To see the other types of publications on this topic, follow the link: Attochemistry of chemical bonding.

Journal articles on the topic 'Attochemistry of chemical bonding'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Attochemistry of chemical bonding.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Bag, Sampad, Sankhabrata Chandra, Jayanta Ghosh, Anupam Bera, Elliot R. Bernstein, and Atanu Bhattacharya. "The attochemistry of chemical bonding." International Reviews in Physical Chemistry 40, no. 3 (2021): 405–55. http://dx.doi.org/10.1080/0144235x.2021.1976499.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

BOERNER, LEIGH KRIETSCH. "CHEMICAL BONDING." Chemical & Engineering News 88, no. 42 (2010): 39–41. http://dx.doi.org/10.1021/cen-v088n042.p039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Okino, Tomoya, Yusuke Furukawa, Yasuo Nabekawa, et al. "Direct observation of an attosecond electron wave packet in a nitrogen molecule." Science Advances 1, no. 8 (2015): e1500356. http://dx.doi.org/10.1126/sciadv.1500356.

Full text
Abstract:
Capturing electron motion in a molecule is the basis of understanding or steering chemical reactions. Nonlinear Fourier transform spectroscopy using an attosecond-pump/attosecond-probe technique is used to observe an attosecond electron wave packet in a nitrogen molecule in real time. The 500-as electronic motion between two bound electronic states in a nitrogen molecule is captured by measuring the fragment ions with the same kinetic energy generated in sequential two-photon dissociative ionization processes. The temporal evolution of electronic coherence originating from various electronic s
APA, Harvard, Vancouver, ISO, and other styles
4

Senn, Peter. "On chemical bonding." American Journal of Physics 54, no. 7 (1986): 587. http://dx.doi.org/10.1119/1.14535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Putz, Mihai V. "Chemical action and chemical bonding." Journal of Molecular Structure: THEOCHEM 900, no. 1-3 (2009): 64–70. http://dx.doi.org/10.1016/j.theochem.2008.12.026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Balasubramanian, K. "Relativity and chemical bonding." Journal of Physical Chemistry 93, no. 18 (1989): 6585–96. http://dx.doi.org/10.1021/j100355a005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ashcheulov, A. A., O. N. Manyk, T. O. Manyk, S. F. Marenkin, and V. R. Bilynskiy-Slotylo. "Chemical bonding in cadmium." Inorganic Materials 47, no. 9 (2011): 952–56. http://dx.doi.org/10.1134/s0020168511090019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

MORRISSEY, SUSAN R. "NSF'S CHEMICAL BONDING CENTERS." Chemical & Engineering News Archive 82, no. 41 (2004): 33–34. http://dx.doi.org/10.1021/cen-v082n041.p033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

JACOBY, MITCH. "CHEMICAL BONDING FORCES MEASURED." Chemical & Engineering News Archive 79, no. 14 (2001): 12. http://dx.doi.org/10.1021/cen-v079n014.p012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Finzel, Kati. "Chemical bonding without orbitals." Computational and Theoretical Chemistry 1144 (November 2018): 50–55. http://dx.doi.org/10.1016/j.comptc.2018.10.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Calais, Jean-Louis. "Chemical bonding and vibrations." Journal of Molecular Structure: THEOCHEM 261 (July 1992): 121–32. http://dx.doi.org/10.1016/0166-1280(92)87071-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Jeung, G. H. "Chemical bonding in ScCS." Chemical Physics Letters 176, no. 2 (1991): 233–38. http://dx.doi.org/10.1016/0009-2614(91)90159-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Zhao, Lili, Sudip Pan, Nicole Holzmann, Peter Schwerdtfeger, and Gernot Frenking. "Chemical Bonding and Bonding Models of Main-Group Compounds." Chemical Reviews 119, no. 14 (2019): 8781–845. http://dx.doi.org/10.1021/acs.chemrev.8b00722.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Cassiday, Laura. "The bonding of chemical giants." INFORM: International News on Fats, Oils, and Related Materials 27, no. 3 (2016): 26–27. http://dx.doi.org/10.21748/inform.03.2016.26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Gonçalves, A. M., and Ana M. Segadães. "Unshaped Refractories with Chemical Bonding." Materials Science Forum 34-36 (January 1991): 705–9. http://dx.doi.org/10.4028/www.scientific.net/msf.34-36.705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Putz, Mihai. "Density Functionals of Chemical Bonding." International Journal of Molecular Sciences 9, no. 6 (2008): 1050–95. http://dx.doi.org/10.3390/ijms9061050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Vaughan, D. J. "Chemical Bonding in Sulfide Minerals." Reviews in Mineralogy and Geochemistry 61, no. 1 (2006): 231–64. http://dx.doi.org/10.2138/rmg.2006.61.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Castro, Abril C., Mikael P. Johansson, Gabriel Merino, and Marcel Swart. "Chemical bonding in supermolecular flowers." Physical Chemistry Chemical Physics 14, no. 43 (2012): 14905. http://dx.doi.org/10.1039/c2cp42045g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Nishitani, Shigeto R., Shunsuke Fujii, Masataka Mizuno, Isao Tanaka, and Hirohiko Adachi. "Chemical bonding of3dtransition-metal disilicides." Physical Review B 58, no. 15 (1998): 9741–45. http://dx.doi.org/10.1103/physrevb.58.9741.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Lee, Chengteh, Han Chen, and George Fitzgerald. "Chemical bonding in water clusters." Journal of Chemical Physics 102, no. 3 (1995): 1266–69. http://dx.doi.org/10.1063/1.468914.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Sacks, Lawrence J. "Coulombic Models in Chemical Bonding." Journal of Chemical Education 77, no. 4 (2000): 445. http://dx.doi.org/10.1021/ed077p445.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Marghussian, V. K., and R. Naghizadeh. "Chemical bonding of silicon carbide." Journal of the European Ceramic Society 19, no. 16 (1999): 2815–21. http://dx.doi.org/10.1016/s0955-2219(99)00068-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Hagenmuller, Paul. "Intercalation chemistry and chemical bonding." Journal of Physics and Chemistry of Solids 59, no. 4 (1998): 503–6. http://dx.doi.org/10.1016/s0022-3697(97)90189-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Harris, Mary. "Chemical Bonding Makes a Difference!" Journal of Chemical Education 83, no. 10 (2006): 1435. http://dx.doi.org/10.1021/ed083p1435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Hoffmann, P., O. Baake, B. Beckhoff, et al. "Chemical bonding in carbonitride nanolayers." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 575, no. 1-2 (2007): 78–84. http://dx.doi.org/10.1016/j.nima.2007.01.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Harcourt, Richard D. "Kinetic energy and chemical bonding." American Journal of Physics 56, no. 7 (1988): 660–61. http://dx.doi.org/10.1119/1.15535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Hagenmuller, Paul. "Intercalation chemistry and chemical bonding." Journal of Power Sources 90, no. 1 (2000): 9–12. http://dx.doi.org/10.1016/s0378-7753(00)00437-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Needham, Paul. "The source of chemical bonding." Studies in History and Philosophy of Science Part A 45 (March 2014): 1–13. http://dx.doi.org/10.1016/j.shpsa.2013.10.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Greenspan, D. "Electron attraction and chemical bonding." Computers & Mathematics with Applications 38, no. 11-12 (1999): 217–27. http://dx.doi.org/10.1016/s0898-1221(99)00300-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

HAGENMULLER, P. "Chemical bonding and intercalation processes." Solid State Ionics 40-41 (August 1990): 3–9. http://dx.doi.org/10.1016/0167-2738(90)90275-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kematick, R. J., H. F. Franzen, and D. K. Misemer. "Chemical bonding interactions in Zr2Al." Journal of Solid State Chemistry 60, no. 3 (1985): 297–304. http://dx.doi.org/10.1016/0022-4596(85)90280-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

King, R. B. "Chemical bonding topology of superconductors." Journal of Solid State Chemistry 71, no. 1 (1987): 224–32. http://dx.doi.org/10.1016/0022-4596(87)90162-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

King, R. B. "Chemical bonding topology of superconductors." Journal of Solid State Chemistry 71, no. 1 (1987): 233–36. http://dx.doi.org/10.1016/0022-4596(87)90163-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Weyrich, W. "Chemical bonding as electronic coherence." Acta Crystallographica Section A Foundations of Crystallography 58, s1 (2002): c191. http://dx.doi.org/10.1107/s0108767302092668.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Ghatikar, M. N. "Phase shifts and chemical bonding." Physica B: Condensed Matter 158, no. 1-3 (1989): 383–85. http://dx.doi.org/10.1016/0921-4526(89)90318-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Cundari, Thomas R. "Chemical bonding involving d-orbitals." Chemical Communications 49, no. 83 (2013): 9521. http://dx.doi.org/10.1039/c3cc45204b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Batsanov, Stepan S. "Energy Electronegativity and Chemical Bonding." Molecules 27, no. 23 (2022): 8215. http://dx.doi.org/10.3390/molecules27238215.

Full text
Abstract:
Historical development of the concept of electronegativity (EN) and its significance and prospects for physical and structural chemistry are discussed. The current cutting-edge results are reviewed: new methods of determining the ENs of atoms in solid metals and of bond polarities and effective atomic charges in molecules and crystals. The ENs of nanosized elements are calculated for the first time, enabling us to understand their unusual reactivity, particularly the fixation of N2 by nanodiamond. Bond polarities in fluorides are also determined for the first time, taking into account the pecu
APA, Harvard, Vancouver, ISO, and other styles
38

Herbst‐Irmer, Regine, and Erhard Irmer. "Experimental Visualisation of Chemical Bonding." CHEMKON 27, no. 6 (2020): 275–81. http://dx.doi.org/10.1002/ckon.202000015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

King, R. B. "Chemical Bonding Topology of Superconductors." Journal of Solid State Chemistry 124, no. 2 (1996): 329–32. http://dx.doi.org/10.1006/jssc.1996.0245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

King, R. B. "Chemical Bonding Topology of Superconductors." Journal of Solid State Chemistry 131, no. 2 (1997): 394–98. http://dx.doi.org/10.1006/jssc.1997.7415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Krapp, Andreas, F. Matthias Bickelhaupt, and Gernot Frenking. "Orbital Overlap and Chemical Bonding." Chemistry - A European Journal 12, no. 36 (2006): 9196–216. http://dx.doi.org/10.1002/chem.200600564.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Putz, Mihai V. "Chemical Bonding by the Chemical Orthogonal Space of Reactivity." International Journal of Molecular Sciences 22, no. 1 (2020): 223. http://dx.doi.org/10.3390/ijms22010223.

Full text
Abstract:
The fashionable Parr–Pearson (PP) atoms-in-molecule/bonding (AIM/AIB) approach for determining the exchanged charge necessary for acquiring an equalized electronegativity within a chemical bond is refined and generalized here by introducing the concepts of chemical power within the chemical orthogonal space (COS) in terms of electronegativity and chemical hardness. Electronegativity and chemical hardness are conceptually orthogonal, since there are opposite tendencies in bonding, i.e., reactivity vs. stability or the HOMO-LUMO middy level vs. the HOMO-LUMO interval (gap). Thus, atoms-in-molecu
APA, Harvard, Vancouver, ISO, and other styles
43

de Lange, Jurgens H., Daniël M. E. van Niekerk, and Ignacy Cukrowski. "Quantifying individual (anti)bonding molecular orbitals’ contributions to chemical bonding." Physical Chemistry Chemical Physics 21, no. 37 (2019): 20988–98. http://dx.doi.org/10.1039/c9cp04345d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Lusyana Yustin, Dessy, and Antuni Wiyarsi. "Students’ chemical literacy: A study in chemical bonding." Journal of Physics: Conference Series 1397 (December 2019): 012036. http://dx.doi.org/10.1088/1742-6596/1397/1/012036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

WILKINSON, SOPHIE. "Gecko Bonding." Chemical & Engineering News 78, no. 24 (2000): 14. http://dx.doi.org/10.1021/cen-v078n024.p014a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Shen, Yan-Fang, Chang Xu, and Long-Jiu Cheng. "Deciphering chemical bonding in BnHn2−(n = 2–17): flexible multicenter bonding." RSC Advances 7, no. 58 (2017): 36755–64. http://dx.doi.org/10.1039/c7ra06811e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Dereka, Bogdan, Qi Yu, Nicholas H. C. Lewis, William B. Carpenter, Joel M. Bowman, and Andrei Tokmakoff. "Crossover from hydrogen to chemical bonding." Science 371, no. 6525 (2021): 160–64. http://dx.doi.org/10.1126/science.abe1951.

Full text
Abstract:
Hydrogen bonds (H-bonds) can be interpreted as a classical electrostatic interaction or as a covalent chemical bond if the interaction is strong enough. As a result, short strong H-bonds exist at an intersection between qualitatively different bonding descriptions, with few experimental methods to understand this dichotomy. The [F-H-F]− ion represents a bare short H-bond, whose distinctive vibrational potential in water is revealed with femtosecond two-dimensional infrared spectroscopy. It shows the superharmonic behavior of the proton motion, which is strongly coupled to the donor-acceptor st
APA, Harvard, Vancouver, ISO, and other styles
48

Teterin, A. Yu, M. V. Ryzhkov, Yu A. Teterin, et al. "Nature of chemical bonding in ThF4." Radiochemistry 51, no. 6 (2009): 551–59. http://dx.doi.org/10.1134/s1066362209060010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Ashcheulov, A. A., O. N. Manik, and S. F. Marenkin. "Cadmium Antimonide: Chemical Bonding and Technology." Inorganic Materials 39 (2003): S59—S68. http://dx.doi.org/10.1023/b:inma.0000008886.21975.f8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Andreoni, Wanda, Paolo Giannozzi, and Michele Parrinello. "Molecular structure and chemical bonding inK3C60andK6C60." Physical Review B 51, no. 4 (1995): 2087–97. http://dx.doi.org/10.1103/physrevb.51.2087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!