossens, and J. Schoonman. "Atomic layer deposition of CuxS." Le Journal de Physique IV 11, PR3 (2001): Pr3–1103—Pr3–1107. http://dx.doi.org/10.1051/jp4:20013138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

George, Steven M. "Atomic Layer Deposition: An Overview." Chemical Reviews 110, no. 1 (2010): 111–31. http://dx.doi.org/10.1021/cr900056b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Hämäläinen, Jani, Timo Sajavaara, Esa Puukilainen, Mikko Ritala, and Markku Leskelä. "Atomic Layer Deposition of Osmium." Chemistry of Materials 24, no. 1 (2011): 55–60. http://dx.doi.org/10.1021/cm201795s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Bedair, S. M. "Atomic layer epitaxy deposition processes." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 12, no. 1 (1994): 179. http://dx.doi.org/10.1116/1.587179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Jaffal, Moustapha, Taguhi Yeghoyan, Gauthier Lefèvre, et al. "Topographical selective deposition: A comparison between plasma-enhanced atomic layer deposition/sputtering and plasma-enhanced atomic layer deposition/quasi-atomic layer etching approaches." Journal of Vacuum Science & Technology A 39, no. 3 (2021): 030402. http://dx.doi.org/10.1116/6.0000969.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Sinha, Ashwini, Dennis W. Hess, and Clifford L. Henderson. "Transport behavior of atomic layer deposition precursors through polymer masking layers: Influence on area selective atomic layer deposition." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 25, no. 5 (2007): 1721. http://dx.doi.org/10.1116/1.2782546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Pedersen, Henrik. "(Invited) Atomic Layer Deposition as the Enabler for the Meta Stable Semiconductor InN and Its Alloys." ECS Meeting Abstracts MA2023-02, no. 32 (2023): 1569. http://dx.doi.org/10.1149/ma2023-02321569mtgabs.

Full text
Abstract:
Indium nitride (InN) is highly interesting for high-frequency and high-speed electronics given the remarkably high electron mobility in InN. The development of InN based electronics is hampered by the difficulty in depositing high quality thin films. The InN crystal breaks down to indium metal and nitrogen gas at about 500 °C which limits the deposition temperature, making conventional chemical vapor deposition (CVD) poorly suited for InN. Atomic Layer Deposition (ALD) is a low temperature, time-resolved form of CVD where the precursor gases are pulsed sequentially, separated by inert gas. Thi
APA, Harvard, Vancouver, ISO, and other styles
17

Tsai, Fa-Ta, Ching-Kong Chao, Kai-Jyun Jhong, and Rwei-Ching Chang. "Characterization of oxide barrier layers prepared by atomic layer deposition." Advances in Mechanical Engineering 9, no. 7 (2017): 168781401771180. http://dx.doi.org/10.1177/1687814017711809.

Full text
Abstract:
Atomic layer deposition has become an important thin-film growth technique for producing gas diffusion barriers because of its low process temperature and its ability to produce uniform films. In this work, atomic layer deposition was used to deposit various Al2O3 and ZnO thin films on polyethylene terephthalate substrates; subsequently, the physical properties and water vapor transmission rates of the films were characterized. Single and hybrid films (Al2O3, ZnO, Al2O3/ZnO, and ZnO/Al2O3) with thicknesses of 25, 50, and 100 nm at a deposition temperature of 60°C were investigated. The deposit
APA, Harvard, Vancouver, ISO, and other styles
18

Zhao, Yang. "Atomic Layer Deposition and Molecular Layer Deposition for Next Generation Battery." ECS Meeting Abstracts MA2021-02, no. 29 (2021): 858. http://dx.doi.org/10.1149/ma2021-0229858mtgabs.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Muneshwar, Triratna, and Ken Cadien. "Influence of atomic layer deposition valve temperature on ZrN plasma enhanced atomic layer deposition growth." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 33, no. 6 (2015): 060603. http://dx.doi.org/10.1116/1.4926382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Song, Seung Keun, Holger Saare, and Gregory N. Parsons. "Integrated Isothermal Atomic Layer Deposition/Atomic Layer Etching Supercycles for Area-Selective Deposition of TiO2." Chemistry of Materials 31, no. 13 (2019): 4793–804. http://dx.doi.org/10.1021/acs.chemmater.9b01143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Hernández-Arriaga, H., E. López-Luna, E. Martínez‐Guerra, M. M. Turrubiartes, A. G. Rodríguez, and M. A. Vidal. "Growth of HfO2/TiO2nanolaminates by atomic layer deposition and HfO2-TiO2by atomic partial layer deposition." Journal of Applied Physics 121, no. 6 (2017): 064302. http://dx.doi.org/10.1063/1.4975676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Li, Yanghui, Weidong Shen, Yueguang Zhang, Xiang Hao, Huanhuan Fan, and Xu Liu. "Anti-reflection coating at 550 nm fabricated by atomic layer deposition." Chinese Optics Letters 11, S1 (2013): S10205. http://dx.doi.org/10.3788/col201311.s10205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Plakhotnyuk, Maksym, Atilla C. Varga, Karolis Parfeniukas, Ivan Kundrata та Julien Bachmann. "Inherently Selective Atomic Layer Deposition for Optical and Sensor Applications: Microreactor Direct Atomic Layer Processing (μDALP™)". ECS Meeting Abstracts MA2023-02, № 29 (2023): 1463. http://dx.doi.org/10.1149/ma2023-02291463mtgabs.

Full text
Abstract:
In parallel to additive manufacturing leading the revolution in traditional manufacturing, the same principles can revolutionize traditional thin film deposition techniques. Where lithography and vapor phase deposition techniques struggle, for example, with rapid iterations for prototyping or incompatibility with the used chemistry, additive manufacturing can shine. Indeed, several approaches are in development for 3D nanopriting1,2,3. Atomic Layer Deposition, and in more general Atomic Layer Processing, offers a unique opportunity for localized 3D processing/printing due to its two-step proce
APA, Harvard, Vancouver, ISO, and other styles
24

Lu, Junling. "Atomic Lego Catalysts Synthesized by Atomic Layer Deposition." Accounts of Materials Research 3, no. 3 (2022): 358–68. http://dx.doi.org/10.1021/accountsmr.1c00250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Faraz, T., F. Roozeboom, H. C. M. Knoops, and W. M. M. Kessels. "Atomic Layer Etching: What Can We Learn from Atomic Layer Deposition?" ECS Journal of Solid State Science and Technology 4, no. 6 (2015): N5023—N5032. http://dx.doi.org/10.1149/2.0051506jss.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ahn, Jinseong, Changui Ahn, Seokwoo Jeon, and Junyong Park. "Atomic Layer Deposition of Inorganic Thin Films on 3D Polymer Nanonetworks." Applied Sciences 9, no. 10 (2019): 1990. http://dx.doi.org/10.3390/app9101990.

Full text
Abstract:
Atomic layer deposition (ALD) is a unique tool for conformally depositing inorganic thin films with precisely controlled thickness at nanoscale. Recently, ALD has been used in the manufacture of inorganic thin films using a three-dimensional (3D) nanonetwork structure made of polymer as a template, which is pre-formed by advanced 3D nanofabrication techniques such as electrospinning, block-copolymer (BCP) lithography, direct laser writing (DLW), multibeam interference lithography (MBIL), and phase-mask interference lithography (PMIL). The key technical requirement of this polymer template-assi
APA, Harvard, Vancouver, ISO, and other styles
27

Vähä-Nissi, Mika, Terhi Hirvikorpi, Jenni Sievänen, Katriina Matilainen, Erkki Salo, and Ali Harlin. "Atomic Layer Deposition of Thin Inorganic Coatings onto Renewable Packaging Materials." Solid State Phenomena 185 (February 2012): 12–14. http://dx.doi.org/10.4028/www.scientific.net/ssp.185.12.

Full text
Abstract:
Biopolymers play still a relatively minor role in the packaging material markets. For this to grow further there are problems to be solved, such as inadequate barrier properties and moisture sensitivity. Atomic layer deposition (ALD) is one potential solution. Atomic layer deposition is a layer-by-layer thin film deposition process based on self-limiting gas-solid reactions. It is well suited for producing pinhole free barrier coatings uniform in thickness at relatively mild process conditions. The purpose of this presentation is to summarize our recent work done concerning atomic layer deposi
APA, Harvard, Vancouver, ISO, and other styles
28

Illiberi, Andrea, Michael Givens, Alessandra Leonhardt, Matthew Surman, Ranjith Ramachandran, and Mihaela Popovici. "Atomic Layer Deposition for Memory Applications." ECS Meeting Abstracts MA2022-02, no. 31 (2022): 1120. http://dx.doi.org/10.1149/ma2022-02311120mtgabs.

Full text
Abstract:
The semiconductor industry has continuously adopted more complex architectures and 3D geometries, while simultaneously down scaling the critical dimensions of the devices. This presentation will briefly review the evolution of the memory device architectures, their impact on material/processing requirements, and outline how atomic scale processing has helped to overcome integration challenges. We will first present some key atomic scale processes which have enabled the fabrication of 3D memory devices, with particular focus on V-NAND and DRAM. Next, we will introduce new atomic scale processes
APA, Harvard, Vancouver, ISO, and other styles
29

Shin, Seokyoon, Giyul Ham, Heeyoung Jeon, Jingyu Park, Woochool Jang, and Hyeongtag Jeon. "Atomic Layer Deposition: Overview and Applications." Korean Journal of Materials Research 23, no. 8 (2013): 405–22. http://dx.doi.org/10.3740/mrsk.2013.23.8.405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Min, Byung-Don, Jong-Soo Lee, and Sang-Sig Kim. "Al2O3Nano-Coating by Atomic Layer Deposition." Transactions on Electrical and Electronic Materials 4, no. 3 (2003): 15–18. http://dx.doi.org/10.4313/teem.2003.4.3.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Charvot, Jaroslav, Raul Zazpe, Jan M. Macak, and Filip Bureš. "Organoselenium Precursors for Atomic Layer Deposition." ACS Omega 6, no. 10 (2021): 6554–58. http://dx.doi.org/10.1021/acsomega.1c00223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Henderick, Lowie, Arpan Dhara, Andreas Werbrouck, Jolien Dendooven, and Christophe Detavernier. "Atomic layer deposition of metal phosphates." Applied Physics Reviews 9, no. 1 (2022): 011310. http://dx.doi.org/10.1063/5.0069647.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Willis, Brian, Rahul Gupta, and Chao-Ying Ni. "Atomic Layer Deposition for Nanoelectrode Devices." ECS Transactions 33, no. 2 (2019): 25–35. http://dx.doi.org/10.1149/1.3485238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Niinisto, J., T. Blanquart, S. Seppala, M. Ritala, and M. Leskela. "Heteroleptic Precursors for Atomic Layer Deposition." ECS Transactions 64, no. 9 (2014): 221–32. http://dx.doi.org/10.1149/06409.0221ecst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Farhangfar, Sh, R. B. Yang, M. Pelletier, and K. Nielsch. "Atomic layer deposition of ZnS nanotubes." Nanotechnology 20, no. 32 (2009): 325602. http://dx.doi.org/10.1088/0957-4484/20/32/325602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Getz, Michael, Per-Anders Hansen, Mohammed A. K. Ahmed, Helmer Fjellvåg, and Ola Nilsen. "Luminescent YbVO4 by atomic layer deposition." Dalton Transactions 46, no. 9 (2017): 3008–13. http://dx.doi.org/10.1039/c7dt00253j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Tan, Lee Kheng, Bo Liu, Jing Hua Teng, Shifeng Guo, Hong Yee Low, and Kian Ping Loh. "Atomic layer deposition of a MoS2film." Nanoscale 6, no. 18 (2014): 10584–88. http://dx.doi.org/10.1039/c4nr02451f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Ritala, Mikko, and Jaakko Niinistö. "Industrial Applications of Atomic Layer Deposition." ECS Transactions 25, no. 8 (2019): 641–52. http://dx.doi.org/10.1149/1.3207651.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Proslier, Thomas, J. Klug, Nicholas C. Becker, Jeffrey W. Elam, and Michael Pellin. "(Invited) Atomic Layer Deposition of Superconductors." ECS Transactions 41, no. 2 (2019): 237–45. http://dx.doi.org/10.1149/1.3633673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Hu, Liang, Weihong Qi, and Yejun Li. "Coating strategies for atomic layer deposition." Nanotechnology Reviews 6, no. 6 (2017): 527–47. http://dx.doi.org/10.1515/ntrev-2017-0149.

Full text
Abstract:
AbstractAtomic layer deposition (ALD) is a vapor phase technique capable of producing a variety of materials. It consists of the alternation of separate self-limiting surface reactions, which enables accurate control of film thickness at the Angstrom level. ALD becomes a powerful tool for a lot of industrial and research applications. Coating strategies are the key for ALD; however, there are few systematic reviews concerning coating strategies for ALD. This review provides a detailed summary of state-of-the-art coating strategies in ALD, emphasizing the recent progress in the fabrication of n
APA, Harvard, Vancouver, ISO, and other styles
41

Sundaram, Ganesh, Douwe Monsma, and Jill Becker. "Leading Edge Atomic Layer Deposition Applications." ECS Transactions 16, no. 4 (2019): 19–27. http://dx.doi.org/10.1149/1.2979977.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Østreng, Erik, Henrik H. Sønsteby, Timo Sajavaara, Ola Nilsen, and Helmer Fjellvåg. "Atomic layer deposition of ferroelectric LiNbO3." J. Mater. Chem. C 1, no. 27 (2013): 4283–90. http://dx.doi.org/10.1039/c3tc30271g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Natarajan, G., P. S. Maydannik, D. C. Cameron, I. Akopyan, and B. V. Novikov. "Atomic layer deposition of CuCl nanoparticles." Applied Physics Letters 97, no. 24 (2010): 241905. http://dx.doi.org/10.1063/1.3525929.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

van Ommen, J. R., and A. Goulas. "Atomic layer deposition on particulate materials." Materials Today Chemistry 14 (December 2019): 100183. http://dx.doi.org/10.1016/j.mtchem.2019.08.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Narayan, Roger J., Shashishekar P. Adiga, Michael J. Pellin, et al. "Atomic layer deposition of nanoporous biomaterials." Materials Today 13, no. 3 (2010): 60–64. http://dx.doi.org/10.1016/s1369-7021(10)70035-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Wilson, C. A., J. A. McCormick, A. S. Cavanagh, D. N. Goldstein, A. W. Weimer, and S. M. George. "Tungsten atomic layer deposition on polymers." Thin Solid Films 516, no. 18 (2008): 6175–85. http://dx.doi.org/10.1016/j.tsf.2007.11.086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Wu, Yanlin, Dirk Döhler, Maïssa Barr, et al. "Atomic Layer Deposition from Dissolved Precursors." Nano Letters 15, no. 10 (2015): 6379–85. http://dx.doi.org/10.1021/acs.nanolett.5b01424.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Chalker, P. R. "Photochemical atomic layer deposition and etching." Surface and Coatings Technology 291 (April 2016): 258–63. http://dx.doi.org/10.1016/j.surfcoat.2016.02.046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Griffiths, Matthew B. E., Peter J. Pallister, David J. Mandia, and Seán T. Barry. "Atomic Layer Deposition of Gold Metal." Chemistry of Materials 28, no. 1 (2015): 44–46. http://dx.doi.org/10.1021/acs.chemmater.5b04562.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Purvis, Gail. "Atomic layer deposition high fashion, 2004." III-Vs Review 17, no. 6 (2004): 2. http://dx.doi.org/10.1016/s0961-1290(04)00574-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!