To see the other types of publications on this topic, follow the link: Atomic magnetometry.

Journal articles on the topic 'Atomic magnetometry'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Atomic magnetometry.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Dong, H. F., J. C. Fang, B. Q. Zhou, X. B. Tang, and J. Qin. "Three-dimensional atomic magnetometry." European Physical Journal Applied Physics 57, no. 2 (January 30, 2012): 21004. http://dx.doi.org/10.1051/epjap/2011110392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jiang, Min, Wenjie Xu, Qing Li, Ze Wu, Dieter Suter, and Xinhua Peng. "Interference in Atomic Magnetometry." Advanced Quantum Technologies 3, no. 12 (October 4, 2020): 2000078. http://dx.doi.org/10.1002/qute.202000078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hu, Yinan, Geoffrey Z. Iwata, Lykourgos Bougas, John W. Blanchard, Arne Wickenbrock, Gerhard Jakob, Stephan Schwarz, Clemens Schwarzinger, Alexej Jerschow, and Dmitry Budker. "Rapid Online Solid-State Battery Diagnostics with Optically Pumped Magnetometers." Applied Sciences 10, no. 21 (November 6, 2020): 7864. http://dx.doi.org/10.3390/app10217864.

Full text
Abstract:
Solid-state battery technology is motivated by the desire to deliver flexible power storage in a safe and efficient manner. The increasingly widespread use of batteries from mass production facilities highlights the need for a rapid and sensitive diagnostic tool for identifying battery defects. We demonstrate the use of atomic magnetometry to measure the magnetic fields around miniature solid-state battery cells. These fields encode information about battery manufacturing defects, state of charge, and impurities, and they can provide important insights into battery aging processes. Compared with SQUID-based magnetometry, the availability of atomic magnetometers, however, highlights the possibility of constructing a low-cost, portable, and flexible implementation of battery quality control and characterization technology.
APA, Harvard, Vancouver, ISO, and other styles
4

Fischer, Ran, Ofer Firstenberg, Moshe Shuker, and Amiram Ron. "Atomic magnetometry with maximally polarized states." Optics Express 17, no. 19 (September 4, 2009): 16776. http://dx.doi.org/10.1364/oe.17.016776.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhou, Feng, Chengjie J. Zhu, Edward W. Hagley, and Lu Deng. "Symmetry-breaking inelastic wave-mixing atomic magnetometry." Science Advances 3, no. 12 (December 2017): e1700422. http://dx.doi.org/10.1126/sciadv.1700422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xu, S., M. H. Donaldson, A. Pines, S. M. Rochester, D. Budker, and V. V. Yashchuk. "Application of atomic magnetometry in magnetic particle detection." Applied Physics Letters 89, no. 22 (November 27, 2006): 224105. http://dx.doi.org/10.1063/1.2400077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Griffith, W. Clark, Svenja Knappe, and John Kitching. "Femtotesla atomic magnetometry in a microfabricated vapor cell." Optics Express 18, no. 26 (December 9, 2010): 27167. http://dx.doi.org/10.1364/oe.18.027167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shah, Vishal, Svenja Knappe, Peter D. D. Schwindt, and John Kitching. "Subpicotesla atomic magnetometry with a microfabricated vapour cell." Nature Photonics 1, no. 11 (November 2007): 649–52. http://dx.doi.org/10.1038/nphoton.2007.201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Michalak, David J., Shoujun Xu, Thomas J. Lowery, C. W. Crawford, Micah Ledbetter, Louis-S. Bouchard, David E. Wemmer, Dmitry Budker, and Alexander Pines. "Relaxivity of gadolinium complexes detected by atomic magnetometry." Magnetic Resonance in Medicine 66, no. 2 (March 23, 2011): 603–6. http://dx.doi.org/10.1002/mrm.22811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Orzechowska, Zuzanna, Mariusz Mrózek, Wojciech Gawlik, and Adam Wojciechowski. "Preparation and characterization of AFM tips with nitrogen-vacancy and nitrogen-vacancy-nitrogen color centers." Photonics Letters of Poland 13, no. 2 (June 30, 2021): 28. http://dx.doi.org/10.4302/plp.v13i2.1095.

Full text
Abstract:
We demonstrate a simple dip-coating method of covering standard AFM tips with nanodiamonds containing color centers. Such coating enables convenient visualization of AFM tips above transparent samples as well as using the tip for performing spatially resolved magnetometry. Full Text: PDF ReferencesG. Binnig, C. F. Quate, C. Gerber, "Atomic Force Microscope", Phys. Rev. Lett. 56, 930 (1986). CrossRef F .J. Giessibl, "Advances in atomic force microscopy", Rev. Mod. Phys. 75, 949 (2003). CrossRef S. Kasas, G. Dietler, "Probing nanomechanical properties from biomolecules to living cells", Eur. J. Appl. Physiol. 456, 13 (2008). CrossRef C. Roduit et al., "Stiffness Tomography by Atomic Force Microscopy", Biophys. J. 97, 674 (2009). CrossRef L. A. Kolodny et al., "Spatially Correlated Fluorescence/AFM of Individual Nanosized Particles and Biomolecules", Anal. Chem. 73, 1959 (2001). CrossRef L. Rondin et al., "Magnetometry with nitrogen-vacancy defects in diamond", Rep. Prog. Phys. 77, 056503 (2014). CrossRef C. L. Degen, "Scanning magnetic field microscope with a diamond single-spin sensor", Appl. Phys. Lett. 92, 243111 (2008). CrossRef J. M. Taylor et al., "High-sensitivity diamond magnetometer with nanoscale resolution", Nat. Phys. 4, 810 (2008). CrossRef J. R. Maze et al., "Nanoscale magnetic sensing with an individual electronic spin in diamond", Nature 455, 644 (2008). CrossRef L. Rondin et al., "Nanoscale magnetic field mapping with a single spin scanning probe magnetometer", Appl. Phys. Lett. 100, 153118 (2012). CrossRef J. P. Tetienne et al., "Nanoscale imaging and control of domain-wall hopping with a nitrogen-vacancy center microscope", Science 344, 1366 (2014). CrossRef R. Nelz et al., "Color center fluorescence and spin manipulation in single crystal, pyramidal diamond tips", Appl. Phys. Lett. 109, 193105 (2016). CrossRef G. Balasubramanian et al., "Nanoscale imaging magnetometry with diamond spins under ambient conditions", Nature 455, 648 (2008). CrossRef P. Maletinsky et al., "A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres", Nat. nanotechnol. 7, 320 (2012). CrossRef L. Thiel et al., "Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer", Nat. nanotechnol. 11, 677 (2016). CrossRef F. Jelezko et al., "Single spin states in a defect center resolved by optical spectroscopy", Appl. Phys. Lett. 81, 2160 (2002). CrossRef M. W. Doherty et al., "The nitrogen-vacancy colour centre in diamond", Phys. Rep. 528, 1 (2013). CrossRef C. Kurtsiefer, S. Mayer, P. Zarda, H. Weinfurter, "Stable Solid-State Source of Single Photons", Phys. Rev. Lett. 85, 290 (2000). CrossRef A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup, C. Von Borczyskowski, "Scanning Confocal Optical Microscopy and Magnetic Resonance on Single Defect Centers", Science 276, 2012 (1997). CrossRef F. Dolde et al., "Electric-field sensing using single diamond spins", Nat. Phys. 7, 459 (2011). CrossRef K. Sasaki et al., "Broadband, large-area microwave antenna for optically detected magnetic resonance of nitrogen-vacancy centers in diamond", Rev. Sci. Instrum. 87, 053904 (2016). CrossRef A. M. Wojciechowski et al., "Optical Magnetometry Based on Nanodiamonds with Nitrogen-Vacancy Color Centers", Materials 12, 2951 (2019). CrossRef I. V. Fedotov et al., "Fiber-optic magnetometry with randomly oriented spins", Opt. Lett. 39, 6755 (2014). CrossRef
APA, Harvard, Vancouver, ISO, and other styles
11

Colombo, Simone, Victor Lebedev, Alexey Tonyushkin, Simone Pengue, and Antoine Weis. "Imaging Magnetic Nanoparticle Distributions by Atomic Magnetometry-Based Susceptometry." IEEE Transactions on Medical Imaging 39, no. 4 (April 2020): 922–33. http://dx.doi.org/10.1109/tmi.2019.2937670.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Krinner, Ludwig, Michael Stewart, Arturo Pazmiño, and Dominik Schneble. "In situ magnetometry for experiments with atomic quantum gases." Review of Scientific Instruments 89, no. 1 (January 2018): 013108. http://dx.doi.org/10.1063/1.5003646.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Elíasson, Ottó, Robert Heck, Jens S. Laustsen, Mario Napolitano, Romain Müller, Mark G. Bason, Jan J. Arlt, and Jacob F. Sherson. "Spatially-selective in situ magnetometry of ultracold atomic clouds." Journal of Physics B: Atomic, Molecular and Optical Physics 52, no. 7 (March 19, 2019): 075003. http://dx.doi.org/10.1088/1361-6455/ab0bd6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Hodby, E., E. A. Donley, and J. Kitching. "Differential atomic magnetometry based on a diverging laser beam." Applied Physics Letters 91, no. 1 (July 2, 2007): 011109. http://dx.doi.org/10.1063/1.2753763.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Mironova-Ulmane, Nina, A. Kuzmin, J. Grabis, I. Sildos, V. I. Voronin, I. F. Berger, and V. A. Kazantsev. "Structural and Magnetic Properties of Nickel Oxide Nanopowders." Solid State Phenomena 168-169 (December 2010): 341–44. http://dx.doi.org/10.4028/www.scientific.net/ssp.168-169.341.

Full text
Abstract:
Structure and magnetic properties of nickel oxide (NiO) nanopowders have been studied by X-ray/neutron diffraction, SQUID magnetometer, and micro-Raman spectroscopy. Our diffraction data indicate that at room temperature all NiO powders are antiferromagnetically ordered and have a rhombohedral (R-3m) phase. The SQUID magnetometry and Raman spectroscopy measurements support the presence of the antiferromagnetic ordering.
APA, Harvard, Vancouver, ISO, and other styles
16

Kuciakowski, Juliusz, Angelika Kmita, Dorota Lachowicz, Magdalena Wytrwal-Sarna, Krzysztof Pitala, Sara Lafuerza, Dorota Koziej, Amélie Juhin, and Marcin Sikora. "Selective magnetometry of superparamagnetic iron oxide nanoparticles in liquids." Nanoscale 12, no. 31 (2020): 16420–26. http://dx.doi.org/10.1039/d0nr02866e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

NOVIKOVA, I., and G. R. WELCH. "Magnetometry in dense coherent media." Journal of Modern Optics 49, no. 3-4 (March 2002): 349–58. http://dx.doi.org/10.1080/09500340110088579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Li, Bei-Bei, Jan Bílek, Ulrich B. Hoff, Lars S. Madsen, Stefan Forstner, Varun Prakash, Clemens Schäfermeier, Tobias Gehring, Warwick P. Bowen, and Ulrik L. Andersen. "Quantum enhanced optomechanical magnetometry." Optica 5, no. 7 (July 12, 2018): 850. http://dx.doi.org/10.1364/optica.5.000850.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Maayani, Shai, Christopher Foy, Dirk Englund, and Yoel Fink. "Distributed Quantum Fiber Magnetometry." Laser & Photonics Reviews 13, no. 7 (May 17, 2019): 1900075. http://dx.doi.org/10.1002/lpor.201900075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Jiang, Min, Wenjie Xu, Qing Li, Ze Wu, Dieter Suter, and Xinhua Peng. "Front Cover: Interference in Atomic Magnetometry (Adv. Quantum Technol. 12/2020)." Advanced Quantum Technologies 3, no. 12 (December 2020): 2070121. http://dx.doi.org/10.1002/qute.202070121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Fan, Tingwei, Lei Zhang, Xuezong Yang, Shuzhen Cui, Tianhua Zhou, and Yan Feng. "Magnetometry using fluorescence of sodium vapor." Optics Letters 43, no. 1 (December 19, 2017): 1. http://dx.doi.org/10.1364/ol.43.000001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Ménard, D., D. Seddaoui, L. G. C. Melo, A. Yelon, B. Dufay, S. Saez, and C. Dolabdjian. "Perspectives in Giant Magnetoimpedance Magnetometry." Sensor Letters 7, no. 3 (June 1, 2009): 339–42. http://dx.doi.org/10.1166/sl.2009.1091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Jodko, Anna. "Chip-Scale Atomic Magnetometers (CSAMs) as a new device for medical applications (Magnetometry atomowe (CSAMs) jako nowe urz�dzenie." ELEKTRONIKA - KONSTRUKCJE, TECHNOLOGIE, ZASTOSOWANIA 1, no. 10 (October 5, 2014): 74–76. http://dx.doi.org/10.15199/ele-2014-176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

O’Dwyer, Carolyn, Stuart J. Ingleby, Iain C. Chalmers, Paul F. Griffin, and Erling Riis. "A feed-forward measurement scheme for periodic noise suppression in atomic magnetometry." Review of Scientific Instruments 91, no. 4 (April 1, 2020): 045103. http://dx.doi.org/10.1063/5.0002964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Ishikawa, Kiyoshi. "High-temperature lithium atomic magnetometry by symmetric hyperfine coherent population trapping resonances." Journal of the Optical Society of America B 38, no. 7 (June 24, 2021): 2155. http://dx.doi.org/10.1364/josab.423749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Sandacci, S., and A. Lonsdale. "Magneto-Impedance Sensor for Marine Magnetometry." Sensor Letters 5, no. 1 (March 1, 2007): 142–45. http://dx.doi.org/10.1166/sl.2007.044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Li, Bei-Bei, George Brawley, Hamish Greenall, Stefan Forstner, Eoin Sheridan, Halina Rubinsztein-Dunlop, and Warwick P. Bowen. "Ultrabroadband and sensitive cavity optomechanical magnetometry." Photonics Research 8, no. 7 (June 3, 2020): 1064. http://dx.doi.org/10.1364/prj.390261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Dyakonov, Vladimir, Hannes Kraus, V. A. Soltamov, Franziska Fuchs, Dmitrij Simin, Stefan Vaeth, Andreas Sperlich, Pavel Baranov, and G. Astakhov. "Atomic-Scale Defects in Silicon Carbide for Quantum Sensing Applications." Materials Science Forum 821-823 (June 2015): 355–58. http://dx.doi.org/10.4028/www.scientific.net/msf.821-823.355.

Full text
Abstract:
Atomic-scale defects in silicon carbide exhibit very attractive quantum properties that can be exploited to provide outstanding performance in various sensing applications. Here we provide the results of our studies of the spin-optical properties of the vacancy related defects in SiC. Our studies show that several spin-3/2 defects in silicon carbide crystal are characterized by nearly temperature independent axial crystal fields, which makes these defects very attractive for vector magnetometry. The zero-field splitting of another defect exhibits on contrast a giant thermal shift of 1.1 MHz/K at room temperature, and can be used for temperature sensing applications.
APA, Harvard, Vancouver, ISO, and other styles
29

Zhang, Rui, Teng Wu, Jingbiao Chen, Xiang Peng, and Hong Guo. "Frequency Response of Optically Pumped Magnetometer with Nonlinear Zeeman Effect." Applied Sciences 10, no. 20 (October 10, 2020): 7031. http://dx.doi.org/10.3390/app10207031.

Full text
Abstract:
Optically pumped alkali atomic magnetometers based on measuring the Zeeman shifts of the atomic energy levels are widely used in many applications because of their low noise and cryogen-free operation. When alkali atomic magnetometers are operated in an unshielded geomagnetic environment, the nonlinear Zeeman effect may become non-negligible at high latitude and the Zeeman shifts are thus not linear to the strength of the magnetic field. The nonlinear Zeeman effect causes broadening and partial splitting of the magnetic resonant levels, and thus degrades the sensitivity of the alkali atomic magnetometers and causes heading error. In this work, we find that the nonlinear Zeeman effect also influences the frequency response of the alkali atomic magnetometer. We develop a model to quantitatively depict the frequency response of the alkali atomic magnetometer when the nonlinear Zeeman effect is non-negligible and verify the results experimentally in an amplitude-modulated Bell–Bloom cesium magnetometer. The proposed model provides general guidance on analyzing the frequency response of the alkali atomic magnetometer operating in the Earth’s magnetic field. Full and precise knowledge of the frequency response of the atomic magnetometer is important for the optimization of feedback control systems such as the closed-loop magnetometers and the active magnetic field stabilization with magnetometers. This work is thus important for the application of alkali atomic magnetometers in an unshielded geomagnetic environment.
APA, Harvard, Vancouver, ISO, and other styles
30

Nikitov, S. A., Yu A. Filimonov, and Ph Tailhades. "Magneto-Photonic and Magnonic Crystals Based on Ferrite Films - New Types of Magnetic Functional Materials." Advances in Science and Technology 45 (October 2006): 1355–63. http://dx.doi.org/10.4028/www.scientific.net/ast.45.1355.

Full text
Abstract:
A new type of photonic crystals entitled “magnonic crystals (MC)” that exhibit forbidden gaps in the microwave spectrum of magnetostatic spin waves (MSW) are reported. The topography of the MCs that consist of two-dimensional (2-D) etched holes periodic structure in yttrium iron garnet films was studied by atomic force and magnetic force magnetometry. The propagation characteristics of spin waves in such 2-D MCs was measured and analyzed.
APA, Harvard, Vancouver, ISO, and other styles
31

Jabdaraghi, R. N., J. T. Peltonen, D. S. Golubev, and J. P. Pekola. "Magnetometry with Low-Resistance Proximity Josephson Junction." Journal of Low Temperature Physics 191, no. 5-6 (February 2, 2018): 344–53. http://dx.doi.org/10.1007/s10909-018-1863-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Brecha, Robert J. "Noninvasive magnetometry based on magnetic rotation spectroscopy of oxygen." Applied Optics 37, no. 21 (July 20, 1998): 4834. http://dx.doi.org/10.1364/ao.37.004834.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Rodriguez Castillo, Daniel A., Jaafar N. Ansari, Robert J. Cooper, Garrett J. Lee, David W. Prescott, and Karen L. Sauer. "Homogeneous fields: Double expansion method, 3D printing/CNC realization, and verification by atomic magnetometry." Journal of Magnetic Resonance 315 (June 2020): 106738. http://dx.doi.org/10.1016/j.jmr.2020.106738.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Bland, J. A. C. "Vector magnetometry in ultrathin magnetic structures with atomic layer resolution by polarized neutron reflection." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 15, no. 3 (May 1997): 1759–65. http://dx.doi.org/10.1116/1.580865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Zhao, Nan, Jian-Liang Hu, Sai-Wah Ho, Jones T. K. Wan, and R. B. Liu. "Atomic-scale magnetometry of distant nuclear spin clusters via nitrogen-vacancy spin in diamond." Nature Nanotechnology 6, no. 4 (February 27, 2011): 242–46. http://dx.doi.org/10.1038/nnano.2011.22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Accomando, Filippo, Andrea Vitale, Antonello Bonfante, Maurizio Buonanno, and Giovanni Florio. "Performance of Two Different Flight Configurations for Drone-Borne Magnetic Data." Sensors 21, no. 17 (August 26, 2021): 5736. http://dx.doi.org/10.3390/s21175736.

Full text
Abstract:
The compensation of magnetic and electromagnetic interference generated by drones is one of the main problems related to drone-borne magnetometry. The simplest solution is to suspend the magnetometer at a certain distance from the drone. However, this choice may compromise the flight stability or introduce periodic data variations generated by the oscillations of the magnetometer. We studied this problem by conducting two drone-borne magnetic surveys using a prototype system based on a cesium-vapor magnetometer with a 1000 Hz sampling frequency. First, the magnetometer was fixed to the drone landing-sled (at 0.5 m from the rotors), and then it was suspended 3 m below the drone. These two configurations illustrate endmembers of the possible solutions, favoring the stability of the system during flight or the minimization of the mobile platform noise. Drone-generated noise was filtered according to a CWT analysis, and both the spectral characteristics and the modelled source parameters resulted analogously to that of a ground magnetic dataset in the same area, which were here taken as a control dataset. This study demonstrates that careful processing can return high quality drone-borne data using both flight configurations. The optimal flight solution can be chosen depending on the survey target and flight conditions.
APA, Harvard, Vancouver, ISO, and other styles
37

Zeng, Xian Jin, Jun Hai Zhang, Qiang Liu, Zong Jun Huang, and Wei Min Sun. "Influence of Pump Light’s Duty Cycle on Cesium Atomic Magnetometer." Advanced Materials Research 571 (September 2012): 209–13. http://dx.doi.org/10.4028/www.scientific.net/amr.571.209.

Full text
Abstract:
Recently, atomic magnetometers have been researched widely for its ultra high sensitivity. But the influence of pump light’s duty cycle on atomic magnetometers has been concerned little. In this paper, we described a sensitive cesium atomic magnetometer based on circular dichroism, which had the advantage of easily locking the probing laser to the necessary frequency. We experimentally investigated the amplitudes and linewidths of magnetic resonance signals at different modulated duty cycle of the pump light. The result indicated that our magnetometer achieved the highest sensitivity at the duty cycle of 30%. It’s valuable for optimizing the sensitivity of most atomic magnetometers.
APA, Harvard, Vancouver, ISO, and other styles
38

Sangiao, Soraya, César Magén, Darius Mofakhami, Grégoire de Loubens, and José María De Teresa. "Magnetic properties of optimized cobalt nanospheres grown by focused electron beam induced deposition (FEBID) on cantilever tips." Beilstein Journal of Nanotechnology 8 (October 9, 2017): 2106–15. http://dx.doi.org/10.3762/bjnano.8.210.

Full text
Abstract:
In this work, we present a detailed investigation of the magnetic properties of cobalt nanospheres grown on cantilever tips by focused electron beam induced deposition (FEBID). The cantilevers are extremely soft and the cobalt nanospheres are optimized for magnetic resonance force microscopy (MRFM) experiments, which implies that the cobalt nanospheres must be as small as possible while bearing high saturation magnetization. It was found that the cobalt content and the corresponding saturation magnetization of the nanospheres decrease for nanosphere diameters less than 300 nm. Electron holography measurements show the formation of a magnetic vortex state in remanence, which nicely agrees with magnetic hysteresis loops performed by local magnetometry showing negligible remanent magnetization. As investigated by local magnetometry, optimal behavior for high-resolution MRFM has been found for cobalt nanospheres with a diameter of ≈200 nm, which present atomic cobalt content of ≈83 atom % and saturation magnetization of 106 A/m, around 70% of the bulk value. These results represent the first comprehensive investigation of the magnetic properties of cobalt nanospheres grown by FEBID for application in MRFM.
APA, Harvard, Vancouver, ISO, and other styles
39

LIU, HONG, JIANGUO ZHU, and DINGQUAN XIAO. "PREPARATION AND CHARACTERIZATION OF LaFeO3 THIN FILMS ON (100) SrTiO3 SUBSTRATES BY PULSED LASER DEPOSITION." Journal of Advanced Dielectrics 01, no. 03 (July 2011): 363–67. http://dx.doi.org/10.1142/s2010135x11000379.

Full text
Abstract:
A single-crystalline, crack-free, epitaxial (100)c LaFeO3 films were in situ grown by pulsed laser deposition on (100) SrTiO3 substrates. X-ray diffraction, atomic force microscopy and transmission electron microscopy reveal that the LaFeO3 films have high crystalline quality, a very smooth surface, and an atomically sharp LaFeO3/SrTiO3 interface. The magnetic properties of the LaFeO3 films were obtained by a superconducting quantum interference device magnetometry. The saturated magnetization and coercive field of LaFeO3 films are 14 emu/cm3 and 600 Oe, respectively.
APA, Harvard, Vancouver, ISO, and other styles
40

Fatemi, Fredrik K., and Mark Bashkansky. "Spatially resolved magnetometry using cold atoms in dark optical tweezers." Optics Express 18, no. 3 (January 19, 2010): 2190. http://dx.doi.org/10.1364/oe.18.002190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Gemmel, C., W. Heil, S. Karpuk, K. Lenz, Ch Ludwig, Yu Sobolev, K. Tullney, et al. "Ultra-sensitive magnetometry based on free precession of nuclear spins." European Physical Journal D 57, no. 3 (March 2, 2010): 303–20. http://dx.doi.org/10.1140/epjd/e2010-00044-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Guskos, Niko, Grzegorz Zolnierkiewicz, Malwina Pilarska, Janusz Typek, Pawel Berczynski, Anna Blonska-Tabero, and Konstantinos Aidinis. "EPR and Magnetometry of Mixed Phases in FeVO4–Co3V2O8 System." Applied Magnetic Resonance 50, no. 6 (October 3, 2018): 737–51. http://dx.doi.org/10.1007/s00723-018-1064-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Di Domenico, G., L. Devenoges, A. Stefanov, A. Joyet, and P. Thomann. "Fourier analysis of Ramsey fringes observed in a continuous atomic fountain for in situ magnetometry." European Physical Journal Applied Physics 56, no. 1 (September 28, 2011): 11001. http://dx.doi.org/10.1051/epjap/2011110133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Goldmann, Wolfgang H., Reinhard Galneder, Markus Ludwig, Weiming Xu, Eileen D. Adamson, Ning Wang, and Robert M. Ezzell. "Differences in Elasticity of Vinculin-Deficient F9 Cells Measured by Magnetometry and Atomic Force Microscopy." Experimental Cell Research 239, no. 2 (March 1998): 235–42. http://dx.doi.org/10.1006/excr.1997.3915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Mates, J. A. B., K. D. Irwin, L. R. Vale, G. C. Hilton, and H. M. Cho. "An Efficient Superconducting Transformer Design for SQUID Magnetometry." Journal of Low Temperature Physics 176, no. 3-4 (February 28, 2014): 483–89. http://dx.doi.org/10.1007/s10909-014-1092-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Primdahl, Fritz, J. M. G. Merayo, and Peter Brauer. "Fluxgate Magnetometry for Precise Mapping of the Earth's Field." Sensor Letters 5, no. 1 (March 1, 2007): 110–12. http://dx.doi.org/10.1166/sl.2007.081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Delacotte, C., G. F. S. Whitehead, M. J. Pitcher, C. M. Robertson, P. M. Sharp, M. S. Dyer, J. Alaria, et al. "Structure determination and crystal chemistry of large repeat mixed-layer hexaferrites." IUCrJ 5, no. 6 (September 12, 2018): 681–98. http://dx.doi.org/10.1107/s2052252518011351.

Full text
Abstract:
Hexaferrites are an important class of magnetic oxides with applications in data storage and electronics. Their crystal structures are highly modular, consisting of Fe- or Ba-rich close-packed blocks that can be stacked in different sequences to form a multitude of unique structures, producing large anisotropic unit cells with lattice parameters typically >100 Å along the stacking axis. This has limited atomic-resolution structure solutions to relatively simple examples such as Ba2Zn2Fe12O22, whilst longer stacking sequences have been modelled only in terms of block sequences, with no refinement of individual atomic coordinates or occupancies. This paper describes the growth of a series of complex hexaferrite crystals, their atomic-level structure solution by high-resolution synchrotron X-ray diffraction, electron diffraction and imaging methods, and their physical characterization by magnetometry. The structures include a new hexaferrite stacking sequence, with the longest lattice parameter of any hexaferrite with a fully determined structure.
APA, Harvard, Vancouver, ISO, and other styles
48

Morgunov, R. B., A. Baskakov, I. Blokhin, L. Dunin-Barkovskii, S. Shmurak, and Y. Tanimoto. "Magnetoplastic Effect: From Spin Dynamics to Dislocation Mobility." Solid State Phenomena 115 (August 2006): 169–82. http://dx.doi.org/10.4028/www.scientific.net/ssp.115.169.

Full text
Abstract:
Microscopic elementary events responsible for magnetoplastic effect are studied in detail by means of photoluminescence, electron spin resonance and SQUID magnetometry in NaCl:Eu single crystals. The Eu2+ clusters being dislocation obstacles were used as a spin and luminescent labels allowed detecting simultaneous spin and atomic structure transitions in exchange-coupled few-atomic Eu2+ clusters under static magnetic field B = 5 T. Rearrangement of atomic structure of these clusters changes the lattice distortions around them and effectiveness of clusters interaction with moving dislocations during plastic flow. From the comparison of spectroscopic data and numerical calculations of aggregation pathways of small clusters it was concluded that magnetosensitive clusters contain two Eu2+ ions with parallel spins (dimers). Two different ways of creating of magnetosensitive dimers in the crystal lattice are found: (1) slow diffusion limited aggregation in freshly quenched crystals, and (2) fast aggregation stimulated by dislocations dynamical distortions of lattice provided by the plastic deformation of aged crystals.
APA, Harvard, Vancouver, ISO, and other styles
49

Dumeige, Yannick, Jean-François Roch, Fabien Bretenaker, Thierry Debuisschert, Victor Acosta, Christoph Becher, Georgios Chatzidrosos, et al. "Infrared laser threshold magnetometry with a NV doped diamond intracavity etalon." Optics Express 27, no. 2 (January 18, 2019): 1706. http://dx.doi.org/10.1364/oe.27.001706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Dolgovskiy, V., V. Lebedev, S. Colombo, A. Weis, B. Michen, L. Ackermann-Hirschi, and A. Petri-Fink. "A quantitative study of particle size effects in the magnetorelaxometry of magnetic nanoparticles using atomic magnetometry." Journal of Magnetism and Magnetic Materials 379 (April 2015): 137–50. http://dx.doi.org/10.1016/j.jmmm.2014.12.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography