Dissertations / Theses on the topic 'ATRP [Polymérisation radicalaire par transfert d'atome]'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 30 dissertations / theses for your research on the topic 'ATRP [Polymérisation radicalaire par transfert d'atome].'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Fournier, David. "Polymérisation radicalaire contrôlée par transfert d'atome (ATRP) de la diméthylvinylazlactone : application à l'élaboration de supports réactifs." Le Mans, 2005. http://cyberdoc.univ-lemans.fr/theses/2005/2005LEMA1002.pdf.
Full textAmong the controlled/living radical polymerization techniques, ATRP has been extensively investigated since it provides well-defined polymers with controlled topology and functionality. However, the ATRP requires the presence of a transition metal complex such as copper complex, which contaminates the final polymer. Our works are based on the decrease of the copper residue in the final polymer. Our study is focalised on the immobilisation of a ligand able to complex copper onto solid supports. 2-Vinyl-4,4-dimethylazlactone (VDM) and styrene have been copolymerized by ATRP onto Wang resin prealably converted into an ATRP initiator. The supported (co)polymers containing a bromine chain-end and azlactone rings were modified by an amine used as ligand for copper bromide immobilization. Resulting supported ligands were studied through heterogeneous copper-mediated living radical polymerization. The application of those supported (co)polymers has been extended as nucleophilic scavengers and these original solid supports showed a very good behavior towards the reactivity with primary amine
Morandi, Gaëlle. "Synthèse de copolymères greffés par combinaison de polymérisation radicalaire par transfert d'atome (ATRP) et de polymérisation par ouverture de cycle par métathèse (ROMP)." Le Mans, 2007. http://cyberdoc.univ-lemans.fr/theses/2007/2007LEMA1012.pdf.
Full textThe objective of this work is the synthesis of graft copolymers based on a poly(buta-1,4-diene) backbone by combination of atom transfer radical polymerization (ATRP) and ring-opening metathesis polymerization (ROMP). Two synthetic approaches were developed: the grafting through and the grafting from methods. Original cyclobutenic inimers were first synthesized and their efficiency as ATRP initiator was studied. They were then engaged in ATRP of styrene and tert-butyle acrylate (tBA) to access well-defined (alpha)-cyclobutenyl PS and PS-b-PtBA macromonomers. ROMP of these macromonomers has conducted to well-defined PB-g-(PS-b-PtBA) graft copolymers through an original combination between ROMP, ATRP and grafting through strategy never reported before. The grafting from strategy was also developed. ROMP of cyclobutenic inimers was first conducted, leading to polyfunctional PB backbones of various sizes. A range of well-defined high molecular weight PB-g-PtBA graft copolymers was then synthesized by initiation of ATRP from these PB backbones. Finally, a first attempt of ROMP of norbornene in aqueous media stabilized by original (alpha)-cyclobutenyl PS-b-PAA macromonomers was also conducted. This experiment has led to promising results
Dupayage, Ludovic. "Élaboration contrôlée de glycopolymères amphiphiles à partir de polysaccharide : synthèse de Dextrane-g-PMMA par polymérisation radicalaire par transfert d'atome." Thesis, Vandoeuvre-les-Nancy, INPL, 2009. http://www.theses.fr/2009INPL011N/document.
Full textSynthesis of the new comb-like amphiphilic glycopolymer dextran-g-poly(methyl methacrylate) was obtained thanks to an Atom Transfert Radical Polymerization (ATRP). In order to control the macromolecular parameters of these biocompatible and partly biodegradable glycopolymers, the “grafting from” strategy was applied using two different multi-step pathways. The first one is composed of four steps: partial acetylation of dextran hydroxyl groups; introduction of initiator groups convenient for ATRP; ATRP of methyl methacrylate in dimethylsulfoxide; acetyl group deprotection under mild conditions. The second pathway allows us to obtain such glycopolymers in only two steps: direct introduction of the same initiator groups onto the dextran chain and subsequent ATRP of methyl methacrylate in dimethylsulfoxide. Throughout the synthesis, detailed studies of each step enabled us to estimate the length of the dextran backbone and to assure the control of copolymer architecture in terms of graft number and graft length. Preliminary interfacial tension measurements highlighted the surfactant properties of such glycopolymers
Douadi-Masrouki, Siham. "Synthèse et caractérisation de films composites dopés par des nanoparticules magnétiques." Paris 6, 2007. http://www.theses.fr/2007PA066197.
Full textMatrab, Tarik. "Sels de diazonium pour l'amorçage de la polymérisation radicalaire par le transfert d'atome (ATRP) : une nouvelle méthode pour la modification de surfaces conductrices ou semi conductrices par des brosses de polymères." Paris 7, 2007. http://www.theses.fr/2007PA077070.
Full textThis work describes the use of aryl diazonium salts to attach halogenated functional groups that initiate atom transfer radical polymerization (ATRP) at the surface of a variety of conductive and semi-conductive substrates. The interest of this procedure lie in the facts that aryl diazonium salts permit to graft highly dense initiators within a few minutes of surface treatment and subsequently promote the growth of densely packed polymer chains. Combining electrochemical reduction of aryl diazonium salts and surface-initiated ATRP provides surface/polyphenylene/polymer hybrid structures where the polyphenylene interlayer consists in the polymerized form of the grafted aryl groups. Several brominated aryl groups were investigated for surface-initiating ATRP of classical vinyl monomers such as styrene, methylmethacrylates, buthylmethacrylates, and butylacrylates. This new approach was also shown to be effective in growing polymers chains based on hydrophilic polyglycidol macromonomers in view of controlling the hydrophilic/hydrophobic character of surfaces. The "Diazo/ATRP" protocol can be applied to conductive substrates such as metals and carbon plates but proved to be versatile so that diamond thin films and carbon nanotubes were amenable to modification by polymer brushes using this same protocol
Roudot, Angélina. "Emulsions et solutions aqueuses de micelles gelées de copolymères diblocs poly[styrène-bloc-poly(styrène-statistique-méthacrylate de diméthyle aminoéthyle)] synthétisés par polymérisation radicalaire par transfert d’atome." Paris 6, 2008. http://www.theses.fr/2008PA066238.
Full textSanjuan, Sarah. "Interfaces stimulables à base de polyélectrolyte et de polyampholyte greffés." Paris 6, 2007. http://www.theses.fr/2007PA066660.
Full textZhang, Zhen. "Modification de la surface des nanocristaux de cellulose par estérification et polymérisation ATRP pour des applications avancées." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0653/document.
Full textIn this thesis, the surface functionalization of cellulose nanocrystals (CNC) by esterification and ATRP reactions was envisaged, with the objective to develop novel advanced materials. A convenient method to characterize the polymers grafted on CNC by Si-ATRP has been first developed, based on DLS, DSC and TGA analyses. The efficiency of the SI-ATRP and SI-ARGET ATRP methods to initiate the grating of polystyrene (PS) or poly(4-vinylpyridine) (P4VP) at the CNC surface were then compared. The pH-responsive P4VP-g-CNC nano-hybrids were subsequently utilized to stabilize gold nanoparticles (AuNPs), in view of producing recyclable catalysts. The catalytic activity of the Au@P4VP-g-CNC material – tested with the reduction of 4-nitrophenol – was significantly improved compared with single AuNPs. UV-responsive poly(cinnamoyloxy ethyl methacrylate) (PCEM) polymers were also grafted on CNC, to produce particles with UV absorbing properties. The PCEM-g-CNC nano-hybrids obtained turned out to be efficient UV/thermal stabilizers and reinforcing agents in PVC films. Finally, a facile method to prepare colloidosomes from w/o inverse Pickering emulsions stabilized by cinnamate-modified CNC was proposed. Colloidosomes with robust shells and allowing the slow release of encapsulated molecules such as rhodamine B or fluorescent deoxyribonucleic acid were then obtained
Slim, Cyrine. "La microscopie électrochimique : un outil de caractérisation et de microfabrication de brosses de polyélectrolyte." Paris 6, 2007. http://www.theses.fr/2007PA066515.
Full textPray-In, Yingrak. "Azlactome funchionalization of magnetic nanoparticles using CRP techniques and their bioconjugation." Thesis, Le Mans, 2014. http://www.theses.fr/2014LEMA1037/document.
Full textWe herein report the surface modification of magnetite nanoparticle (MNP) with copolymers containing active azlactone rings via a grafting ‘from’ and grafting ‘onto’ controlled radical polymerization (CRP) for use as a nano-solid support for immobilization with biomolecules. Three different approaches were presented as following. First, synthesis of poly(poly(ethylene glycol) methyl ether methacrylate-stat-2-vinyl-4,4-dimethylazlactone) (PEGMA-stat-VDM)-grafted MNP via a grafting ‘from’ atom transfer radical polymerization (ATRP) and its application as a platform for conjugating thymine peptide nucleic acid (PNA) monomer were presented. The presence of polymeric shell and the immobilization of thymine PNA on MNP core were confirmed by fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometry (VSM) techniques. The second strategy is based on the synthesis of MNP grafted with PEGMA and VDM via ATRP for conjugation with folic acid (FA). The existence of PEGMA and VDM in the structure was characterized by FTIR, TGA and VSM. After the FA conjugation, Transmission Electron Microscopy (TEM) results indicated that the FA-conjugated MNP having high VDM content exhibited good dispersibility in water.Third, the synthesis of MNP grafted with poly(ethylene oxide)-block-poly(2-vinyl-4,4-dimethylazlactone) (PEO-b-PVDM) block copolymer via a grafting ‘onto’ strategy and its application as recyclable magnetic nano-support for adsorption with antibody were studied. PEO-b-PVDM diblock copolymers were first synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization and then grafted onto amino-functionalized MNP. TEM images and photo correlation spectroscopy (PCS) indicated an improvement in the particle dispersibility in water after coating with the copolymers. The nanoclusters with PEO-b-PVDM copolymer coating were used as recyclable magnetic nano-supports for adsorption with antibody
Fournier, David Fontaine Laurent. "Polymérisation radicalaire contrôlée par transfert d'atome (ATRP) de la diméthylvinylazlactone application à l'élaboration de supports réactifs /." [S.l.] : [s.n.], 2005. http://cyberdoc.univ-lemans.fr/theses/2005/2005LEMA1002.pdf.
Full textAngot, Stéphanie. "Polymérisation radicalaire contrôlée par transfert d'atome : synthèse et caractérisation de (co)polymères en étoile et dendritiques." Bordeaux 1, 1999. http://www.theses.fr/1999BOR10589.
Full textMorandi, Gaëlle Fontaine Laurent. "Synthèse de copolymères greffés par combinaison de polymérisation radicalaire par transfert d'atome (ATRP) et de polymérisation par ouverture de cycle par métathèse (ROMP)." [S.l.] : [s.n.], 2007. http://cyberdoc.univ-lemans.fr/theses/2007/2007LEMA1012.pdf.
Full textYang, Qizhi. "Development & study of a new photocatalyzed mechanism of atom transfer radical polymerization." Thesis, Mulhouse, 2016. http://www.theses.fr/2016MULH9453.
Full textSeveral mechanisms of controlled radical polymerization (CRP) under light irradiation have been recently developed. These approaches offer potentially numerous advantages, enabling especially to introduce in the mechanism of CRPs some features characteristic of photopolymerizations, such as the spatial and temporal controls of the reaction. The PhD work presented in this manuscript comes in this framework, aiming at developing and studying a new mechanism of photocatalyzed atom transfer radical polymerization (ATRP). After a bibliographic study presenting the state-of-the-art in the domain of CRPs under light irradiation (chapter 1), a bis(1,10-phenanthroline) copper (I) complex (Cu(I)) is used as catalyst for the synthesis of well-defined poly(methyl methacrylate)s by ATRP carried out under the irradiation of a low intensity blue LED lamp (chapter 2). The proposed mechanism implies the formation of the excited state Cu(I)* from Cu(I) under irradiation, followed by its oxidative quenching by the brominated compounds, generating the growing active species and the deactivator form of the complex Cu(II). The catalytic cycle is then completed by the addition of triethylamine as a reducing agent enabling the in situ regeneration of the activator form of the complex Cu(I), therefore leading to a faster polymerization. Glycidyl methacrylate is then considered as a comonomer playing simultaneously the role of a reducing agent (chapter 3). Well-defined functional copolymers, with a controlled distribution of epoxide side groups, are thus synthesized. Finally, the photocatalyzed ATRP mechanism is improved by developing a procedure permitting the in situ generation of the activator Cu(I) starting directly from an air-stable Cu(II) complex (chapter 4). The mechanism developed in this way exhibits a good tolerance to the presence of oxygen or inhibitor in the reaction medium. The effects of several parameters (light intensity, ligand concentration and nature of the solvent or counter-ion) are studied, suggesting a photo-induced ligand-exchange as an additional photochemical process implied in the studied photocatalyzed ATRP mechanism
Read, Emmanuelle. "Nouveaux copolymères thermoépaississants par polymérisation radicalaire contrôlée RAFT/MADIX : synthèse, caractérisation et propriétés rhéologiques." Toulouse 3, 2014. http://www.theses.fr/2014TOU30159.
Full textThis work deals with the synthesis of watersoluble thermoassociative polymers by controlled radical copolymerization by reversible addition-fragmentation chain transfer, RAFT/MADIX. These statistical polymers are made of poly(acrylamide-stat- 2-acrylamido-2-methylpropane sulfonic acid sodium salt) hydrophilic backbone and Jeffamine® LCST side chains incorporated by copolymerisation of the corresponding acrylamido macromonomer. The intermolecular side chain associations in hydrophobic microdomains lead to thermothickening properties under constant shear rate. Synthesis parameters were optimized (temperature, solid content, transfer agent concentration) in order to obtain ultra-high molecular weight polymers with limited crosslinking mainly derived from undesirable transfer to polymer induced by Jeffamine® side chains. Thorough characterization methods, such as rheokinetic, dynamic rheology and size exclusion chromatography coupled with light scattering detection, were applied to determine which parameters were able to limit polymer crosslinking. The viscosifying properties were monitored in steady state rheology measurements in semi-dilute regime
Ferraro, Arcangela. "Conception, synthèse et étude de systèmes organiques à propriétés photochromes." Bordeaux 1, 2000. http://www.theses.fr/2000BOR10503.
Full textFerji, Khalid. "Synthèse contrôlée et auto-organisation de glycopolymères amphiphiles à greffons polymères mésogènes, destinés à la vectorisation de principes actifs." Thesis, Université de Lorraine, 2013. http://www.theses.fr/2013LORR0118/document.
Full textNew graft glycopolymers with well-defined parameters [dextran-g-poly(diethylene glycol cholesteryl ether acrylate) (Dex-g-PADEGChol)] have been prepared in four steps using the "grafting from" strategy. Challenge of this work arises from the combination for the first time of a hydrophilic, biocompatible/biodegradable polysaccharide backbone with mesogen hydrophobic polymeric grafts. Controlled growth of the grafts (PADEGChol) was obtained using ATRP initiated in homogeneous medium from a dextran derivative (DexAcBr). In order to find the best polymerization conditions, homopolymerization of ADEGChol monomer was investigated using an initiator model and various catalytic systems CuIBr/(PMDETA or OPMI) in two solvents (Toluene and THF). The amphiphilic properties of such glycopolymers were evaluated and their mesomorphic properties have been studied by thermal polarizing optical microscopy, differential scanning calorimetry and X-ray scattering. Using transmission electron microscopy and dynamic light scattering, vesicular morphology called "polymersome" was observed in aqueous medium when DMSO was used as co-solvent. These polymersomes could be tested as new drug delivery systems
Portinha, Daniel. "Association supramoléculaire de copolymères à blocs à séquences poly(lactide) en solution : mise en évidence de la formation de nanoparticules." Paris 6, 2002. http://www.theses.fr/2002PA066542.
Full textAiraud, Cédric. "Couplage ROMP et ATRP en milieu dispersé aqueux : préparation et étude morphologique de particules polymères composites." Thesis, Bordeaux 1, 2008. http://www.theses.fr/2008BOR13698/document.
Full textSo as to broaden the scope of their applications in paints, coatings and impact-resistant plastics, many investigations have been dedicated to the preparation of nanostructured colloids over the past decades. Original morphologies including core-shell, hemispherical and complex occluded structures (raspberry-like, golf ball-like, octopus-like) can now be readily prepared. This work proposes a new straightforward one-pot, one-step, one-catalyst strategy to prepare polymer composite particles based on the simultaneous combination of two mechanistically distinct polymerizations in aqueous dispersed media. Norbornene (NB) and methyl methacrylate (MMA) were converted via Ring-Opening Metathesis Polymerization (ROMP) and Atom-Transfer Radical Polymerization (ATRP), respectively. Two original routes, designed to ensure simultaneous ROMP and ATRP, respectively under mini- and microemulsion conditions, are proposed. Both are successively reviewed on chemical and colloidal levels. Specific attention is paid to the morphologies of the prepared particles
Maaz, Mohamad. "Surfaces fonctionnalisées pour la radiodécontamination." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS159/document.
Full textNuclear energy is the true engine of our modern day society and seen as the most efficient and clean form of energy. At the same time, it is the source of many concerns, with its highly radiotoxic waste produced by nuclear reactors and the public health and environmental risks that follow nuclear accidents. In this context, the aim of this project was to come up with new innovative materials, capable of efficiently trap radionuclides in contaminated aqueous media. A new polymer is reported and synthesized in solution as a free polymer, using the easy, cheap and fast metallic copper-mediated controlled radical polymerization (Cu0-CRP). The new polymer was also built from different substrates like PET and PVC, the latter being the most efficient. These new materials were later put to test and proved to be highly performing in trapping uranium and many lanthanides in water. These results have many implications in the nuclear industry. They can be used to harvest uranium from seawater as a future renewable energy source. They can also help the nuclear waste management industry. They are also a potential candidate for treating radio-contaminated environments and for radiodetoxification of living species, including humans
To, Hai Tung. "Developement of new alkoxyamines releasing free radicals against the two major parasitic diseases : malaria and schistomiasis." Electronic Thesis or Diss., Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0648.
Full textIn this work, we have developed alkoxyamines aimed to become new therapy for the simultaneous treatment of Malaria and Schistosomiasis. The proposed mechanism of drug action was based on that of artemesinin, the radical chemistry. There are new types of alkoxyamines containing different aromatic rings: terpyridine, terphenyl, phenanthroline and quinoline. All the synthesized alkoxyamines were investigated the physical and chemical properties, especially the homolysis, which was the key process of the new therapeutic method. The initial bioassays in anti-plasmodium and anti-schistosoma parasites showed the promising results. There were three compounds having the good results in anti-plasmodial activities with the IC50 values below 0.3 μM. However, the selectivity indexes of all compounds were low (below 10), therefore there was no selection for the killing of parasites and normal cells. In addition, the initial of mechanism experiment confirmed that alkoxyamines-terpyridine did not follow the alkylation of the Heme like Artemisinin. With the anti-schistosomal activities, the alkoxyamines were active as well as the Praziquantel at the high concentration (100 μg/mL) but at low the concentration (10 μg/mL) the anti-schistosomal activities of all tested alkoxyamines were inactive
Labalme, Etienne. "Synthesis and characterizations of new fluorinated membranes bearing pendant phosphonic acid groups for PEMFC application." Thesis, Montpellier, Ecole nationale supérieure de chimie, 2013. http://www.theses.fr/2013ENCM0013.
Full textThis work is a continuation of research conducted on the development of new proton exchange membrane fuel cell (PEMFC), bearing phosphonic acid as protogenic groups. The aim of this work is to provide solutions with a view to improving the physicochemical properties of a phosphonate copolymer, poly(CTFE-alt-VEPA) obtained from the radical polymerization of vinyl ethers and CTFE. The first strategy used is a Blend strategy. It consists of adding a commercial fluorinated copolymer, poly(VDF-co-CTFE), during the casting of the membrane. The membranes thus obtained show excellent mechanical properties and acceptable values of proton conductivity. However, during the acidification of membrane, a slight degradation of the phosphonate copolymer is observed. A new technique of crosslinking was then established to increase the stability versus acids. The crosslinking of the blend membranes has also helped to improve the miscibility between the fluorinated copolymer and phosphonate polymer. Finally, the last work of this thesis relate to the synthesis of block copolymer from a RAFT strategy. Thus, the controlled radical polymerization of monomer phosphonated was achieved
Zidelmal, Nacim. "SILIPOLYSALEN : étude du greffage par polymérisation contrôlée de complexes de salen sur silicium pour une application en catalyse asymétrique hétérogène." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS058.
Full textChiral metal complexes of salen type are known for their efficient catalytic activity leading to the preparation of enantioselective enriched synthons. In accordance with the concept of green chemistry, one of the main challenge is to establish a procedure for the recovery and reuse of these catalysts. In this context, the objective of this work is to functionalize the silicon surface by grafting these catalysts by controlled polymerization especially by Atom Transfer Radical Polymerization (ATRP) to facilitate their recovery and reuse.Thus, styrene copolymers containing 5 to 50 mol % of an disymmetric salen comonomer were synthesized by ATRP in solution. The controlled nature of the polymerizations is obtained only when the incorporation of the salen comonomer is less than or equal to 10%.After complexation with cobalt, these complexes are shown to be capable of effective cooperative activation, leading to the targeted product with high yields and selectivities as catalysts in Hydrolytic Kinetic Resolution (HKR) of epibromohydrin.Constantio Constantini fratre imperatoris, matreque Galla.We also reported the polymerization of styrene on the silicon surface by ATRP after grafting of the initiator. Several methods of initiator grafting have been used either directly from the hydrogenated surface or indirectly from an acid or ester surface. Styrene has been successfully mass polymerized in a controlled manner on silicon with thicknesses of 9-29 nm of the layer obtained by ellipsometry and Atomic Force Microscopy
Morales, Cerrada Roberto. "Complexes de manganèse pentacarbonyle alkyle et fluoroalkyle comme modèles d'espèces dormantes de l'OMRP." Thesis, Toulouse, INPT, 2018. http://www.theses.fr/2018INPT0136/document.
Full textFluoropolymers are materials characterized by remarkable properties and are involved in many applications. However, although controlled radical polymerization (CRP or RDRP) has been extraordinarily developed since the mid90s, synthesizing welldefined polymers of certain fluorinated monomers still remains a crucial challenge. This is the case of vinylidene fluoride (VDF), H2C=CF2, which under radical polymerization can undergo normal additions (head to tail) or reverse additions (head to head and tail to tail). These chain defects cause the formation of less reactive dormant species during a CRP. This favors an accumulation of less reactive dormant chains and leads to a loss of the control as well as to an increase of the dispersity. Recent studies have concluded that the use of organometallic complexes can minimize this problem by equilibrating the energies needed to reactivate both types of dormant chains. On the other hand, theoretical calculations have shown that alkyl and fluoroalkyl manganese pentacarbonyl complexes, [Mn(CO)5R] and [Mn(CO)5RF] respectively, are able to lead to normal and inverse dormant species with a similar activation energy. This could afford some degree of controlled polymerization. In this study, several manganese complexes ([Mn(CO)5R] and [Mn(CO)5RF], where R = CH(CH3)(COOCH3), CH(CH3)(OCOCH3) and CH(CH3)(C6H5); RF = CF3, CHF2, CH2CF3 and CF2CH3) have been synthesized and fully characterized. They were then used as original initiators for the polymerization of various monomers and as chainend models in CRP mediated by organometallic complexes (OMRP). Experimental measurements of the dissociation enthalpy of the MnC bond were carried out by kinetic methods. In addition, a deeper study of the formation of certain byproducts during the thermal decomposition of the fluoroalkylpentacarbonylmanganese(I) complexes in the presence of tris (trimethylsilyl)silane as a radical trap was carried out and supported by theoretical calculations. These complexes were also tested in the polymerization of VDF and of other nonfluorinated monomers
Couture, Guillaume. "Nouveaux copolymères fluorés pour membranes de pile à combustible alcaline à coeur solide." Thesis, Montpellier, Ecole nationale supérieure de chimie, 2013. http://www.theses.fr/2013ENCM0005/document.
Full textThe synthesis of polymeric membranes for solid alkaline fuel cells is the main topic of this work. These membranes have to exhibit several properties such as: a high hydroxide ion conductivity, a high thermal stability, a good chemical resistance especially to Hofmann degradation, a water-insolubility and mechanical properties suitable for the preparation of a membrane-electrode assembly. To fulfill these requirements, the use of alternated copolymers based on chlorotrifluoroethylene and vinyl ethers (poly(CTFE-alt-VE)) bearing quaternary ammonium groups has been considered. First, various functional or functionalizable vinyl ethers have been synthesized by palladium-catalyzed transetherification with a conversion rate higher than 80%. These monomers have been successfully copolymerized with CTFE and the good alternation of these monomers has been evidenced by elemental analysis and NMR spectroscopy. Furthermore, their physical, chemical and thermal properties have been studied by several techniques. Various functionalization steps have been carried out, yielding original poly(CTFE-alt-VE) copolymers bearing quaternary ammonium groups non sensitive to Hofmann degradation and with high thermal stabilities suitable for fuel cells. To improve the mechanical properties of these materials, terpolymers containing an increasing amount of 1H,1H,2H,2H-perfluorodecyl vinyl ether have been synthesized. Such terpolymers exhibited higher molecular weights, lower glass transition temperatures, and improved film-forming properties compared to the equivalent copolymers
Chabrol, Virginie. "Functionalized latex particles as substrates for metal mediated radical polymerization." Phd thesis, Université Claude Bernard - Lyon I, 2012. http://tel.archives-ouvertes.fr/tel-01012004.
Full textTraboulsi, Iman. "Radical Additions onto Functionalized Chiral Cyclobutenes. Application to the Total Syntheses of Eucophylline and Eburnamine. A Biomimetic Approach Towards Leucophyllidine." Thesis, Bordeaux, 2020. http://www.theses.fr/2020BORD0282.
Full textThis Ph.D. thesis describes a new approach to the sulfonyl-cyanation of chiral cyclobutenes using p-anisaldehyde as a simple photocatalyst. This reaction allowed the introduction of an all-carbon quaternary stereocenter in a regio-, stereo- and diastereocontrolled manner, via an energy transfer process. Different strategies for the removal of the sulfonyl group and ring-opening of the corresponding cyclobutanes were then examined to provide access to a new library of functionalized derivatives. A process based on the use of nickel boride allowed the development of a “one-potˮ cascade sequence of nitrile function reduction/cyclization/ring-opening giving access to a six-membered cyclic lactam from above cyclobutanes. This chemistry has been applied to the enantioselective total synthesis of eucophylline, the southern fragment of leucophyllidine, a cytotoxic bis-indole terpene alkaloid isolated from Leuconotis griffithii and L. eugenifolius. The racemic synthesis of eburnamine, the northern fragment, was also performed in 10 steps from a commercially available substrate. The biomimetic coupling of these two fragments was then examined using an eucophylline model
Nguyen, Thi Phuong Thu. "Polymer and surface modifications for antibacterial purposes." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS449.
Full textMicrobial contamination on surfaces has become major concern in various areas including industrial process as well as public health and hospitalization. Being aware of several problems causing by adherence and attachment of bacteria on a surface, preparation of antibacterial surface has become a global research interest for researchers in many domains. From the chemistry integrated with material science and microbiology point of view, functionalization of existing polymeric material surfaces is an attractive solution. In this domain, the surface functionalized with covalently grafted antimicrobial polymers represents an ideal solution. In order to facilitate the screening process, it is proposed in this particular research a new approach to obtain polymers with antimicrobial properties both in solution and from surface. The present approach includes a study in controlled (co)polymerization of active ester(s) serving as intermediate templates that can be eventually modified by polymer post-modification process to fabricate polymer of interest with expected antimicrobial characteristics.In general, it is demonstrated herein that the use of Cu(0)-mediated reversible deactivation radical polymerization (RDRP) is a suitable technique that allows facile preparation of reactive (co)polymers in solution and from surface of poly(ethylene terephthalate). First of all, this thesis focused on the study of controlled polymerization of pentafluorophenyl methacrylate (PFPMA) which appeared to be challenging. Furthermore, along with the optimization of polymerization in solution was the investigation of surface-initiated polymerization of this monomer from PET surface. Besides, polymerization of p-nitrophenyl methacrylate (NPMA) and copolymerization of the two active esters by Cu(0)-mediated RDRP were also examined. In addition, polymer post-modification of obtained (co)polymers with various compounds had been proven to be efficient, easy to perform. The structure and characteristics of obtained products were confirmed to match with expectations. It is remarkable that the post-modification can be done as sequential process, single or dual functionalization with several different essential oils, which are natural antibacterial or antioxidant compounds. On the other hand, the success in polymerization and post-modification of polymer of active esters in solution allowed the fabrication of different PET film grafted with polymers that are envisaged to have antiadhesion properties. Attempts to test such properties were also done against two model bacteria including Staphylococcus aureus and Pseudomonas aeruginosa to investigate if expectations are valid
Zivic, Nicolas. "Synthèse de naphtalimides et dicétopyrrolopyrroles originaux pour les photopolymérisations radicalaire et cationique dans des conditions d'irradiation douces." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0056/document.
Full textPhotoinitiated polymerization has gained significant importance in industry as illustrated by the large number of applications of this technique in conventional areas such as coatings, inks, and adhesives but also high-tech domains, like optoelectronics, laser imaging, stereolithography, and nanotechnology. Indeed, photopolymerization presents several advantages such as decreasing the time of reaction, the possibility to be performed at room temperature or without solvents limiting the formation of volatile organic compounds. Moreover, the possibility to irradiate with high precision specific zones allows the spatial-control of the polymerization. Since 2011, photoinitiating systems able to initiate polymerization under soft light irradiation sources have been the subject of intense efforts to minimize the risks and the cost related to UV irradiation. However, even if some results are promising, the reported systems still present moderate reactivity and can hardly compete with actual UV systems. In this context, we have synthesized a large library of photosensitive molecules based on naphthalimide and dicetopyrrolopyrrole derivatives are able to initiate the polymerization under soft irradiation sources. The ad hoc functionalization of the chromophore and the consequent tuning of the photochemical properties have been used to develop highly efficient photoinitiating systems able to absorb into the near UV and visible spectra emitted by LED
Mortier, Claudio. "Conception de surfaces bio-inspirées à mouillabilité contrôlée à partir de polymères conducteurs." Thesis, Université Côte d'Azur (ComUE), 2017. http://www.theses.fr/2017AZUR4110/document.
Full textThe control of the surface wettability is a key point for the development of innovative materials in several domains such as nano-, bio- and smart-technologies. The wettability is a function of two main parameters of the materials, such as the surface energy and the surface morphology. The combination of these two parameters allows to observe wetting phenomena as super/parahydrophobicity and superoleophobicity. These extreme abilities to repel liquids with different adhesion behaviors are very interesting properties for several industrial applications. This work presents a series of polypyrrole derivatives elaborated by electrodeposition allowing to influence the parameters driving the surface wettability. Following this approach, it was possible to develop surfaces with several types of morphology and different wetting behaviors from a low to high wettability. The different functionalizations using hydrophobic compounds grafted on various preferential positions on the monomer core yielded to para and superhydrophobic surfaces showing the impact of the surface energy and morphology on the wettability. Thanks to preliminary studies, it was showed the possibility to obtain several morphologies from spherical aggregates to fibers at the micro/nano scale. Finally, this work contributes to an upstream control of the surface wettability and morphologies for many potential applications such as water harvesting, separation membranes and self-cleaning coatings