Academic literature on the topic 'Attosecondes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Attosecondes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Attosecondes"
Mével, E., O. Tcherbakoff, D. Descamps, J. Plumridge, and E. Constant. "Impulsions attosecondes." Journal de Physique IV (Proceedings) 108 (June 2003): 81–84. http://dx.doi.org/10.1051/jp4:20030601.
Full textSalières, Pascal, Thierry Ruchon, and Bertrand Carré. "Les lasers attosecondes." Photoniques, no. 48 (September 2010): 40–41. http://dx.doi.org/10.1051/photon/20104840.
Full textCatoire, Fabrice, Ludovic Quintard, Ondrej Hort, Antoine Dubrouil, and Eric Constant. "Les sources attosecondes." Photoniques, no. 70 (March 2014): 28–33. http://dx.doi.org/10.1051/photon/20147028.
Full textConstant, E. "Génération d'impulsions attosecondes isolées." Journal de Physique IV (Proceedings) 138, no. 1 (December 2006): 3–11. http://dx.doi.org/10.1051/jp4:2006138002.
Full textJordan, Inga, Martin Huppert, Dominik Rattenbacher, Michael Peper, Denis Jelovina, Conaill Perry, Aaron von Conta, Axel Schild, and Hans Jakob Wörner. "Attosecond spectroscopy of liquid water." Science 369, no. 6506 (August 20, 2020): 974–79. http://dx.doi.org/10.1126/science.abb0979.
Full textTao, Zhensheng, Cong Chen, Tibor Szilvási, Mark Keller, Manos Mavrikakis, Henry Kapteyn, and Margaret Murnane. "Direct time-domain observation of attosecond final-state lifetimes in photoemission from solids." Science 353, no. 6294 (June 2, 2016): 62–67. http://dx.doi.org/10.1126/science.aaf6793.
Full textHuang, Yindong, Jing Zhao, Zheng Shu, Yalei Zhu, Jinlei Liu, Wenpu Dong, Xiaowei Wang, et al. "Ultrafast Hole Deformation Revealed by Molecular Attosecond Interferometry." Ultrafast Science 2021 (July 7, 2021): 1–12. http://dx.doi.org/10.34133/2021/9837107.
Full textWikmark, Hampus, Chen Guo, Jan Vogelsang, Peter W. Smorenburg, Hélène Coudert-Alteirac, Jan Lahl, Jasper Peschel, et al. "Spatiotemporal coupling of attosecond pulses." Proceedings of the National Academy of Sciences 116, no. 11 (March 1, 2019): 4779–87. http://dx.doi.org/10.1073/pnas.1817626116.
Full textGeneaux, Romain, Hugo J. B. Marroux, Alexander Guggenmos, Daniel M. Neumark, and Stephen R. Leone. "Transient absorption spectroscopy using high harmonic generation: a review of ultrafast X-ray dynamics in molecules and solids." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377, no. 2145 (April 2019): 20170463. http://dx.doi.org/10.1098/rsta.2017.0463.
Full textLara-Astiaso, Manuel, David Ayuso, Ivano Tavernelli, Piero Decleva, Alicia Palacios, and Fernando Martín. "Decoherence, control and attosecond probing of XUV-induced charge migration in biomolecules. A theoretical outlook." Faraday Discussions 194 (2016): 41–59. http://dx.doi.org/10.1039/c6fd00074f.
Full textDissertations / Theses on the topic "Attosecondes"
Mairesse, Yann. "Génération et caractérisation d'impulsions attosecondes." Phd thesis, Université Paris Sud - Paris XI, 2005. http://tel.archives-ouvertes.fr/tel-00011620.
Full textEn transposant une technique d'interférométrie spectrale couramment utilisée pour la caractérisation complète d'impulsions infrarouges (SPIDER), nous effectuons une caractérisation complète monocoup du profil temporel d'harmoniques individuelles, à l'échelle femtoseconde.
Ensuite, nous étudions expérimentalement la structure attoseconde du rayonnement harmonique, et mettons en évidence une dérive temporelle dans l'émission : les harmoniques les plus faibles sont émises avant les plus élevées. Cette dérive, qui est directement liée à la dynamique électronique microscopique dans le processus de génération, limite la durée d'impulsion que l'on peut obtenir en augmentant la largeur spectrale. Nous présentons les résultats de l'optimisation des conditions de génération afin d'améliorer la synchronisation dans l'émission. Nous montrons également la possibilité de recomprimer les impulsions attosecondes.
Enfin, nous proposons une nouvelle technique pour la caractérisation complète d'impulsions attosecondes arbitraires : FROGCRAB. Elle permettrait une mesure simultanée des caractéristiques femtoseconde et attoseconde du rayonnement, et ainsi une connaissance complète de la source lumineuse attoseconde en vue de son utilisation dans des expériences d'applications.
Bourassin-Bouchet, Charles. "Optiques pour les impulsions attosecondes." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00657772.
Full textVincenti, Henri Paul. "Génération d'impulsions attosecondes sur miroir plasma relativiste." Phd thesis, Ecole Polytechnique X, 2012. http://pastel.archives-ouvertes.fr/pastel-00787281.
Full textVincenti, Henri. "Génération d'impulsions attosecondes sur miroir plasma relativiste." Palaiseau, Ecole polytechnique, 2012. https://pastel.hal.science/docs/00/78/72/81/PDF/manuscrit.pdf.
Full textWhen an ultra intense femtosecond laser ($$I>10^{16}W. Cm^{-2}$$) with high contrast is focused on a solid target, the laser field at focus is high enough to completely ionize the target surface during the rising edge of the laser pulse and form a plasma. This plasma is so dense (the electron density is of the order of hundred times the critical density) that it completely reflects the incident laser beam in the specular direction: this is the so-called " plasma mirror ". When laser intensity becomes very high, the non-linear response of the plasma mirror to the laser field periodically deforms the incident electric field leading to high harmonic generation in the reflected beam. In the temporal domain this harmonic spectrum is associated to a train of attosecond pulses. The goals of my PhD were to get a better comprehension of the properties of harmonic beams produced on plasma mirrors and design new methods to control theses properties, notably in order to produce isolated attosecond pulses instead of trains. Initially, we imagined and modeled the first realistic technique to generate isolated attosecond on plasma mirrors. This brand new approach is based on a totally new physical effect: "the attosecond lighthouse effect". Its principle consists in sending the attosecond pulses of the train in different directions and selects one of these pulses by putting a slit in the far field. Despites its simplicity, this technique is very general and applies to any high harmonic generation mechanisms. Moreover, the attosecond lighthouse effect has many other applications (e. G in metrology). In particular, it paves the way to attosecond pump-probe experiments. Then, we studied the spatial properties of these harmonics, whose control and characterization are crucial if one wants to use this source in future application experiments. For instance, we need to control very precisely the harmonic beam divergence in order to achieve the attosecond lighthouse effect and get isolated attosecond pulses. At very high intensities, the plasma mirror dents and gets curved by the inhomogeneous radiation pressure of the laser field at focus. The plasma mirror surface thus acts as a curved surface, which focuses the harmonic beam in front of the target and fixes its spatial properties. We developed a fully analytical and predictive model for the surface deformation, thanks to which we are now able to calculate very easily the spatial properties of the generated harmonic beams. We validated this model through hundreds of 1D and 2D PIC simulations
Barreau, Lou. "Étude de dynamiques de photoionisation résonante à l'aide d'impulsions attosecondes." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS511/document.
Full textIn this work, photoionzation of atomic and molecular species in the gas phase is investigated with high-harmonic radiation. In a first part, electronic dynamics in the autoionization process of rare gases in studied with electron interferometry. This method gives access to the spectral phase of the transition to the autoionizing state, and allows there construction of the entire autoionization dynamics. The ultrafast electronic dynamics, as well as the build-up of the celebrated asymmetric Fano profile, are observed experimentally for the first time. In a second part, photoionization of NO molecules in the molecular frame is used as a polarimeter to completeley characterize the polarization state of high-harmonics. In particular, this method can address the challenging disentanglement of the circular and unpolarized components of the light. The experimental results, completed by numerical simulations, allow defining optimal generation conditions of fully circularly-polarized harmonics for advanced studies of ultrafast dichroisms in matte
Haessler, Stefan. "Génération d'Impulsions Attosecondes dans les Atomes et les Molécules." Phd thesis, Université Paris Sud - Paris XI, 2009. http://tel.archives-ouvertes.fr/tel-00440190.
Full textClergerie, Alex. "Modélisation de spectroscopie moléculaire par paquets d'électrons attosecondes." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0243.
Full textOn the basis of previous numerical simulations for atomic targets, we develop a model to describe high-orderharmonic generation in molecules subjected to short and intense laser pulses. In this process, anelectron wavepacket launched through ionization is driven by the field and comes back to the molecular ioniccore that it probes on the attosecond timescale. Our model, to which we refer to as molCTMC-QUEST,describes ionization and electron propagation into the continuum classically, in terms of electron trajectories, while photorecombination is described quantum mechanically. We present the methodology that wehave built, and we later apply it to harmonic generation in water molecules. After simulations in which themolecules remain frozen in their equilibrium geometry throughout the interaction, we explicitly take intoaccount nuclear vibration between ionization and recombination. molCTMC-QUEST provides a quantitativedescription of the generation process combined with an intuitive picture of the interaction inherent in theclassical description of electron dynamics
Bocoum, Maïmouna. "Harmonic and electron generation from laser-driven plasma mirrors." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX023/document.
Full textThe experimental work presented in this manuscript focuses on the non-linear response of plasma mirrors when driven by a sub-relativistic (~10^18 W/cm^2) ultra-short (~30fs) laser pulse. In particular, we studied the generation of attosecond pulses (1as=10^(-18) s) and electron beams from plasma mirror generated in controlled pump-probe experiment. One first important result exposed in this manuscript is the experimental observation of the anticorrelated emission behavior between high-order harmonics and electron beams with respect to plasma scale length. The second important result is the presentation of the « spatial domain interferometry » (SDI) diagnostic, developed during this PhD to measure the plasma expansion in vacuum. Finally, we will discuss the implementation of phase retrieval algorithms for both spatial and temporal phase reconstructions.From a more general point of view, we replace this PhD in its historical context. We hope to convince the reader that through laser-plasma mirror interaction schemes, we could tomorrow conceive cost-efficient X-UV and energetic electron sources with unprecedented temporal resolutions
Borot, Antonin. "Génération d'impulsions attosecondes sur miroir plasma à très haute cadence." Phd thesis, Ecole Polytechnique X, 2012. http://pastel.archives-ouvertes.fr/pastel-00787912.
Full textQuere, Fabien. "Impulsions attosecondes de lumière : caractérisation temporelle et sources de deuxième génération." Habilitation à diriger des recherches, Université Paris Sud - Paris XI, 2010. http://tel.archives-ouvertes.fr/tel-00455370.
Full textBooks on the topic "Attosecondes"
Hommelhoff, Peter, and Matthias F. Kling, eds. Attosecond Nanophysics. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527665624.
Full textPlaja, Luis, Ricardo Torres, and Amelle Zaïr, eds. Attosecond Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37623-8.
Full textVrakking, Marc J. J., and Franck Lepine, eds. Attosecond Molecular Dynamics. Cambridge: Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/9781788012669.
Full textMarciak-Kozłowska, Janina. Attosecond matter tomography. Hauppauge, N.Y: Nova Science Publishers, 2011.
Find full textSchultz, Thomas, and Marc Vrakking, eds. Attosecond and XUV Physics. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527677689.
Full textSchötz, Johannes. Attosecond Experiments on Plasmonic Nanostructures. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-13713-7.
Full textYamanouchi, Kaoru, and Midorikawa Katsumi, eds. Multiphoton Processes and Attosecond Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28948-4.
Full textKatsumi, Midorikawa, and SpringerLink (Online service), eds. Multiphoton Processes and Attosecond Physics: Proceedings of the 12th International Conference on Multiphoton Processes (ICOMP12) and the 3rd International Conference on Attosecond Physics (ATTO3). Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textMatulewski, Jacek. Jonizacja i rekombinacja w silnym polu lasera attosekundowego = Atom ionization and laser assisted recombination in a super-strong field of an attosecond laser pulse. Toruń: Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, 2012.
Find full textBook chapters on the topic "Attosecondes"
Weik, Martin H. "attosecond." In Computer Science and Communications Dictionary, 76. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_1002.
Full textKling, Matthias F., Brady C. Steffl, and Peter Hommelhoff. "Introduction." In Attosecond Nanophysics, 1–10. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527665624.ch1.
Full textChew, Soo Hoon, Kellie Pearce, Christian Späth, Alexander Guggenmos, Jürgen Schmidt, Frederik Süßmann, Matthias F. Kling, et al. "Imaging Localized Surface Plasmons by Femtosecond to Attosecond Time-Resolved Photoelectron Emission Microscopy - “ATTO-PEEM”." In Attosecond Nanophysics, 325–64. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527665624.ch10.
Full textPfullmann, Nils, Monika Noack, Carsten Reinhardt, Milutin Kovacev, and Uwe Morgner. "Nano-Antennae Assisted Emission of Extreme Ultraviolet Radiation." In Attosecond Nanophysics, 11–38. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527665624.ch2.
Full textDombi, Péter, and Abdulhakem Y. Elezzabi. "Ultrafast, Strong-Field Plasmonic Phenomena." In Attosecond Nanophysics, 39–86. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527665624.ch3.
Full textSaalmann, Ulf, and Jan-Michael Rost. "Ultrafast Dynamics in Extended Systems." In Attosecond Nanophysics, 87–118. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527665624.ch4.
Full textVarin, Charles, Christian Peltz, Thomas Brabec, and Thomas Fennel. "Light Wave Driven Electron Dynamics in Clusters." In Attosecond Nanophysics, 119–54. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527665624.ch5.
Full textSüßmann, Frederik, Matthias F. Kling, and Peter Hommelhoff. "From Attosecond Control of Electrons at Nano-Objects to Laser-Driven Electron Accelerators." In Attosecond Nanophysics, 155–96. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527665624.ch6.
Full textApalkov, Vadym, and Mark I. Stockman. "Theory of Solids in Strong Ultrashort Laser Fields." In Attosecond Nanophysics, 197–234. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527665624.ch7.
Full textSchiffrin, Agustin, Tim Paasch-Colberg, and Martin Schultze. "Controlling and Tracking Electric Currents with Light." In Attosecond Nanophysics, 235–80. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527665624.ch8.
Full textConference papers on the topic "Attosecondes"
Bourassin-Bouchet, C., Z. Diveki, S. de Rossi, E. English, E. Meltchakov, O. Gobert, D. Guénot, et al. "Optiques pour les impulsions attosecondes." In UVX 2010 - 10e Colloque sur les Sources Cohérentes et Incohérentes UV, VUV et X ; Applications et Développements Récents. Les Ulis, France: EDP Sciences, 2011. http://dx.doi.org/10.1051/uvx/2011005.
Full textCirelli, Claudio, Adrian N. Pfeiffer, Petrissa Eckle, Andre Staudte, Reinhard Dorner, Harm Geert Muller, and Ursula Keller. "Laser induced tunneling ionization in less than 12 attoseconds measured by attosecond angular streaking." In 11th European Quantum Electronics Conference (CLEO/EQEC). IEEE, 2009. http://dx.doi.org/10.1109/cleoe-eqec.2009.5196333.
Full textVincenti, H., and F. Quéré. "L'effet phare attoseconde." In UVX 2012 - 11e Colloque sur les Sources Cohérentes et Incohérentes UV, VUV et X ; Applications et Développements Récents, edited by E. Constant, P. Martin, and H. Bachau. Les Ulis, France: EDP Sciences, 2013. http://dx.doi.org/10.1051/uvx/201301015.
Full textBandrauk, Andre D. "Circularly polarized attosecond pulses for attosecond magnetics." In 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC. IEEE, 2013. http://dx.doi.org/10.1109/cleoe-iqec.2013.6801151.
Full textKienberger, Reinhard, and Ferenc Krausz. "Attosecond physics." In ICALEO® 2007: 26th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing. Laser Institute of America, 2007. http://dx.doi.org/10.2351/1.5061046.
Full textWalmsley, I. A. "Attosecond metrology." In Quantum Electronics and Laser Science (QELS). Postconference Digest. IEEE, 2003. http://dx.doi.org/10.1109/qels.2003.238325.
Full textCorkum, Paul. "Attosecond Metrology." In CLEO 2007. IEEE, 2007. http://dx.doi.org/10.1109/cleo.2007.4452660.
Full textKrausz, Ferenc. "Attosecond Physics." In 2007 Conference on Lasers and Electro-Optics - Pacific Rim. IEEE, 2007. http://dx.doi.org/10.1109/cleopr.2007.4391210.
Full textVincenti, Henri, Jonathan Wheeler, Sylvain Monchocé, Antonin Borot, Arnaud Malvache, Rodrigo Lopez-Martens, and Fabien Quéré. "Attosecond Lighthouses." In Quantum Electronics and Laser Science Conference. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/qels.2012.qtu3h.2.
Full textKartner, Franz X. "Attosecond photonics." In 2012 IEEE Photonics Conference (IPC). IEEE, 2012. http://dx.doi.org/10.1109/ipcon.2012.6358774.
Full textReports on the topic "Attosecondes"
Ian A. Walmsley and Robert W. Boyd. Generation and Characterization of Attosecond Pulses. Office of Scientific and Technical Information (OSTI), April 2006. http://dx.doi.org/10.2172/881556.
Full textKaertner, Franz X. Single-cycle Optical Pulses and Isolated Attosecond Pulse Generation. Fort Belvoir, VA: Defense Technical Information Center, February 2012. http://dx.doi.org/10.21236/ada565327.
Full textZholents, Alexander A., and William M. Fawley. Intense attosecond radiation from an X-ray FEL - extended version. Office of Scientific and Technical Information (OSTI), December 2003. http://dx.doi.org/10.2172/842897.
Full textEmma, P. ATTOSECOND X-RAY PULSES IN THE LCLS USING THE SLOTTED FOIL METHOD. Office of Scientific and Technical Information (OSTI), September 2004. http://dx.doi.org/10.2172/833050.
Full textStupakov, Gennady. Ponderomotive Laser Acceleration and Focusing in Vacuum: Application for Attosecond Electron Bunches. Office of Scientific and Technical Information (OSTI), September 2000. http://dx.doi.org/10.2172/765009.
Full textThomas, Alexander Roy, and Karl Krushelnick. High Harmonic Radiation Generation and Attosecond pulse generation from Intense Laser-Solid Interactions. Office of Scientific and Technical Information (OSTI), September 2016. http://dx.doi.org/10.2172/1322280.
Full textZholents, Alexander. Feasibility analysis for attosecond X-ray pulses at FERMI@ELETTRA free electron laser. Office of Scientific and Technical Information (OSTI), September 2004. http://dx.doi.org/10.2172/842992.
Full textKulander, K. C. A source for quantum control: generation and measurement of attosecond ultraviolet light pulses. Office of Scientific and Technical Information (OSTI), February 1999. http://dx.doi.org/10.2172/8201.
Full textBen-Itzhak, Itzik. Attosecond Physics 2009 (July 28 to August 1, 2009, at Kansas State U/Manhattan). Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/1031469.
Full textDiMauro, Louis F. Final Report: Student Support for the "Frontiers in Attosecond & Ultrafast X-ray Science" School. Office of Scientific and Technical Information (OSTI), December 2018. http://dx.doi.org/10.2172/1485051.
Full text