Academic literature on the topic 'Atomic layer epitaxy ZnS'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Atomic layer epitaxy ZnS.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Atomic layer epitaxy ZnS"
Hyvärinen, Jaakko, Martti Sonninen, and Runar Törnqvist. "Mass spectrometry study of ZnS atomic layer epitaxy process." Journal of Crystal Growth 86, no. 1-4 (January 1988): 695–99. http://dx.doi.org/10.1016/0022-0248(90)90797-o.
Full textWu, Yi-hong, Takashi Toyoda, Yoichi Kawakami, Shizuo Fujita, and Shigeo Fujita. "Atomic Layer Epitaxy of ZnS on GaAs Substrates by Metalorganic Molecular Beam Epitaxy." Japanese Journal of Applied Physics 29, Part 2, No. 5 (May 20, 1990): L727—L730. http://dx.doi.org/10.1143/jjap.29.l727.
Full textOikkonen, M., T. Tuomi, and M. Luomajärvi. "Density of ZnS thin films grown by atomic layer epitaxy." Journal of Applied Physics 63, no. 4 (February 15, 1988): 1070–74. http://dx.doi.org/10.1063/1.340009.
Full textTadokoro, Toyoyasu, Shin-ichi Ohta, Takashi Ishiguro, Yukio Ichinose, Satoshi Kobayashi, and Naoki Yamamoto. "Atomic layer epitaxy growth of ZnS on (100)GaAs using molecular beam epitaxy system." Journal of Crystal Growth 148, no. 3 (March 1995): 223–31. http://dx.doi.org/10.1016/0022-0248(94)00149-g.
Full textIhanus, Jarkko, Mikko Ritala, Markku Leskelä, Thomas Prohaska, Roland Resch, Gernot Friedbacher, and Manfred Grasserbauer. "AFM studies on ZnS thin films grown by atomic layer epitaxy." Applied Surface Science 120, no. 1-2 (November 1997): 43–50. http://dx.doi.org/10.1016/s0169-4332(97)00226-2.
Full textKim, Y. G., Y. S. Nam, K. S. Baek, and S. K. Chang. "Structural properties of ZnS/GaAs epilayers grown by atomic-layer epitaxy." Current Applied Physics 9, no. 6 (November 2009): 1304–6. http://dx.doi.org/10.1016/j.cap.2008.10.010.
Full textKoukitu, Akinori, Takayuki Miyazawa, Hitoshi Ikeda, and Hisashi Seki. "Atmospheric pressure atomic layer epitaxy of ZnS using Zn and H2S." Journal of Crystal Growth 123, no. 1-2 (September 1992): 95–100. http://dx.doi.org/10.1016/0022-0248(92)90013-9.
Full textHsu, Chin-Tsar, M. Yokoyama, and Y. K. Su. "Growth of znse/zns strained-layer superlattice on si substrates by atomic layer epitaxy." Materials Chemistry and Physics 51, no. 2 (November 1997): 102–6. http://dx.doi.org/10.1016/s0254-0584(97)80276-3.
Full textChen, Nyen-Ts, Meiso Yokoyama, and Herng-Yih Ueng. "Atomic layer epitaxy growth of ZnS Se1− epitaxial layers lattice-matched to Si substrates." Journal of Crystal Growth 216, no. 1-4 (June 2000): 152–58. http://dx.doi.org/10.1016/s0022-0248(00)00433-4.
Full textInnocenti, M., G. Pezzatini, F. Forni, and M. L. Foresti. "CdS and ZnS Deposition on Ag(111) by Electrochemical Atomic Layer Epitaxy." Journal of The Electrochemical Society 148, no. 5 (2001): C357. http://dx.doi.org/10.1149/1.1360208.
Full textDissertations / Theses on the topic "Atomic layer epitaxy ZnS"
Fernandes, Valéria Cristina. "Estudo dos processos de eletrodeposição de filmes finos de Se, ZnSe e PbS." Universidade Federal de São Carlos, 2008. https://repositorio.ufscar.br/handle/ufscar/6099.
Full textFinanciadora de Estudos e Projetos
This work describes studies on the underpotential deposition (UPD) of selenium, zinc, as well for Zn/Se systems deposited on polycrystalline Pt electrodes in acid solutions. The effects of Zn presence in the Se dissolution process were also investigated in the UPD and bulk potential range, 0.6 and 0.03 V respectively. The measurements were carried out using cyclic voltammetry and electrochemical quartz crystal microbalance (EQCM). Furthermore Lead sulfide (PbS) multilayers were grown on a single crystal Ag(111) substrate by Electrochemical Atomic Layer Epitaxy (ECALE) method. For Zn UPD in sulfuric acid, two different processes were observed, which are attributed to the dissolution of submonolayer of Znads and H-atoms adsorbed on the electrode surface. For Se UPD was observed that hydrogen desorption were completely inhibited indicating that Se film recovered the Pt surface. The deposition of UPD Se in perchloric acid solution showed the transference of 4 electrons with 1.4 and 1.12 active sites of Pt occupied by 1 Se ad-atom in the UPD and bulk potential range, respectively. In the evaluation of the Se monolayers dissolution process formed at 0.03 V during 2000 s a process not mentioned in the literature it was observed which was evaluated by the technique MECQ. The experimental results obtained by this technique allowed to end that the dissolution process occurred by two stages, and the first involved the participation of 6e-. The dissolution mechanism with 6e- happens with the participation of water in the dissolution process of Se, leading to the formation of an oxygenated selenium compound which in next step undergo slow oxidation and is dissolved as soluble Se(VI) species. Then the total dissolution process of Se occurs in a six-electron transfer reaction. For Se deposition in the Zn presence the dissolution charges associated with Se UPD increase, indicating that the presence of Zn favors the deposition of UPD Se. In the case of PbS multilayers on Ag (111) the voltammetric analysis of the first PbUPD and SUPD peaks indicates a mechanism of two-dimensional growth, which is consistent with epitaxial growth. Electrochemical stripping measurements indicate that the amount of Pb and S deposited in a given number of cycles is a function of the number of cycles employed, again suggesting a layer-by-layer growth. This result indicates that the amount of Pb and S in these films corresponds to the stoichiometric 1:1 ratio, indicating the formation of a compound.
Este trabalho descreve os estudos da deposicao em regime de subtensao (DRS) de Se, Zn, assim como para sistemas Zn/Se depositados sobre eletrodos policristalinos de Pt em solucoes acidas. Os efeitos da presenca de Zn no processo de dissolucao de Se tambem foram investigados em uma regiao de potenciais de DRS e deposicao massiva 0,6 V e 0,03 V, respectivamente. As medidas foram realizadas usando voltametria ciclica e microbalanca eletroquimica de cristal de quartzo (MECQ). Alem disso, multicamadas de sulfeto de chumbo (PbS) foram crescidas sobre substrato de Ag(111) utilizando o metodo de deposicao eletroquimica de camadas atomicas epitaxiais (ECALE). Para a DRS de Zn em meio de acido sulfurico dois processos distintos foram observados os quais foram atribuidos a submonocamadas de Znads e atomos de H adsorvidos sobre a superficie do eletrodo. Para a DRS do Se observou-se a inibicao completa da dessorcao de hidrogenio o que indicou recobrimento total da superficie de Pt por ad-atomo de Se. A deposicao de Se em meio de acido perclorico mostrou a transferencia de 4 eletrons com 1,4 e 1,12 sitios da Pt ocupados por cada ad-atomo de Se, em potenciais de deposicao em DRS e sobretensao, respectivamente. Na avaliacao do processo de dissolucao das monocamadas de Se formadas a 0,03 V e por um tempo de deposicao de 2000 s um processo nao mencionado na literatura foi observado o qual foi avaliado pela tecnica MECQ. Os resultados experimentais obtidos por esta tecnica permitiram concluir que o processo de dissolucao do Se ocorria por duas etapas, sendo que a primeira envolvia a participacao de uma 6 eletrons e a segunda de 4 eletrons. O mecanismo de dissolucao com 6 eletrons ocorre com a participacao de agua no processo de dissolucao do Se, levando a formacao de compostos de Se oxigenados, os quais em uma etapa posterior sofrem uma oxidacao lenta e se dissolvem como especies soluveis de Se(VI). Entao o processo total de dissolucao de Se ocorre em uma reacao de transferencia de 6 eletrons. Ja para a deposicao de Se na presenca de Zn pode-se concluir, devido ao aumento da carga de dissolucao da DRS de Se, que a presenca de Zn favorece o processo de deposicao do Se. No caso das multicamadas de PbS o estudo voltametrico das primeiras camadas de Pb DRS e S DRS indicam um mecanismo de crescimento bidimensional, que e consistente com o crescimento epitaxial. As cargas medidas no processo de dissolucao das camadas indicaram que a quantidade de Pb e S depositados para um dado numero de ciclos e uma funcao do numero de ciclos realizados, sugerindo novamente um crescimento camada por camada Este resultado sugere que a quantidade de Pb e S nos filmes possuem uma relacao estequiometrica de 1:1, indicando a formacao de um composto.
Yeo, Philip Sinclair. "Role of gallium precursors in atomic layer epitaxy of GaAs." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0019/MQ51515.pdf.
Full textArès, Richard. "Growth mechanisms of atomic layer epitaxy studied in situ by reflectance difference spectroscopy." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq24289.pdf.
Full textWatanabe, Joy Kimi. "Silicon preparation techniques for nucleation and growth studies of zinc sulfide deposited by atomic layer epitaxy." Diss., The University of Arizona, 1992. http://hdl.handle.net/10150/185938.
Full textTörndahl, Tobias. "Atomic Layer Deposition of Copper, Copper(I) Oxide and Copper(I) Nitride on Oxide Substrates." Doctoral thesis, Uppsala University, Department of Materials Chemistry, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4651.
Full textThin films play an important role in science and technology today. By combining different materials, properties for specific applications can be optimised. In this thesis growth of copper, copper(I) oxide and copper(I) nitride on two different substrates, amorphous SiO2 and single crystalline α-Al2O3 by the so called Atomic Layer Deposition (ALD) techniques has been studied. This technique allows precise control of the growth process at monolayer level on solid substrates. Other characteristic features of ALD are that it produces films with excellent step coverage and good uniformity even as extremely thin films on complicated shaped substrates.
Alternative deposition schemes were developed for the materials of interest. It was demonstrated that use of intermediate water pulses affected the deposition pathways considerably. By adding water, the films are thought to grow via formation of an oxide over-layer instead of through a direct reaction between the precursors as in the case without water.
For growth of copper(I) nitride from Cu(hfac)2 and ammonia no film growth occurred without adding water to the growth process. The Cu3N films could be transformed into conducting copper films by post annealing. In copper growth from CuCl and H2 the water affected film growth on the alumina substrates considerably more than on the fused silica substrates. The existence of surface -OH and/or -NHx groups was often found to play an important role, according to both theoretical calculations and experimental results.
Lindahl, Erik. "Thin Film Synthesis of Nickel Containing Compounds." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-111484.
Full textCHOLLET, FREDERIC. "Epitaxie à basse température de couches silicium et Si(1-x)Gex : étude par microscopie à force atomique." Université Joseph Fourier (Grenoble), 1997. http://www.theses.fr/1997GRE10183.
Full textAhmed, Mustafa M. Abdalla. "Alternating-Current Thin-Film Electroluminescent Device Characterization." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2008. http://www.nusl.cz/ntk/nusl-233432.
Full textLee, Nien-chung, and 李年中. "The Study of ZnS Thin Films by Atomic Layer Epitaxy." Thesis, 1995. http://ndltd.ncl.edu.tw/handle/97810032775445755086.
Full text國立成功大學
電機工程研究所
83
Atomic Layer Epitaxy is a stepwise deposition process by su- pplying the sources materials alternatively.This deposition te- chnique provides monolayer control of the deposited film thick- ness and uniform growth over a large area. ZnS layers were grown epitaxially onto (100)GaAs,(100)Si, (222)ITO substrates under low pressure in a horizontal vaper phase epitaxial reactor using DMZn for the group II source and H2S gas for the group VI source.In this study, We varied the growth condition, including change of the substrate temperature, the mole fraction of DMZn,the mole fraction of H2S,the purge H2 duration, the pressure of reaction chamber ...etc.In order to privide high quality ZnS epitaxial films. In ZnS grown on GaAs,the present process provides the mono- layer growth over a wide range of growth condition in a self- limiting manner.High crystalline quality of the epitaxially grown layers can be obtained by XRD,SEM,EPMA and PL,in spite of very large lattice mismatch (4.4 %) between ZnS and GaAs. In ZnS grown on Si and ITO glasses,The ZnS films have high crystalline quality and the epitaxial layers had a mirror-like surface.But the growth rate was still at 0.7 monolayer over a wise range of growth condition.It may be possible because the adsorption of the reactions on the substrates is weak; and much higher flows or flow times may be needed for monolayer
Chen, Ying-Zhang, and 陳盈璋. "The electrical and optical properties of ZnS/ZnSe strained-layer superlattice by Atomic Layer Epitaxy." Thesis, 1999. http://ndltd.ncl.edu.tw/handle/01947596128001604228.
Full text國立成功大學
電機工程學系
87
In this dissertation, we will discuss the effects and roles of ZnS/ZnSe strained-layer superlattices (SLSs) for introducing it into the Electroluminescent devices. The SLSs layer is grown on n-type silicon by Atomic Layer Epitaxy (ALE) which modified in a low pressure, horizontal-type, MOCVD system using dimethylzinc, hydrogen sulphide and hydrogen selenide as the reactants. The formation of SLSs structure is evident from the altering behavior of each fluctuation profile by SIMS. The electrical property of SLSs schottky diode is investigated by current-voltage measurement. It is found that at least 16 periods of ZnS/ZnSe (1600 A) will represent as low cut-in voltage as 0.52V. ZnS:Tm phosphor layer is deposited on SLSs/Si and discuss the role of SLSs as a buffer layer. Under photoluminescence spectra performed at room temperature, an unnecessary peak around 4000A is suppressed while compare it with one which have a ZnSe buffer layer with comparable thickness. All this point out the appropriateness of SLSs as an electron-transmission layer and buffer layer in Electroluminescent devices.
Books on the topic "Atomic layer epitaxy ZnS"
Suntola, T., and M. Simpson, eds. Atomic Layer Epitaxy. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0389-0.
Full textKääriäinen, Tommi. Atomic layer deposition: Principles, characteristics, and nanotechnology applications. 2nd ed. Beverly, MA: Scrivener Publishing, 2013.
Find full textSherman, Arthur. Atomic layer deposition for nanotechnology: An enabling process for nanotechnology fabrication. Ivoryton, Conn: Ivoryton Press, 2008.
Find full textInternational Symposium on Atomic Layer Epitaxy and Related Surface Processes (3rd 1994 Sendai, Japan). ALE-3: Proceedings of the third International Symposium on Atomic Layer Epitaxy and Related Surface Processes, Sendai, Japan, 25-27 May 1994. Amsterdam: North-Holland, 1994.
Find full textAtomic layer growth and processing: Symposium held April 29 - May 1, Anaheim, California, U.S.A. Pittsburgh: Materials Research Society, 1991.
Find full textBook chapters on the topic "Atomic layer epitaxy ZnS"
Cornelissen, Hugo J., D. A. Cammack, and R. J. Dalby. "Atomic Layer Epitaxy of ZnSe/ZnSxSe1-X Superlattices." In Growth and Optical Properties of Wide-Gap II–VI Low-Dimensional Semiconductors, 257–61. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-5661-5_25.
Full textLeskelä, M., and L. Niinistö. "Chemical aspects of the ALE process." In Atomic Layer Epitaxy, 1–39. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0389-0_1.
Full textPakkanen, T. "Theoretical aspects of ALE growth mechanisms." In Atomic Layer Epitaxy, 40–62. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0389-0_2.
Full textMason, N. J. "Comparison of ALE with other techniques." In Atomic Layer Epitaxy, 63–109. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0389-0_3.
Full textTischler, M. A., and S. M. Bedair. "Atomic layer epitaxy of III-V compounds." In Atomic Layer Epitaxy, 110–54. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0389-0_4.
Full textYao, T. "Atomic layer epitaxy of II-VI compounds." In Atomic Layer Epitaxy, 155–80. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0389-0_5.
Full textAliano, Antonio, Giancarlo Cicero, Hossein Nili, Nicolas G. Green, Pablo García-Sánchez, Antonio Ramos, Andreas Lenshof, et al. "Atomic Layer Epitaxy (ALE)." In Encyclopedia of Nanotechnology, 171. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100045.
Full textVarazo, Kris, Travis L. Wade, Billy H. Flowers, Marcus D. Lay, Uwe Happek, and John L. Stickney. "Morphology in Electrochemical Atomic Layer Epitaxy." In Thin Films: Preparation, Characterization, Applications, 83–93. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0775-8_6.
Full textPessa, Markus. "Atomic Layer Epitaxy of Compound Semiconductors." In Thin Film Growth Techniques for Low-Dimensional Structures, 221–23. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-9145-6_12.
Full textSanders, Brian W. "Atomic layer epitaxy of phosphor thin films." In Solid State Luminescence, 293–312. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1522-3_9.
Full textConference papers on the topic "Atomic layer epitaxy ZnS"
Tanaka, Yuji, Yusuke Masuda, Hiroshi Kumagai, Tsutomu Shinagawa, and Ataru Kobayasi. "Atomic layer epitaxy of TiO 2 /ZnO multilayers for water-window attosecond optics." In SPIE LASE: Lasers and Applications in Science and Engineering, edited by Michel Meunier, Andrew S. Holmes, Hiroyuki Niino, and Bo Gu. SPIE, 2009. http://dx.doi.org/10.1117/12.808169.
Full textMurata, Masaki, Yuji Tanaka, Yasutaka Sanjo, Hiroshi Kumagai, Tsutomu Shinagawa, and Masaya Chigane. "Atomic layer epitaxy of TiO 2 /ZnO multilayer optics using ZnO buffer layer for water-window x-ray." In SPIE MOEMS-MEMS, edited by Winston V. Schoenfeld, Jian Jim Wang, Marko Loncar, and Thomas J. Suleski. SPIE, 2011. http://dx.doi.org/10.1117/12.874377.
Full textFUJITA, Shigeo, Yi-hong WU, Yasunori MIYAZAKI, Takashi TOYODA, Yoichi KAWAKAMI, and Shizuo FUJITA. "Sulfur-Passivation Pretreatment of GaAs Surface for Layer-by-Layer Growth and Atomic Layer Epitaxy of ZnSe by MOMBE." In 1990 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1990. http://dx.doi.org/10.7567/ssdm.1990.s-d-6.
Full textTakeda, T., T. Yao, T. Kurosu, and M. Iida. "Atomic-Layer Epitaxy of ZnSe and ZnTe Single Crystalline Films and its Application to the Fabrication of ZnSe /ZnTe Superlattices." In 1985 Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1985. http://dx.doi.org/10.7567/ssdm.1985.b-3-1.
Full textHernández-Calderón, I., and J. C. Salcedo-Reyes. "Photoluminescence study of the substitution of Cd by Zn during the growth by atomic layer epitaxy of alternate CdSe and ZnSe monolayers." In 7TH INTERNATIONAL CONFERENCE ON LOW DIMENSIONAL STRUCTURES AND DEVICES: (LDSD 2011). AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4878294.
Full textMurata, Masaki, Yuji Tanaka, Hiroshi Kumagai, Tsutomu Shinagawa, and Ataru Kobayashi. "Atomic layer epitaxy of ZnO and TiO 2 thin films on c-plane sapphire substrate for novel oxide soft x-ray mirrors." In OPTO, edited by Ferechteh H. Teherani, David C. Look, Cole W. Litton, and David J. Rogers. SPIE, 2010. http://dx.doi.org/10.1117/12.840834.
Full textUsui, Akira, and Haruo Sunakawa. "Chloride Atomic Layer Epitaxy of InGaP." In 1988 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1988. http://dx.doi.org/10.7567/ssdm.1988.d-8-2.
Full textBedair, S. M. "Recent progress in atomic layer epitaxy." In Critical Review Collection. SPIE, 1993. http://dx.doi.org/10.1117/12.141398.
Full textDip, Anthony, Peter C. Colter, G. M. Eldallal, and Salah M. Bedair. "Atomic-layer epitaxy of device-quality Al0.3Ga0.7As." In Semiconductors '92, edited by Roger J. Malik, Chris J. Palmstrom, Salah M. Bedair, Harold G. Craighead, and Randall L. Kubena. SPIE, 1992. http://dx.doi.org/10.1117/12.137644.
Full textHashemi, Majid, J. Ramdani, Brian McDermott, Kimberly G. Reid, John R. Hauser, and Salah M. Bedair. "Planar-doped structures by atomic layer epitaxy." In High-Speed Electronics and Device Scaling, edited by Lester F. Eastman. SPIE, 1990. http://dx.doi.org/10.1117/12.20918.
Full textReports on the topic "Atomic layer epitaxy ZnS"
Gat, R., T. I. Hukka, and M. P. D'Evelyn. Progress Toward Atomic Layer Epitaxy of Diamond Using Radical Chemistry. Fort Belvoir, VA: Defense Technical Information Center, May 1993. http://dx.doi.org/10.21236/ada265409.
Full textHukka, T. I., R. E. Rawles, and M. P. D'Evelyn. Novel Method for Chemical Vapor Deposition and Atomic Layer Epitaxy Using Radical Chemistry. Fort Belvoir, VA: Defense Technical Information Center, June 1992. http://dx.doi.org/10.21236/ada252873.
Full textEres, G. Kinetic modeling of the atomic layer epitaxy window in group IV semiconductor growth. Office of Scientific and Technical Information (OSTI), February 1995. http://dx.doi.org/10.2172/10113197.
Full textDavis, Robert F., and Salah Bedair. Atomic Layer Epitaxy Group IV Materials: Surface Processes, Thin Films, Devices and Their Characterization. Fort Belvoir, VA: Defense Technical Information Center, June 1991. http://dx.doi.org/10.21236/ada238506.
Full textDavis, Robert F., Salah Bedair, Jill Little, Robert Macintosh, and Joe Sumakeris. Atomic Layer Epitaxy of Silicon, Silicon/Germanium and Silicon Carbide via Extraction/Exchange Processes. Fort Belvoir, VA: Defense Technical Information Center, January 1991. http://dx.doi.org/10.21236/ada231348.
Full textTrilayer Josephson junctions produced by atomic layer-by-layer FORCE (Flexible Oxide Reaction Controlled Epitaxy). Final report. Office of Scientific and Technical Information (OSTI), September 1995. http://dx.doi.org/10.2172/399704.
Full text