Journal articles on the topic 'ATP7B'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'ATP7B.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Linz, Rachel, Natalie L. Barnes, Adriana M. Zimnicka, Jack H. Kaplan, Betty Eipper, and Svetlana Lutsenko. "Intracellular targeting of copper-transporting ATPase ATP7A in a normal andAtp7b−/−kidney." American Journal of Physiology-Renal Physiology 294, no. 1 (2008): F53—F61. http://dx.doi.org/10.1152/ajprenal.00314.2007.
Full textBraiterman, L., L. Nyasae, F. Leves, and A. L. Hubbard. "Critical roles for the COOH terminus of the Cu-ATPase ATP7B in protein stability, trans-Golgi network retention, copper sensing, and retrograde trafficking." American Journal of Physiology-Gastrointestinal and Liver Physiology 301, no. 1 (2011): G69—G81. http://dx.doi.org/10.1152/ajpgi.00038.2011.
Full textMateria, Stephanie, Michael A. Cater, Leo W. J. Klomp, Julian F. B. Mercer, and Sharon La Fontaine. "Clusterin (Apolipoprotein J), a Molecular Chaperone That Facilitates Degradation of the Copper-ATPases ATP7A and ATP7B." Journal of Biological Chemistry 286, no. 12 (2011): 10073–83. http://dx.doi.org/10.1074/jbc.m110.190546.
Full textDolgova, Nataliya V., Sergiy Nokhrin, Corey H. Yu, Graham N. George, and Oleg Y. Dmitriev. "Copper chaperone Atox1 interacts with the metal-binding domain of Wilson's disease protein in cisplatin detoxification." Biochemical Journal 454, no. 1 (2013): 147–56. http://dx.doi.org/10.1042/bj20121656.
Full textKelleher, Shannon L., and Bo Lönnerdal. "Mammary gland copper transport is stimulated by prolactin through alterations in Ctr1 and Atp7A localization." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 291, no. 4 (2006): R1181—R1191. http://dx.doi.org/10.1152/ajpregu.00206.2005.
Full textInesi, Giuseppe, Rajendra Pilankatta, and Francesco Tadini-Buoninsegni. "Biochemical characterization of P-type copper ATPases." Biochemical Journal 463, no. 2 (2014): 167–76. http://dx.doi.org/10.1042/bj20140741.
Full textLutsenko, Svetlana, Natalie L. Barnes, Mee Y. Bartee, and Oleg Y. Dmitriev. "Function and Regulation of Human Copper-Transporting ATPases." Physiological Reviews 87, no. 3 (2007): 1011–46. http://dx.doi.org/10.1152/physrev.00004.2006.
Full textCATER, Michael A., John FORBES, Sharon La FONTAINE, Diane COX, and Julian F. B. MERCER. "Intracellular trafficking of the human Wilson protein: the role of the six N-terminal metal-binding sites." Biochemical Journal 380, no. 3 (2004): 805–13. http://dx.doi.org/10.1042/bj20031804.
Full textGuo, Y., L. Nyasae, L. T. Braiterman, and A. L. Hubbard. "NH2-terminal signals in ATP7B Cu-ATPase mediate its Cu-dependent anterograde traffic in polarized hepatic cells." American Journal of Physiology-Gastrointestinal and Liver Physiology 289, no. 5 (2005): G904—G916. http://dx.doi.org/10.1152/ajpgi.00262.2005.
Full textPetruzzelli, Raffaella, and Roman S. Polishchuk. "Activity and Trafficking of Copper-Transporting ATPases in Tumor Development and Defense against Platinum-Based Drugs." Cells 8, no. 9 (2019): 1080. http://dx.doi.org/10.3390/cells8091080.
Full textBauerly, Kathryn A., Shannon L. Kelleher, and Bo Lönnerdal. "Effects of copper supplementation on copper absorption, tissue distribution, and copper transporter expression in an infant rat model." American Journal of Physiology-Gastrointestinal and Liver Physiology 288, no. 5 (2005): G1007—G1014. http://dx.doi.org/10.1152/ajpgi.00210.2004.
Full textLinz, Rachel, and Svetlana Lutsenko. "Copper-transporting ATPases ATP7A and ATP7B: cousins, not twins." Journal of Bioenergetics and Biomembranes 39, no. 5-6 (2007): 403–7. http://dx.doi.org/10.1007/s10863-007-9101-2.
Full textDas, Santanu, Saptarshi Maji, Ruturaj, et al. "Retromer retrieves the Wilson disease protein ATP7B from endolysosomes in a copper-dependent manner." Journal of Cell Science 133, no. 24 (2020): jcs246819. http://dx.doi.org/10.1242/jcs.246819.
Full textWooton-Kee, Clavia Ruth, Matthew Robertson, Ying Zhou, et al. "Metabolic dysregulation in the Atp7b−/− Wilson’s disease mouse model." Proceedings of the National Academy of Sciences 117, no. 4 (2020): 2076–83. http://dx.doi.org/10.1073/pnas.1914267117.
Full textPantoom, Supansa, Adam Pomorski, Katharina Huth, et al. "Direct Interaction of ATP7B and LC3B Proteins Suggests a Cooperative Role of Copper Transportation and Autophagy." Cells 10, no. 11 (2021): 3118. http://dx.doi.org/10.3390/cells10113118.
Full textGourdon, Pontus, Oleg Sitsel, Jesper Lykkegaard Karlsen, Lisbeth Birk Møller, and Poul Nissen. "Structural models of the human copper P-type ATPases ATP7A and ATP7B." Biological Chemistry 393, no. 4 (2012): 205–16. http://dx.doi.org/10.1515/hsz-2011-0249.
Full textKatagiri, Hiroshi, Kentaro Nakayama, Mohammed Tanjimur Rahman, et al. "Is ATP7B a Predictive Marker in Patients With Ovarian Carcinoma Treated With Platinum-Taxane Combination Chemotherapy?" International Journal of Gynecologic Cancer 23, no. 1 (2013): 60–64. http://dx.doi.org/10.1097/igc.0b013e318275afef.
Full textPetruzzelli, Raffaella, Marta Mariniello, Rossella De Cegli, et al. "TFEB Regulates ATP7B Expression to Promote Platinum Chemoresistance in Human Ovarian Cancer Cells." Cells 11, no. 2 (2022): 219. http://dx.doi.org/10.3390/cells11020219.
Full textDmitriev, Oleg Y. "Mechanism of tumor resistance to cisplatin mediated by the copper transporter ATP7BThis paper is one of a selection of papers published in a Special Issue entitled CSBMCB 53rd Annual Meeting — Membrane Proteins in Health and Disease, and has undergone the Journal’s usual peer review process." Biochemistry and Cell Biology 89, no. 2 (2011): 138–47. http://dx.doi.org/10.1139/o10-150.
Full textJain, Shweta, Ginny G. Farías, and Juan S. Bonifacino. "Polarized sorting of the copper transporter ATP7B in neurons mediated by recognition of a dileucine signal by AP-1." Molecular Biology of the Cell 26, no. 2 (2015): 218–28. http://dx.doi.org/10.1091/mbc.e14-07-1177.
Full textMortazavi, Mojtaba, Abdolrazagh Barzegar, Abdorrasoul Malekpour, Mohammad Ghorbani, Saeid Gholamzadeh, and Younes Ghasemi. "In Silico Evaluation of the ATP7B Protein: Insights from the Role of Rare Codon Clusters and Mutations that Affect Protein Structure and Function." Current Proteomics 17, no. 3 (2020): 213–26. http://dx.doi.org/10.2174/1570164617666190919114545.
Full textSingla, Amika, Qing Chen, Kohei Suzuki, et al. "Regulation of murine copper homeostasis by members of the COMMD protein family." Disease Models & Mechanisms 14, no. 1 (2020): dmm045963. http://dx.doi.org/10.1242/dmm.045963.
Full textBraiterman, Lelita, Lydia Nyasae, Yan Guo, Rodrigo Bustos, Svetlana Lutsenko, and Ann Hubbard. "Apical targeting and Golgi retention signals reside within a 9-amino acid sequence in the copper-ATPase, ATP7B." American Journal of Physiology-Gastrointestinal and Liver Physiology 296, no. 2 (2009): G433—G444. http://dx.doi.org/10.1152/ajpgi.90489.2008.
Full textCater, Michael A., Sharon La fontaine, and Julian F. B. Mercer. "Copper binding to the N-terminal metal-binding sites or the CPC motif is not essential for copper-induced trafficking of the human Wilson protein (ATP7B)." Biochemical Journal 401, no. 1 (2006): 143–53. http://dx.doi.org/10.1042/bj20061055.
Full textTerada, Kunihiko, Michael L. Schilsky, Naoyuki Miura, and Toshihiro Sugiyama. "ATP7B (WND) protein." International Journal of Biochemistry & Cell Biology 30, no. 10 (1998): 1063–67. http://dx.doi.org/10.1016/s1357-2725(98)00073-9.
Full textMuchenditsi, Abigael, Haojun Yang, James P. Hamilton, et al. "Targeted inactivation of copper transporter Atp7b in hepatocytes causes liver steatosis and obesity in mice." American Journal of Physiology-Gastrointestinal and Liver Physiology 313, no. 1 (2017): G39—G49. http://dx.doi.org/10.1152/ajpgi.00312.2016.
Full textMoore, Steven D. P., and Diane W. Cox. "Expression in Mouse Kidney of Membrane Copper Transporters Atp7a and Atp7b." Nephron 92, no. 3 (2002): 629–34. http://dx.doi.org/10.1159/000064075.
Full textTadini-Buoninsegni, Francesco, and Serena Smeazzetto. "Mechanisms of charge transfer in human copper ATPases ATP7A and ATP7B." IUBMB Life 69, no. 4 (2017): 218–25. http://dx.doi.org/10.1002/iub.1603.
Full textLa Fontaine, Sharon, M. Leigh Ackland, and Julian F. B. Mercer. "Mammalian copper-transporting P-type ATPases, ATP7A and ATP7B: Emerging roles." International Journal of Biochemistry & Cell Biology 42, no. 2 (2010): 206–9. http://dx.doi.org/10.1016/j.biocel.2009.11.007.
Full textAsada, Hajime, James K. Chambers, Mari Kojima, et al. "Variations in ATP7B in cats with primary copper-associated hepatopathy." Journal of Feline Medicine and Surgery 22, no. 8 (2019): 753–59. http://dx.doi.org/10.1177/1098612x19884763.
Full textTillquist, Nicole M., Meghan P. Thorndyke, Tyler A. Thomas, Stephen J. Coleman, and Terry E. Engle. "PSVII-21 The impact of cell culture and copper dose on copper trafficking genes in bovine liver." Journal of Animal Science 98, Supplement_4 (2020): 307–8. http://dx.doi.org/10.1093/jas/skaa278.549.
Full textMiyayama, Takamitsu, Daisuke Hiraoka, Fumika Kawaji, Emi Nakamura, Noriyuki Suzuki, and Yasumitsu Ogra. "Roles of COMM-domain-containing 1 in stability and recruitment of the copper-transporting ATPase in a mouse hepatoma cell line." Biochemical Journal 429, no. 1 (2010): 53–61. http://dx.doi.org/10.1042/bj20100223.
Full textMariniello, Marta, Raffaella Petruzzelli, Luca G. Wanderlingh, et al. "Synthetic Lethality Screening Identifies FDA-Approved Drugs that Overcome ATP7B-Mediated Tolerance of Tumor Cells to Cisplatin." Cancers 12, no. 3 (2020): 608. http://dx.doi.org/10.3390/cancers12030608.
Full textMcCann, Courtney J., Samuel Jayakanthan, Mariacristina Siotto, et al. "Correction: Single nucleotide polymorphisms in the human ATP7B gene modify the properties of the ATP7B protein." Metallomics 11, no. 8 (2019): 1441. http://dx.doi.org/10.1039/c9mt90028d.
Full textVyas, Avani, Umamaheswar Duvvuri, and Kirill Kiselyov. "Copper-dependent ATP7B up-regulation drives the resistance of TMEM16A-overexpressing head-and-neck cancer models to platinum toxicity." Biochemical Journal 476, no. 24 (2019): 3705–19. http://dx.doi.org/10.1042/bcj20190591.
Full textMICHALCZYK, Agnes A., Jennifer RIEGER, Katrina J. ALLEN, Julian F. B. MERCER, and M. Leigh ACKLAND. "Defective localization of the Wilson disease protein (ATP7B) in the mammary gland of the toxic milk mouse and the effects of copper supplementation." Biochemical Journal 352, no. 2 (2000): 565–71. http://dx.doi.org/10.1042/bj3520565.
Full textDolgova, Nataliya V., Doug Olson, Svetlana Lutsenko, and Oleg Y. Dmitriev. "The soluble metal-binding domain of the copper transporter ATP7B binds and detoxifies cisplatin." Biochemical Journal 419, no. 1 (2009): 51–59. http://dx.doi.org/10.1042/bj20081359.
Full textTadini-Buoninsegni, Francesco, Gianluca Bartolommei, Maria Rosa Moncelli, et al. "Translocation of Platinum Anticancer Drugs by Human Copper ATPases ATP7A and ATP7B." Angewandte Chemie International Edition 53, no. 5 (2013): 1297–301. http://dx.doi.org/10.1002/anie.201307718.
Full textTadini-Buoninsegni, Francesco, Gianluca Bartolommei, Maria Rosa Moncelli, et al. "Translocation of Platinum Anticancer Drugs by Human Copper ATPases ATP7A and ATP7B." Angewandte Chemie 126, no. 5 (2013): 1321–25. http://dx.doi.org/10.1002/ange.201307718.
Full textLa Fontaine, Sharon, and Julian F. B. Mercer. "Trafficking of the copper-ATPases, ATP7A and ATP7B: Role in copper homeostasis." Archives of Biochemistry and Biophysics 463, no. 2 (2007): 149–67. http://dx.doi.org/10.1016/j.abb.2007.04.021.
Full textLacombe, Maud, Michel Jaquinod, Lucid Belmudes, et al. "Comprehensive and comparative exploration of the Atp7b−/− mouse plasma proteome." Metallomics 12, no. 2 (2020): 249–58. http://dx.doi.org/10.1039/c9mt00225a.
Full textLutsenko, Svetlana. "Atp7b −/− mice as a model for studies of Wilson's disease." Biochemical Society Transactions 36, no. 6 (2008): 1233–38. http://dx.doi.org/10.1042/bst0361233.
Full textSharma, Yogeshwar, Jinghua Liu, Kathleen E. Kristian, Antonia Follenzi, and Sanjeev Gupta. "In Atp7b−/− Mice Modeling Wilson’s Disease Liver Repopulation With Bone Marrow-Derived Myofibroblasts or Inflammatory Cells and Not Hepatocytes Is Deleterious." Gene Expression 19, no. 1 (2019): 15–24. http://dx.doi.org/10.3727/105221618x15320123457380.
Full textMontes, Sergio, Susana Rivera-Mancia, Araceli Diaz-Ruiz, Luis Tristan-Lopez, and Camilo Rios. "Copper and Copper Proteins in Parkinson’s Disease." Oxidative Medicine and Cellular Longevity 2014 (2014): 1–15. http://dx.doi.org/10.1155/2014/147251.
Full textConcilli, Mafalda, Raffaella Petruzzelli, Silvia Parisi, et al. "Pharmacoproteomics pinpoints HSP70 interaction for correction of the most frequent Wilson disease-causing mutant of ATP7B." Proceedings of the National Academy of Sciences 117, no. 51 (2020): 32453–63. http://dx.doi.org/10.1073/pnas.2006648117.
Full textБаязутдинова, Г. М., О. А. Щагина, А. С. Карунас, А. В. Поляков, and Э. К. Хуснутдинова. "The method of screening for frequent insertion/deletion in gene." Nauchno-prakticheskii zhurnal «Medicinskaia genetika», no. 1() (March 4, 2020): 8–12. http://dx.doi.org/10.25557/2073-7998.2019.01.8-12.
Full textOgórek, Mateusz, Małgorzata Lenartowicz, Rafał Starzyński, et al. "Atp7a and Atp7b regulate copper homeostasis in developing male germ cells in mice." Metallomics 9, no. 9 (2017): 1288–303. http://dx.doi.org/10.1039/c7mt00134g.
Full textTillquist, Nicole M., Meghan P. Thorndyke, Tyler A. Thomas, Stephen J. Coleman, and Terry E. Engle. "PSVII-12 Investigating the influence of copper supplementation on copper homeostatic genes in bovine liver." Journal of Animal Science 98, Supplement_4 (2020): 308. http://dx.doi.org/10.1093/jas/skaa278.550.
Full textСкрябин, Н. А., О. Ю. Васильева, А. А. Сивцев, et al. "ATP7B gene study using massively parallel sequencing in patients with Wilson's disease." Nauchno-prakticheskii zhurnal «Medicinskaia genetika», no. 7(216) (July 30, 2020): 97–98. http://dx.doi.org/10.25557/2073-7998.2020.07.97-98.
Full textIlyechova, Ekaterina Y., Irina V. Miliukhina, Marina N. Karpenko, Iurii A. Orlov, Ludmila V. Puchkova, and Sergey A. Samsonov. "Case of Early-Onset Parkinson’s Disease in a Heterozygous Mutation Carrier of the ATP7B Gene." Journal of Personalized Medicine 9, no. 3 (2019): 41. http://dx.doi.org/10.3390/jpm9030041.
Full text