Academic literature on the topic 'Atoms. Magnetic films. Bose-Einstein condensation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Atoms. Magnetic films. Bose-Einstein condensation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Atoms. Magnetic films. Bose-Einstein condensation"
Lu, B., and W. A. van Wijngaarden. "BoseEinstein condensation in a QUIC trap." Canadian Journal of Physics 82, no. 2 (February 1, 2004): 81–102. http://dx.doi.org/10.1139/p03-127.
Full textWieman, Carl E. "Bose–Einstein Condensation in an Ultracold Gas." International Journal of Modern Physics B 11, no. 28 (November 10, 1997): 3281–96. http://dx.doi.org/10.1142/s0217979297001581.
Full textTran, Tien Duy, Yibo Wang, Alex Glaetzle, Shannon Whitlock, Andrei Sidorov, and Peter Hannaford. "Magnetic Lattices for Ultracold Atoms." Communications in Physics 29, no. 2 (May 14, 2019): 97. http://dx.doi.org/10.15625/0868-3166/29/2/13678.
Full textDzyapko, O., V. E. Demidov, G. A. Melkov, and S. O. Demokritov. "Bose–Einstein condensation of spin wave quanta at room temperature." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, no. 1951 (September 28, 2011): 3575–87. http://dx.doi.org/10.1098/rsta.2011.0128.
Full textHan, D. J., R. H. Wynar, Ph Courteille, and D. J. Heinzen. "Bose-Einstein condensation of large numbers of atoms in a magnetic time-averaged orbiting potential trap." Physical Review A 57, no. 6 (June 1, 1998): R4114—R4117. http://dx.doi.org/10.1103/physreva.57.r4114.
Full textSun, Chen, Thomas Nattermann, and Valery L. Pokrovsky. "Bose–Einstein condensation and superfluidity of magnons in yttrium iron garnet films." Journal of Physics D: Applied Physics 50, no. 14 (March 7, 2017): 143002. http://dx.doi.org/10.1088/1361-6463/aa5cfc.
Full textGao, Kui-Yi, Xin-Yu Luo, Feng-Dong Jia, Cheng-Hui Yu, Feng Zhang, Ji-Ping Yin, Lin Xu, Li You, and Ru-Quan Wang. "Ultra-High Efficiency Magnetic Transport of 87 Rb Atoms in a Single Chamber Bose—Einstein Condensation Apparatus." Chinese Physics Letters 31, no. 6 (June 2014): 063701. http://dx.doi.org/10.1088/0256-307x/31/6/063701.
Full textNakagawa, K., Y. Suzuki, M. Horikoshi, and J. B. Kim. "Simple and efficient magnetic transport of cold atoms using moving coils for the production of Bose–Einstein condensation." Applied Physics B 81, no. 6 (September 27, 2005): 791–94. http://dx.doi.org/10.1007/s00340-005-1953-8.
Full textKETTERLE, WOLFGANG. "NEW FORMS OF QUANTUM MATTER NEAR ABSOLUTE ZERO TEMPERATURE." International Journal of Modern Physics D 16, no. 12b (December 2007): 2413–19. http://dx.doi.org/10.1142/s0218271807011462.
Full textBoev, M. V., A. V. Chaplik, and V. M. Kovalev. "Interaction of Rayleigh waves with 2D dipolar exciton gas: impact of Bose–Einstein condensation." Journal of Physics D: Applied Physics 50, no. 48 (November 6, 2017): 484002. http://dx.doi.org/10.1088/1361-6463/aa92f0.
Full textDissertations / Theses on the topic "Atoms. Magnetic films. Bose-Einstein condensation"
Whitlock, Shannon. "Bose-Einstein condensates on a magnetic film atom chip." Australasian Digital Thesis Program, 2007. http://adt.lib.swin.edu.au/public/adt-VSWT20070613.172308/index.html.
Full textA thesis submitted for the degree of Doctor of Philosophy, Centre for Atom Optics and Ultrafast Spectroscopy, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, 2007. Typescript. Bibliography: p. 107-118.
Whitlock, Shannon, and n/a. "Bose-Einstein condensates on a magnetic film atom chip." Swinburne University of Technology, 2007. http://adt.lib.swin.edu.au./public/adt-VSWT20070613.172308.
Full textSingh, Mandip. "A magnetic lattice and macroscopic entanglement of a BEC on an atom chip." Swinburne Research Bank, 2008. http://hdl.handle.net/1959.3/55142.
Full textThesis submitted for the degree of Doctor of Philosophy, Centre for Atom Optics and Ultrafast Spectroscopy, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, 2008. Typescript. Bibliography: p. 143-158.
Mallardeau, Catherine. "L'hydrogène atomique polarisé : interaction avec les films d'Helium : expérience de compression." Paris 6, 1986. http://www.theses.fr/1986PA066186.
Full textSheard, Benjamin T. "Magnetic transport and Bose-Einstein condensation of rubidium atoms." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:dedece2b-c33a-415b-9d6b-570263042797.
Full textScharnberg, Falk. "Bose-Einstein condensation in micro-potentials for atom interferometry." Swinburne Research Bank, 2007. http://hdl.handle.net/1959.3/22734.
Full textSubmitted in fulfilment of requirements for the degree of Doctor of Philosophy, [Faculty of Engineering and Industrial Sciences], Swinburne University of Technology, 2007. Typescript. Bibliography: p. [207]-224.
Han, Dian-jiun. "Bose-Einstein condensation of rubidium-87 atoms in a magnetic trap /." Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.
Full textThomas, Nicholas, and n/a. "Double-TOP trap for ultracold atoms." University of Otago. Department of Physics, 2005. http://adt.otago.ac.nz./public/adt-NZDU20070321.160859.
Full textMagalhães, Kilvia Mayre Farias. "Obtenção da degenerescência quântica em sódio aprisionado." Universidade de São Paulo, 2004. http://www.teses.usp.br/teses/disponiveis/76/76132/tde-24012008-083710/.
Full textUsing a system composed of a QUIC trap loaded from a slowed atomic beam, we have performed experiments to observe the Bose-Einstein Condensation of Na atoms. In order to obtain the atomic distribution in the trap, we use an in situ out of resonance absorption image of a probe beam to determine the temperature and the density, which are use to calculate the phase space D. We have followed D as a function of the final evaporation frequency. The results show that at 1.65 MHz we crossed the critical value for D which corresponds to the point to start Bose-Condensation of the sample. Due to the low number of atoms remaining in the trap at the critical point, the interaction produce minor effects and therefore an ideal gas model explains well the observations.
Schreck, Florian. "Mixtures of ultracold gases : Fermi sea and Bose-Einstein condensate of lithium isotopes." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2002. http://tel.archives-ouvertes.fr/tel-00001340.
Full text$^7$Li dans le régime quantique à très basse température. Le
refroidissement est obtenu par évaporation du $^7$Li dans un piège
magnétique très confinant. Puisque le refroidissement évaporatif
d'un gaz de fermion polarisé est quasiment impossible, le $^6$Li
est refroidi sympathiquement par contact thermique avec le $^7$Li.
Dans une première série d'expériences, les propriétés des gaz
quantiques dans les états hyperfins les plus élevés, piégés
magnétiquement, sont étudiées. Un gaz de $10^5$ fermions a une
température de 0.25(5) fois la température de Fermi ($T_F$) est
obtenu. L'instabilité du condensat pour plus de 300 atomes
condensés, à cause des interactions attractives, limite la
dégénérescence que l'on peut atteindre. Pour s'affranchir de cette
limite, une autre série d'expérience est menée dans les états
hyperfins bas, piégeable magnétiquement, où les interactions entre
bosons sont faiblement répulsives. Les collisions
inter-isotopiques permettent alors la thermalisation du mélange.
Le mélange d'un condensat de Bose-Einstein (CBE) de $^7$Li et d'un
mer de Fermi de $^6$Li est produit. Le condensat est quasi
unidimensionnel et la fraction thermique peut être négligeable. La
dégénérescence atteinte correspond à $T/T_C=T/T_F=0.2(1)$. La
température est mesurée à partir de la fraction thermique des
bosons qui disparaît aux plus basses températures, et limite notre
précision de mesure. Dans une troisième série d'expérience, les
bosons sont transférés dans un piège optique, et placé dans l'état
interne $|F=1,m_F=1\rangle$, l'état fondamental pour les bosons.
Une résonance de Feshbach est repérée puis exploitée pour former
un condensai où les interactions sont ajustables. Quand les
interactions effectives entre les atomes sont attractives, on
observe la formation d'un soliton brillant de matière. La
propagation de ce soliton sans dispersion sur une distance de
$1.1\,$mm est observée.
Books on the topic "Atoms. Magnetic films. Bose-Einstein condensation"
Morawetz, Klaus. Interacting Systems far from Equilibrium. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.001.0001.
Full textBook chapters on the topic "Atoms. Magnetic films. Bose-Einstein condensation"
Kenyon, Ian R. "Gaseous Bose–Einstein condensates." In Quantum 20/20, 285–302. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198808350.003.0016.
Full textSchroeder, Daniel V. "Quantum Statistics." In An Introduction to Thermal Physics, 257–326. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192895547.003.0007.
Full textConference papers on the topic "Atoms. Magnetic films. Bose-Einstein condensation"
Courteille, Philippe W., Dian-Jiun Han, Roahn H. Wynar, and Daniel J. Heinzen. "New observation of Bose-Einstein condensation of 87Rb atoms in a magnetic TOP trap." In Optoelectronics and High-Power Lasers & Applications, edited by Bryan L. Fearey. SPIE, 1998. http://dx.doi.org/10.1117/12.308369.
Full text