Journal articles on the topic 'Atrophy signaling pathways'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Atrophy signaling pathways.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Hulmi, Juha J., Mika Silvennoinen, Maarit Lehti, Riikka Kivelä, and Heikki Kainulainen. "Altered REDD1, myostatin, and Akt/mTOR/FoxO/MAPK signaling in streptozotocin-induced diabetic muscle atrophy." American Journal of Physiology-Endocrinology and Metabolism 302, no. 3 (2012): E307—E315. http://dx.doi.org/10.1152/ajpendo.00398.2011.
Full textPowers, Scott K., Andreas N. Kavazis, and Joseph M. McClung. "Oxidative stress and disuse muscle atrophy." Journal of Applied Physiology 102, no. 6 (2007): 2389–97. http://dx.doi.org/10.1152/japplphysiol.01202.2006.
Full textClavel, Stephan, Sandrine Siffroi-Fernandez, Anne Sophie Coldefy, Kim Boulukos, Didier F. Pisani, and Benoît Dérijard. "Regulation of the Intracellular Localization of Foxo3a by Stress-Activated Protein Kinase Signaling Pathways in Skeletal Muscle Cells." Molecular and Cellular Biology 30, no. 2 (2009): 470–80. http://dx.doi.org/10.1128/mcb.00666-09.
Full textGlass, David J. "Skeletal muscle hypertrophy and atrophy signaling pathways." International Journal of Biochemistry & Cell Biology 37, no. 10 (2005): 1974–84. http://dx.doi.org/10.1016/j.biocel.2005.04.018.
Full textBodine, Sue C. "Edward F. Adolph Distinguished Lecture. Skeletal muscle atrophy: Multiple pathways leading to a common outcome." Journal of Applied Physiology 129, no. 2 (2020): 272–82. http://dx.doi.org/10.1152/japplphysiol.00381.2020.
Full textMañas-García, Laura, Charlotte Denhard, Javier Mateu, Xavier Duran, Joaquim Gea, and Esther Barreiro. "Beneficial Effects of Resveratrol in Mouse Gastrocnemius: A Hint to Muscle Phenotype and Proteolysis." Cells 10, no. 9 (2021): 2436. http://dx.doi.org/10.3390/cells10092436.
Full textFranch, Harold A., and S. Russ Price. "Molecular signaling pathways regulating muscle proteolysis during atrophy." Current Opinion in Clinical Nutrition and Metabolic Care 8, no. 3 (2005): 271–75. http://dx.doi.org/10.1097/01.mco.0000165005.01331.45.
Full textYoshida, Tadashi, and Patrice Delafontaine. "Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy." Cells 9, no. 9 (2020): 1970. http://dx.doi.org/10.3390/cells9091970.
Full textCussonneau, Laura, Christian Boyer, Charlotte Brun та ін. "Concurrent BMP Signaling Maintenance and TGF-β Signaling Inhibition Is a Hallmark of Natural Resistance to Muscle Atrophy in the Hibernating Bear". Cells 10, № 8 (2021): 1873. http://dx.doi.org/10.3390/cells10081873.
Full textSandri, Marco. "Signaling in Muscle Atrophy and Hypertrophy." Physiology 23, no. 3 (2008): 160–70. http://dx.doi.org/10.1152/physiol.00041.2007.
Full textKamal, Khaled Y., and Marina Trombetta-Lima. "Mechanotransduction and Skeletal Muscle Atrophy: The Interplay Between Focal Adhesions and Oxidative Stress." International Journal of Molecular Sciences 26, no. 6 (2025): 2802. https://doi.org/10.3390/ijms26062802.
Full textBilodeau, Philippe A., Erin S. Coyne, and Simon S. Wing. "The ubiquitin proteasome system in atrophying skeletal muscle: roles and regulation." American Journal of Physiology-Cell Physiology 311, no. 3 (2016): C392—C403. http://dx.doi.org/10.1152/ajpcell.00125.2016.
Full textKumagai, Hiroshi, Ana Raquel Coelho, Junxiang Wan, et al. "MOTS-c reduces myostatin and muscle atrophy signaling." American Journal of Physiology-Endocrinology and Metabolism 320, no. 4 (2021): E680—E690. http://dx.doi.org/10.1152/ajpendo.00275.2020.
Full textDupont, Erwan, Caroline Cieniewski-Bernard, Bruno Bastide, and Laurence Stevens. "Electrostimulation during hindlimb unloading modulates PI3K-AKT downstream targets without preventing soleus atrophy and restores slow phenotype through ERK." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 300, no. 2 (2011): R408—R417. http://dx.doi.org/10.1152/ajpregu.00793.2009.
Full textWang, Piao, Seok Yong Kang, Su Jin Kim, Yong-Ki Park, and Hyo Won Jung. "Monotropein Improves Dexamethasone-Induced Muscle Atrophy via the AKT/mTOR/FOXO3a Signaling Pathways." Nutrients 14, no. 9 (2022): 1859. http://dx.doi.org/10.3390/nu14091859.
Full textFeng, Yongjia, Yu-Hwai Tsai, Weidong Xiao, et al. "Loss of ADAM17-Mediated Tumor Necrosis Factor Alpha Signaling in Intestinal Cells Attenuates Mucosal Atrophy in a Mouse Model of Parenteral Nutrition." Molecular and Cellular Biology 35, no. 21 (2015): 3604–21. http://dx.doi.org/10.1128/mcb.00143-15.
Full textBerdeaux, Rebecca, and Randi Stewart. "cAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism, and regeneration." American Journal of Physiology-Endocrinology and Metabolism 303, no. 1 (2012): E1—E17. http://dx.doi.org/10.1152/ajpendo.00555.2011.
Full textLi, Mengjie, Seong-Gook Kang, Kunlun Huang, and Tao Tong. "Streptococcus salivarius subsp. thermophilus ST-G30 Prevents Dexamethasone-Induced Muscle Atrophy in C2C12 Myotubes." Nutrients 17, no. 7 (2025): 1141. https://doi.org/10.3390/nu17071141.
Full textBatsukh, Sosorburam, Seyeon Oh, Kyoungmin Rheu, et al. "Rice Germ Attenuates Chronic Unpredictable Mild Stress-Induced Muscle Atrophy." Nutrients 15, no. 12 (2023): 2719. http://dx.doi.org/10.3390/nu15122719.
Full textRamirez-Sanchez, Israel, Viridiana Navarrete, Leonor Galera, and Francisco Villarreal. "EFFECTS OF FLAVANOL (+)-EPICATECHIN ON SKELETAL MUSCLE OF AGED RATS." Innovation in Aging 6, Supplement_1 (2022): 801. http://dx.doi.org/10.1093/geroni/igac059.2890.
Full textSchellekens, Willem-Jan M., Hieronymus W. H. van Hees, Michiel Vaneker, et al. "Toll-like Receptor 4 Signaling in Ventilator-induced Diaphragm Atrophy." Anesthesiology 117, no. 2 (2012): 329–38. http://dx.doi.org/10.1097/aln.0b013e3182608cc0.
Full textZaripova, Ksenia A., Svetlana P. Belova, Tatiana Y. Kostrominova, Boris S. Shenkman, and Tatiana L. Nemirovskaya. "Role of PI3 Kinases in Cell Signaling and Soleus Muscle Atrophy During Three Days of Unloading." International Journal of Molecular Sciences 26, no. 1 (2025): 414. https://doi.org/10.3390/ijms26010414.
Full textRodriguez, J., B. Vernus, I. Chelh, et al. "Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways." Cellular and Molecular Life Sciences 71, no. 22 (2014): 4361–71. http://dx.doi.org/10.1007/s00018-014-1689-x.
Full textGlass, David J. "A signaling role for dystrophin: Inhibiting skeletal muscle atrophy pathways." Cancer Cell 8, no. 5 (2005): 351–52. http://dx.doi.org/10.1016/j.ccr.2005.10.016.
Full textLiang, Jiling, Hu Zhang, Zhengzhong Zeng та ін. "Lifelong Aerobic Exercise Alleviates Sarcopenia by Activating Autophagy and Inhibiting Protein Degradation via the AMPK/PGC-1α Signaling Pathway". Metabolites 11, № 5 (2021): 323. http://dx.doi.org/10.3390/metabo11050323.
Full textYadav, Aarti, Anil Dahuja, and Rajesh Dabur. "Dynamics of Toll-like Receptors Signaling in Skeletal Muscle Atrophy." Current Medicinal Chemistry 28, no. 28 (2021): 5831–46. http://dx.doi.org/10.2174/0929867328666210202113734.
Full textSun, Chen-Chen, Zuo-Qiong Zhou, Zhang-Lin Chen, et al. "Identification of Potentially Related Genes and Mechanisms Involved in Skeletal Muscle Atrophy Induced by Excessive Exercise in Zebrafish." Biology 10, no. 8 (2021): 761. http://dx.doi.org/10.3390/biology10080761.
Full textMañas-García, Laura, Nuria Bargalló, Joaquim Gea, and Esther Barreiro. "Muscle Phenotype, Proteolysis, and Atrophy Signaling During Reloading in Mice: Effects of Curcumin on the Gastrocnemius." Nutrients 12, no. 2 (2020): 388. http://dx.doi.org/10.3390/nu12020388.
Full textLee, Eun-Joo, and Ronald L. Neppl. "Influence of Age on Skeletal Muscle Hypertrophy and Atrophy Signaling: Established Paradigms and Unexpected Links." Genes 12, no. 5 (2021): 688. http://dx.doi.org/10.3390/genes12050688.
Full textCheng, Jingfei, Wei Zhou, Gina M. Warner, et al. "Temporal analysis of signaling pathways activated in a murine model of two-kidney, one-clip hypertension." American Journal of Physiology-Renal Physiology 297, no. 4 (2009): F1055—F1068. http://dx.doi.org/10.1152/ajprenal.90439.2008.
Full textCosta, Alessandra, Angelica Toschi, Ivana Murfuni, et al. "Local Overexpression of V1a-Vasopressin Receptor Enhances Regeneration in Tumor Necrosis Factor-Induced Muscle Atrophy." BioMed Research International 2014 (2014): 1–14. http://dx.doi.org/10.1155/2014/235426.
Full textMahmassani, Ziad S., Paul T. Reidy, Alec I. McKenzie, Chris Stubben, Michael T. Howard, and Micah J. Drummond. "Age-dependent skeletal muscle transcriptome response to bed rest-induced atrophy." Journal of Applied Physiology 126, no. 4 (2019): 894–902. http://dx.doi.org/10.1152/japplphysiol.00811.2018.
Full textFox, Daniel K., Scott M. Ebert, Kale S. Bongers, et al. "p53 and ATF4 mediate distinct and additive pathways to skeletal muscle atrophy during limb immobilization." American Journal of Physiology-Endocrinology and Metabolism 307, no. 3 (2014): E245—E261. http://dx.doi.org/10.1152/ajpendo.00010.2014.
Full textRussell, Sarah J., and Martin F. Schneider. "Alternative signaling pathways from IGF1 or insulin to AKT activation and FOXO1 nuclear efflux in adult skeletal muscle fibers." Journal of Biological Chemistry 295, no. 45 (2020): 15292–306. http://dx.doi.org/10.1074/jbc.ra120.013634.
Full textHsu, Te-Hsing, Ting-Jian Wu, Yu-An Tai, Chin-Shiu Huang, Jiunn-Wang Liao, and Shu-Lan Yeh. "The combination of quercetin and leucine synergistically improves grip strength by attenuating muscle atrophy by multiple mechanisms in mice exposed to cisplatin." PLOS ONE 18, no. 9 (2023): e0291462. http://dx.doi.org/10.1371/journal.pone.0291462.
Full textFeng, Yongjia, та Daniel H. Teitelbaum. "Epidermal growth factor/TNF-α transactivation modulates epithelial cell proliferation and apoptosis in a mouse model of parenteral nutrition". American Journal of Physiology-Gastrointestinal and Liver Physiology 302, № 2 (2012): G236—G249. http://dx.doi.org/10.1152/ajpgi.00142.2011.
Full textWoodland, Robert T., Casey J. Fox, Madelyn R. Schmidt, et al. "Multiple signaling pathways promote B lymphocyte stimulator–dependent B-cell growth and survival." Blood 111, no. 2 (2008): 750–60. http://dx.doi.org/10.1182/blood-2007-03-077222.
Full textLee, Hee-Jeong, Dongwook Kim, Yousung Jung, Soomin Oh, Cho Hee Kim, and Aera Jang. "Horse Meat Hydrolysate Ameliorates Dexamethasone-Induced Muscle Atrophy in C57BL/6 Mice via the AKT/FoxO3a/mTOR Pathway." Cells 14, no. 14 (2025): 1050. https://doi.org/10.3390/cells14141050.
Full textWeng, Shaoting, Feng Gao, Juan Wang, et al. "Improvement of muscular atrophy by AAV–SaCas9-mediated myostatin gene editing in aged mice." Cancer Gene Therapy 27, no. 12 (2020): 960–75. http://dx.doi.org/10.1038/s41417-020-0178-7.
Full textChilds, Thomas E., Espen E. Spangenburg, Dharmesh R. Vyas, and Frank W. Booth. "Temporal alterations in protein signaling cascades during recovery from muscle atrophy." American Journal of Physiology-Cell Physiology 285, no. 2 (2003): C391—C398. http://dx.doi.org/10.1152/ajpcell.00478.2002.
Full textHensel, Niko, Federica Cieri, Pamela Santonicola, et al. "Impairment of the neurotrophic signaling hub B-Raf contributes to motoneuron degeneration in spinal muscular atrophy." Proceedings of the National Academy of Sciences 118, no. 18 (2021): e2007785118. http://dx.doi.org/10.1073/pnas.2007785118.
Full textRajasekaran, M. Raj, Sadhana Kanoo, Johnny Fu, My-Uyen (Lilly) Nguyen, Valmik Bhargava та Ravinder K. Mittal. "Age-related external anal sphincter muscle dysfunction and fibrosis: possible role of Wnt/β-catenin signaling pathways". American Journal of Physiology-Gastrointestinal and Liver Physiology 313, № 6 (2017): G581—G588. http://dx.doi.org/10.1152/ajpgi.00209.2017.
Full textLi, Wenan, Kaishu Deng, Mengyue Zhang, et al. "Network Pharmacology Combined with Experimental Validation to Investigate the Effects and Mechanisms of Aucubin on Aging-Related Muscle Atrophy." International Journal of Molecular Sciences 26, no. 6 (2025): 2626. https://doi.org/10.3390/ijms26062626.
Full textLee, Min-Kyeong, Jeong-Wook Choi, Youn Choi, and Taek-Jeong Nam. "Pyropia yezoensis Protein Supplementation Prevents Dexamethasone-Induced Muscle Atrophy in C57BL/6 Mice." Marine Drugs 16, no. 9 (2018): 328. http://dx.doi.org/10.3390/md16090328.
Full textBiondi, O., J. Branchu, A. Ben Salah, et al. "IGF-1R Reduction Triggers Neuroprotective Signaling Pathways in Spinal Muscular Atrophy Mice." Journal of Neuroscience 35, no. 34 (2015): 12063–79. http://dx.doi.org/10.1523/jneurosci.0608-15.2015.
Full textJit, Bimal Prasad, Biswajita Pradhan, Rutumbara Dash, et al. "Phytochemicals: Potential Therapeutic Modulators of Radiation Induced Signaling Pathways." Antioxidants 11, no. 1 (2021): 49. http://dx.doi.org/10.3390/antiox11010049.
Full textIto, Naoki, Urs Ruegg, and Shin’ichi Takeda. "ATP-Induced Increase in Intracellular Calcium Levels and Subsequent Activation of mTOR as Regulators of Skeletal Muscle Hypertrophy." International Journal of Molecular Sciences 19, no. 9 (2018): 2804. http://dx.doi.org/10.3390/ijms19092804.
Full textZaripova, К. А., S. P. Belova, B. S. Shenkman, and Т. L. Nemirovskaya. "INHIBITION OF THE PI3KS SLOWS DOWN ATROPHY DEVELOPMENT IN RAT'S M. SOLEUS AFTER 3-DAY FUNCTIONAL DISLOADING." Aerospace and Environmental Medicine 58, no. 6 (2024): 68–75. https://doi.org/10.21687/0233-528x-2024-58-6-68-75.
Full textJiang, Lingong, Huimin Jia, Zhicheng Tang, et al. "Proteomic Analysis of Radiation-Induced Acute Liver Damage in a Rabbit Model." Dose-Response 17, no. 4 (2019): 155932581988950. http://dx.doi.org/10.1177/1559325819889508.
Full textPeris-Moreno, Dulce, Laura Cussonneau, Lydie Combaret, Cécile Polge, and Daniel Taillandier. "Ubiquitin Ligases at the Heart of Skeletal Muscle Atrophy Control." Molecules 26, no. 2 (2021): 407. http://dx.doi.org/10.3390/molecules26020407.
Full text