Dissertations / Theses on the topic 'Atomic vapor cells'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 18 dissertations / theses for your research on the topic 'Atomic vapor cells.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Maurice, Vincent. "Design, microfabrication and characterization of alkali vapor cells for miniature atomic frequency references." Thesis, Besançon, 2016. http://www.theses.fr/2016BESA2001.
Full textChip-scale atomic clocks (CSACs) provide unprecedented frequency stability within volumes down to a fewcubic centimeters and power consumptions as low as 100mW.In this work, we determine the optimal parameters regarding the design and the fabrication of cesium vaporcells, one of the key components of a CSAC. For this purpose, cells were characterized on both short and longtermperformances in clock setups. In addition, we propose solutions to overcome present limitations includingthe operating temperature range, the device microfabrication cost and the ease of integration of the physicspackage.A novel mixture of buffer-gas composed of neon and helium was found to potentially extend the operating rangeof the device above 80 C, meeting the industrial requirements. Unlike the well-known buffer gas compositions,this mixture is compatible with solid cesium dispensers whose reliability is established. As an alternativeto buffer gases, wall coatings are known to limit the relaxation induced by sidewalls. Here, we investigatedoctadecyltrichlorosilane (OTS) coatings. An anti-relaxation effect has been observed in centimeter-scale cellsand a process was developed to coat microfabricated cells.Other cesium sources have been investigated to overcome the drawbacks imposed by solid cesium dispensers. Apaste-like dispenser, which can be deposited collectively, was explored and has shown stable atomic densities sofar. Single-use zero-leak micro valves were also proposed to hermetically seal and detach cells from a commoncesium reservoir.Eventually, the first steps toward a microfabricated physics package were made. In particular, an originalcell design combining diffraction gratings with an anisotropically etched single-crystalline silicon sidewalls wascharacterized and exhibited remarkable CPT contrasts despite a reduced cavity volume, which could lead to amore compact physics package. Finally, cells with integrated heating and temperature sensing resistors werefabricated and their magnetic field compliance was characterized in a compact physics package prototype
Conkey, Donald B. "On-Chip Atomic Spectroscopy." Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1746.pdf.
Full textSinsermsuksakul, Prasert. "Development of Earth-Abundant Tin(II) Sulfide Thin-Film Solar Cells by Vapor Deposition." Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:10987.
Full textChemistry and Chemical Biology
Sun, Leizhi. "Improved Thin Film Solar Cells Made by Vapor Deposition of Earth-Abundant Tin(II) Sulfide." Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11539.
Full textEngineering and Applied Sciences
Hakhumyan, Hrant. "Study of optical and magneto processes in Rb atomic vapor layer of nanometric thickness." Phd thesis, Université de Bourgogne, 2012. http://tel.archives-ouvertes.fr/tel-00764958.
Full textMirzoyan, Rafayel. "Study of the coherent effects in rubidium atomic vapor under bi-chromatic laser radiation." Phd thesis, Université de Bourgogne, 2013. http://tel.archives-ouvertes.fr/tel-00934648.
Full textHurd, Katherine Barnett. "EIT, Slow light, and Sealing Methods for Embedding Rubidium into the ARROW System." BYU ScholarsArchive, 2010. https://scholarsarchive.byu.edu/etd/2855.
Full textBrückner, Sebastian. "Atomic scale in situ control of Si(100) and Ge(100) surfaces in CVD ambient." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2014. http://dx.doi.org/10.18452/16894.
Full textIn this work, the atomic surface structure of Si(100) and Ge(100) surfaces prepared in metalorganic chemical vapor phase deposition (MOCVD) ambient was studied with regard to subsequent heteroepitaxy of III-V semiconductors. At the III-V/IV interface, double-layer steps on the substrate surface are required to avoid anti-phase disorder in the epitaxial film. The MOCVD process gas ambient strongly influences the domain and step formation of Si and Ge(100) surfaces. Therefore, in situ reflection anisotropy spectroscopy (RAS) and ultra-high vacuum-based (UHV) surface sensitive methods were applied to investigate the different surfaces. In situ RAS enabled identification of the surface structure and the crucial process steps, leading to complete control of Si and Ge(100) surface preparation. Both surfaces strongly interact with H2 process gas which leads to monohydride termination of the surfaces during preparation and Si removal during processing in high H2 pressure ambient. The generation of vacancies on the terraces induces a kinetically driven surface structure based on diffusion of vacancies and Si atoms leading to an energetically unexpected step structure on vicinal Si(100) substrates with DA-type double-layer steps, whereas Si layer-by-layer removal occurs on substrates with large terraces. Processing in low H2 pressure ambient leads to an energetically driven step and domain structure. In contrast, H2-annealed vicinal Ge(100) surfaces show no direct influence of the H2 ambient on the step structure. At the Ge(100) surface, group-V elements strongly influence step and domain formation. Ge(100):As surfaces form single domain surfaces with different majority domain and significantly different step structures depending on temperature and As source, respectively. In contrast, exposure to P by annealing in tertiarybutylphosphine leads to a very disordered P-terminated vicinal Ge(100) surface which is less stable compared to the Ge(100):As surfaces.
Mirijanian, James Julian. "Techniques to Characterize Vapor Cell Performance for a Nuclear-Magnetic-Resonance Gyroscope." DigitalCommons@CalPoly, 2012. https://digitalcommons.calpoly.edu/theses/724.
Full textHulbert, John Frederick. "ARROW-Based On-Chip Alkali Vapor-Cell Development." BYU ScholarsArchive, 2013. https://scholarsarchive.byu.edu/etd/3594.
Full textAmiryan, Arevik. "Formation of narrow optical resonances in thin atomic vapor layers of Cs, Rb, K and applications." Thesis, Bourgogne Franche-Comté, 2019. http://www.theses.fr/2019UBFCK028/document.
Full textThis thesis presents the study of coherent light interaction with a sub-wavelength atomic alkali vapor layer confined in a nano-cell and applications for the formation of narrow optical resonances.We develop a theoretical model describing the resonant interaction of the laser light with the thin alkali vapor layer in the presence of an external static magnetic field. We show that due to a transient regime of interaction, only slow atoms contribute to the signal and their transmission spectrum is essentially Doppler-free. The nature of the obtained spectra makes the transmission spectroscopy from a nano-cell a convenient technique to perform studies of closely-spaced atomic transitions and investigate their behavior in magnetic fields. Experimental realizations for magnetic field up to 7000~G show an excellent agreement between theory and experiment.We also explore the Faraday rotation of the plane polarization of light with the propagation through the thin atomic slab. We see that despite a small angle of rotation, Faraday rotation spectra exhibit resonances narrower than that for transmission. At last, we investigate new possibilities to form narrow optical resonances in nano-cells and show that second derivation processing of transmission spectra yields the strongest line narrowing among all methods studied in this thesis
Peyrot, Tom. "Dipole dipole interactions in dense alkali vapors confined in nano-scale cells." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLO012/document.
Full textAlkali vapors confined in nano-scale cells are promising tools for future integrated atom-based sensor. In this thesis, we investigate the interaction between light and an ensemble of atoms confined in a nano-geometry. We focus on the different processes that can modify the optical response of the atomic ensemble and possibly affect the sensitivity of a sensor based on that technology. First, we study the non-local response of atoms to a light excitation due the atomic motion in thermal vapors. When the distance over which the atoms relaxes is larger than the size of the cell, the optical response depends on the size of the system. We have observed that for transmission spectroscopy, this leads to a periodic modification of the optical response with a period equal to the wavelength of the optical transition. Subsequently we showed that when the density of atom increases, the atomic response becomes local again. In this dense regime, the resonant dipole-dipole interaction in a sub-wavelength geometry leads to collective frequency shifts of the spectral lines. We demonstrate that these shifts were induced by the cavity formed by the cell walls, hence clarifying a long-standing issue. We developed a model to extract the density shifts deconvolved from the cavity effects. Close to a surface, the optical response is also affected by the van der Waals atom-surface interaction. We introduced a new method to extract precisely the strength of this interaction. We also developed a new generation of super-polished glass nano-cells and we presented promising spectroscopic signals. Finally, using these cells, we have compared transmission and off-axis spectroscopic techniques
Abdel, Hafiz Moustafa. "Development and metrological characterization of a high-performance Cs cell atomic clock based on coherent population trapping." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCD035/document.
Full textThis thesis work, performed in the frame of the MClocks European project (http://www.inrim.it/mclocks), reports the development and metrological characterization of a high-performance Cs vapor cell atomic clock based on coherent population trapping (CPT). The clock uses an optimized CPT pumping scheme, named push-pull optical pumping (PPOP), allowing the detection of high-contrast CPT resonances on the 0-0 magnetic-field insensitive clock transition. A detailed characterization of key components of the clock is reported. The clock was operated in the continuous-wave (CW) regime and in a Ramsey-like pulsed regime. In both regimes, the clock demonstrates a short-term fractional frequency stability at the level of 2 10−13 τ−1/2 up to 100 s averaging time, mainly limited by laser power effects. This CPT clock, ranking among the best microwave vapor cell atomic frequency standards, could find applications in telecommunication, instrumentation, defense or satellite-based navigation systems.This thesis reports also a novel laser frequency stabilization technique using dual-frequency sub-Doppler spectroscopy in a vapor cell. The clock ”platform” has also been used to perform using CPT spectroscopy the characterization of a Cs vapor cell coated with octadecyltrichlorosilane (OTS) or original buffer-gas filled Cs vapor micro-fabricated cells developed in FEMTO-ST for CPT-based miniature atomic clocks
Baluktsian, Thomas [Verfasser]. "Rydberg interaction between thermal atoms: Van der Waals-type Rydberg-Rydberg interaction in a vapor cell experiment / Thomas Baluktsian." München : Verlag Dr. Hut, 2014. http://d-nb.info/1047994690/34.
Full textJackson, Richard Aram Jr. "A Preliminary Study of Pump/Probe Angular Dependence of Zeeman Electromagnetically Induced Transparency." Miami University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=miami1439372287.
Full textGasparetto, Jacopo. "Investigation of indium tin oxide-titanium dioxide interconnection layers for perovskite-silicon tandem solar cells." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14230/.
Full textPertzborn, Amanda Jo. "Wavelength-agile Rayleigh scattering by use of an atomic vapor cell." 2005. http://catalog.hathitrust.org/api/volumes/oclc/61134756.html.
Full textTypescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (p. 94-99)
Oliveira, Claudia. "Highly Forbidden Transitions in Alkalis: Preparations for a Parity Violation Experiment." 2010. http://hdl.handle.net/1993/4157.
Full text