Academic literature on the topic 'Attributes data'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Attributes data.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Attributes data"
Xu, Xiaofeng, Ivor W. Tsang, and Chuancai Liu. "Improving Generalization via Attribute Selection on Out-of-the-Box Data." Neural Computation 32, no. 2 (February 2020): 485–514. http://dx.doi.org/10.1162/neco_a_01256.
Full textMa, Xiaofei, Yi Feng, Yi Qu, and Yang Yu. "Attribute Selection Method based on Objective Data and Subjective Preferences in MCDM." International Journal of Computers Communications & Control 13, no. 3 (May 27, 2018): 391–407. http://dx.doi.org/10.15837/ijccc.2018.3.3188.
Full textZhao, Tao, Fangyu Li, and Kurt J. Marfurt. "Seismic attribute selection for unsupervised seismic facies analysis using user-guided data-adaptive weights." GEOPHYSICS 83, no. 2 (March 1, 2018): O31—O44. http://dx.doi.org/10.1190/geo2017-0192.1.
Full textZhang, Lin, and Jian Li Zhang. "Classification Algorithm Based on Category Attribute’s Mathematical Expectation." Advanced Materials Research 659 (January 2013): 103–7. http://dx.doi.org/10.4028/www.scientific.net/amr.659.103.
Full textDuffy, Leanne M., and Shane P. Griffiths. "Assessing attribute redundancy in the application of productivity-susceptibility analysis to data-limited fisheries." Aquatic Living Resources 32 (2019): 20. http://dx.doi.org/10.1051/alr/2019018.
Full textAlbattah, Waleed, Rehan Ullah Khan, and Khalil Khan. "Attributes Reduction in Big Data." Applied Sciences 10, no. 14 (July 17, 2020): 4901. http://dx.doi.org/10.3390/app10144901.
Full textAlfonseca, Enrique, Guillermo Garrido, Jean-Yves Delort, and Anselmo Peñas. "WHAD: Wikipedia historical attributes data." Language Resources and Evaluation 47, no. 4 (May 28, 2013): 1163–90. http://dx.doi.org/10.1007/s10579-013-9232-5.
Full textZhao, Huimin. "Matching Attributes across Overlapping Heterogeneous Data Sources Using Mutual Information." Journal of Database Management 21, no. 4 (October 2010): 91–110. http://dx.doi.org/10.4018/jdm.2010100105.
Full textAgrawal, Ankit, Sanchit Misra, Ramanathan Narayanan, Lalith Polepeddi, and Alok Choudhary. "Lung Cancer Survival Prediction using Ensemble Data Mining on Seer Data." Scientific Programming 20, no. 1 (2012): 29–42. http://dx.doi.org/10.1155/2012/920245.
Full textMichelson, M., and C. A. Knoblock. "Creating Relational Data from Unstructured and Ungrammatical Data Sources." Journal of Artificial Intelligence Research 31 (March 28, 2008): 543–90. http://dx.doi.org/10.1613/jair.2409.
Full textDissertations / Theses on the topic "Attributes data"
Li, Wei. "Multi-attribute decision making a test on the impact of data attributes dependency /." Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://hdl.handle.net/10355/5989.
Full textThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on November 9, 2007) Includes bibliographical references.
Dawara, Santosh. "Grouping related attributes /." Link to online version, 2004. https://ritdml.rit.edu/dspace/handle/1850/438.
Full textShongwe, Sandile Charles. "Contributions to control charts for attributes data." Diss., University of Pretoria, 2014. http://hdl.handle.net/2263/79185.
Full textKalibjian, J. R., T. J. Voss, J. J. Yio, and B. Hedeline. "Automated Binding of Attributes to Telemetry Data." International Foundation for Telemetering, 1993. http://hdl.handle.net/10150/608880.
Full textAn automated method is described for binding attributes to extracted data from a telemetry stream. These attributes can be used by post processing utilities to facilitate efficient analysis. A practical implementation of such a scheme is described.
MARTINS, LEONARDO DE OLIVEIRA. "ESTIMATES OF VOLUMETRIC CURVATURE ATTRIBUTES IN SEISMIC DATA." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2012. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=35204@1.
Full textCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
Atributos de curvatura são uma importante ferramenta para visualização e interpretação de feições estruturais em dados sísmicos. Tais medidas podem realçar falhas e fraturas sutis que não estavam evidentes no dado de amplitude, fornecendo ao intérprete informações importantes para a construção do modelo geológico da área de interesse. Neste trabalho é apresentado um método para estimar atributos de curvatura volumérica em dados sísmicos empilhados. A partir do dado de amplitude, é computado um atributo identificador de horizonte, o qual permite que horizontes sísmicos sejam representados como superfícies de nível. Dessa maneira, o gradiente desse atributo fornece uma representação coerente do campo de normais do volume. Fórmulas para o cálculo de curvatura em superfícies implícitas são usadas para obter vários atributos de curvatura úteis na delineação e predição de importantes feições estratigráficas. Testes realizados com dados sintéticos e reais mostram que o método proposto é capaz de fornecer estimativas coerentes de atributos de curvatura a um baixo custo de processamento. São avaliados três atributos identificadores de horizontes: fase instantânea, derivada vertical e atributo de ridges.
Curvature attributes are powerful tools for visualization and interpretation of structural features in seismic data. Such measures may highlight faults and subtle fractures that were not evident in amplitude data, providing important information to the interpreter to build the geological model of the area of interest. This paper presents a method for estimating volumetric curvature attributes in post-stack seismic data. Using amplitude volume, an horizon identifier attribute is computed, in order to represent seismic horizons as level surfaces. Thus, the gradient of this attribute provides a coherent estimate of volumetric normal field. Formulas for the calculation of curvature in implicit surfaces are used to compute several curvature attributes useful in the delineation and prediction of important stratigraphic features. Tests with synthetic and real data show that the proposed method is able to provide consistent estimates of attributes of curvature at low cost processing. Three horizon identifer attributes are evaluated: instantaneous phase, vertical derivative and ridge attribute.
Qaiser, Elizae. "Quantization of Real-Valued Attributes for Data Mining." University of Cincinnati / OhioLINK, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=ucin983500840.
Full textNajmuddin, Ilyas Juzer. "Austin Fracture mapping using frequency data derived from seismic data." Texas A&M University, 2003. http://hdl.handle.net/1969/34.
Full textPham, Thanh H. "Dynamic Update Techniques for Online Maps and Attributes Data." NSUWorks, 2001. http://nsuworks.nova.edu/gscis_etd/771.
Full textNOGUEIRA, DANIEL MOURA. "DATA VISUALIZATION: THE PERSUASIVE SPEECH OF VISUAL ATTRIBUTES IN INFOGRAPHICS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2014. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=24672@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO
Esta dissertação aborda o tema do discurso persuasivo nos infográficos, um dos produtos do Design da Informação. Os infográficos são amplamente usados como ferramenta de comunicação pela mídia, com o intuito de transmitir informações de modo sintético, rápido e atraente por meio de representações visuais diagramáticas. Examina e analisa os atributos visuais dos gráficos e infográficos sob o ponto de vista da retórica visual. Investiga o uso do ferramental disponível para a elaboração de visualizações de dados persuasivas, que comuniquem de forma eloquente e eficiente o discurso desejado, obtendo a adesão do leitor. Os aportes teóricos da pesquisa se encontram na proposta de uma Retórica do Design, de Almeida Junior, fundamentada na Nova Retórica, de Chaïm Perelman e Lucie Olbrechts-Tyteca, nas investigações sobre a Percepção Visual voltada à visualização de dados, nas pesquisas de Colin Ware e Stephen Few, e na Semiótica de Charles Sanders Peirce, como elemento transdisciplinar, perpassando pelos diferentes tópicos como forma de integrá-los. Foram tomados, como casos exemplares, infográficos da seção Jornais da Sexta Mostra Nacional de Infografia de 2012, o Infolide. Os infográficos analisados mostram a intensa presença de recursos e ferramentas de persuasão na infografia impressa. Como resultado, chegou-se à conclusão de que é possível o designer intensificar o poder persuasivo dos seus infográficos, aprofundando-se acerca dos sistemas cognitivos da linguagem que regem a compreensão do leitor, ou seja, do seu auditório.
This dissertation addresses the topic of persuasive speech in infographics, one of the products of the Information Design. The infographics are widely used as a communication tool by the media, in order to transmit information in a synthetic, fast and attractive way using visual diagrammatic representations. Examines and analyzes the visual attributes of the data graphs and infographics from the point of view of visual rhetoric. Investigates the use of the tools available for developing compelling data visualizations that communicate eloquently and efficiently the desired speech, with the adherence of the reader. The theoretical references of the research are the proposal of a Rhetoric of Design, by Almeida Junior, based on the New Rhetoric of Chaïm Perelman and Lucie Olbrechts- Tyteca, the investigations on Visual Perception oriented to data visualization, in surveys of Colin Ware and Stephen Few, and the Semiotics of Charles Sanders Peirce, as a transdisciplinary element, passing through the different topics, integrating them. Were taken, as special cases, infographics from the Newspapers section of the 6th National Exhibition Infographics 2012, Infolide. The analyzed infographics show the intense presence of persuasive tools in printed infographics. As a result, the conclusion that the designer can enhance the persuasive power of their infographics deepening his knowledge about cognitive and language systems that govern the reader s understanding, ie, of his audience.
Sajja, Sunitha. "Data Mining of Medical Datasets with Missing Attributes from Different Sources." Youngstown State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1300298263.
Full textBooks on the topic "Attributes data"
Scarpa, Riccardo. Reliability of benefit value transfers from contingent valuation data with forest-specific attributes. Milan: Fondazione Eni Enrico Mattei, 2000.
Find full textByrne, John C. A data structure for describing sampling designs to aid in compilation of stand attributes. Ogden, UT: U.S. Dept. of Agriculture, Forest Service, Intermountain Research Station, 1988.
Find full textByrne, John C. A data structure for describing sampling designs to aid in compilation of stand attributes. Ogden, UT: U.S. Dept. of Agriculture, Forest Service, Intermountain Research Station, 1988.
Find full textMuus, Kyle J. Health-related attributes of North Dakota adults with disabilities: Analysis of 2001-2007 BRFSS data. Minot, ND: North Dakota Disability Health Project, North Dakota Center for Persons with Disabilities, Minot State University, 2009.
Find full textLambaounas, Andreas. Data mining by attribute oriented induction. Manchester: UMIST, 1994.
Find full textWaite, William M. Generator for attributed grammars: Abstract data type. Sankt Augustin, W.-Germany: Gesellschaft f"ur Mathematik und Datenverarbeitung, 1986.
Find full textWang, Y. Richard. Toward quality data: An attribute-based approach. Cambridge, MA, USA: Productivity From Information Technology, "PROFIT" Research Initiative, Sloan School of Management, Massachusetts Institute of Technology, 1992.
Find full textReeve, Derek E. Attribute data and database theory: Course notes. 4th ed. Manchester: Manchester Metropolitan University Department of Environmental and Geographical Sciences, 1994.
Find full textPrediger, D. J. Linking occupational attribute preferences to occupations. Iowa City, Iowa: American College Testing Program, 1996.
Find full textEvangeliou, N. Simulating statistical quality control procedures for handling attribute data. Manchester: UMIST, 1996.
Find full textBook chapters on the topic "Attributes data"
von Frese, Ralph R. B. "Data Attributes." In Basic Environmental Data Analysis for Scientists and Engineers, 15–34. Boca Raton, FL : CRC Press, Taylor & Francis Group, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9780429291210-2.
Full textBramer, Max. "Continuous Attributes." In Principles of Data Mining, 93–119. London: Springer London, 2016. http://dx.doi.org/10.1007/978-1-4471-7307-6_8.
Full textBramer, Max. "Continuous Attributes." In Principles of Data Mining, 93–119. London: Springer London, 2020. http://dx.doi.org/10.1007/978-1-4471-7493-6_8.
Full textBramer, Max. "Continuous Attributes." In Principles of Data Mining, 93–119. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4884-5_8.
Full textSharmanska, Viktoriia, and Novi Quadrianto. "In the Era of Deep Convolutional Features: Are Attributes Still Useful Privileged Data?" In Visual Attributes, 31–48. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50077-5_3.
Full textChandra, Yanto, and Liang Shang. "Data Attributes and Memos." In Qualitative Research Using R: A Systematic Approach, 107–23. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3170-1_9.
Full textKauderer, Harald, and Hans-Joachim Mucha. "Supervised Learning with Qualitative and Mixed Attributes." In Classification, Data Analysis, and Data Highways, 374–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72087-1_40.
Full textNanda, Niranjan C. "Analysing Seismic Attributes." In Seismic Data Interpretation and Evaluation for Hydrocarbon Exploration and Production, 171–85. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26491-2_10.
Full textNanda, Niranjan C. "Analysing Seismic Attributes." In Seismic Data Interpretation and Evaluation for Hydrocarbon Exploration and Production, 205–22. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75301-6_10.
Full textHamilton, Howard J., and Dee Jay Randall. "Data Mining with Calendar Attributes." In Temporal, Spatial, and Spatio-Temporal Data Mining, 117–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45244-3_10.
Full textConference papers on the topic "Attributes data"
Singh, Prem Kumar, and Aswani Kumar. "Attribute implications in data with fuzzy attributes using armstrong axioms." In 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS). IEEE, 2017. http://dx.doi.org/10.1109/icecds.2017.8389514.
Full textBelohlavek, Radim, and Vilem Vychodil. "Similarity issues in attribute implications from data with fuzzy attributes." In Proceedings of the 2006 IEEE International Conference on Information Reuse and Integration. IEEE, 2006. http://dx.doi.org/10.1109/iri.2006.252401.
Full textProtasov, Maxim I., Vladimir A. Tcheverda, and Valery V. Shilikov. "Diffraction images and their attributes based on asymmetric summation: real data application." In Недропользование. Горное дело. Направления и технологии поиска, разведки и разработки месторождений полезных ископаемых. Экономика. Геоэкология. Федеральное государственное бюджетное учреждение науки Институт нефтегазовой геологии и геофизики им. А.А. Трофимука Сибирского отделения Российской академии наук, 2020. http://dx.doi.org/10.18303/b978-5-4262-0102-6-2020-062.
Full textDong, Tingting, Shoji Nishimura, and Jianquan Liu. "Refining Image Search Results using Multiple Attributes." In 2019 IEEE International Conference on Big Data (Big Data). IEEE, 2019. http://dx.doi.org/10.1109/bigdata47090.2019.9005685.
Full textLi, Nan, and Longin Jan Latecki. "Affinity Learning for Mixed Data Clustering." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/302.
Full textBienati, N. "Impact of Geometry of Minimum Data Sets on 3D Velocity Analysis." In EAGE/SEG Workshop - Depth Imaging of Reservoir Attributes. European Association of Geoscientists & Engineers, 1998. http://dx.doi.org/10.3997/2214-4609.201406708.
Full textTrabelsi, Mohamed, Brian D. Davison, and Jeff Heflin. "Improved Table Retrieval Using Multiple Context Embeddings for Attributes." In 2019 IEEE International Conference on Big Data (Big Data). IEEE, 2019. http://dx.doi.org/10.1109/bigdata47090.2019.9005681.
Full textYo, Take, and Kazutoshi Sasahara. "Inference of personal attributes from tweets using machine learning." In 2017 IEEE International Conference on Big Data (Big Data). IEEE, 2017. http://dx.doi.org/10.1109/bigdata.2017.8258295.
Full textWei, Xiaokai, Bokai Cao, Weixiang Shao, Chun-Ta Lu, and Philip S. Yu. "Community detection with partially observable links and node attributes." In 2016 IEEE International Conference on Big Data (Big Data). IEEE, 2016. http://dx.doi.org/10.1109/bigdata.2016.7840670.
Full textWalter, Robert A., and Leonora Katz-Rhoads. "NHTSA Vehicle Safety Attributes Data Book." In SAE International Congress and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1987. http://dx.doi.org/10.4271/870347.
Full textReports on the topic "Attributes data"
Byrne, John C., and Albert R. Stage. A data structure for describing sampling designs to aid in compilation of stand attributes. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station, 1988. http://dx.doi.org/10.2737/int-gtr-247.
Full textOlson, Jon E., Larry W. Lake, and Steve E. Laubach. Advanced technology for predicting the fluid flow attributes of naturally fractured reservoirs from quantitative geological data and modeling. Office of Scientific and Technical Information (OSTI), November 2004. http://dx.doi.org/10.2172/838717.
Full textJon E. Olson, Larry W. Lake, and Steve E. Laubach. ADVANCED TECHNOLOGY FOR PREDICTING THE FLUID FLOW ATTRIBUTES OF NATURALLY FRACTURED RESERVOIRS FROM QUANTITATIVE GEOLOGIC DATA AND MODELING. Office of Scientific and Technical Information (OSTI), April 2003. http://dx.doi.org/10.2172/820623.
Full textOlson, Jon E., Larry W. Lake, and Steve E. Laubach. Advanced technology for predicting the fluid flow attributes of naturally fractured reservoirs from quantitative geological data and modeling. Office of Scientific and Technical Information (OSTI), May 2003. http://dx.doi.org/10.2172/820624.
Full textLoftis, Charles, Tennyson Chen, and Jonathan Cirella. Attribute-level encryption of data in public android databases. Research Triangle Park, NC: RTI Press, September 2013. http://dx.doi.org/10.3768/rtipress.2013.op.0016.1309.
Full textSither, Mark A. Spatial Data Transformation: Feature Attribute Conversion Issues and Practical Experience. Fort Belvoir, VA: Defense Technical Information Center, March 1991. http://dx.doi.org/10.21236/ada254829.
Full textSither, Mark A. Spatial Data Transformation: Feature Attribute Conversion Issues and Practical Experience. Fort Belvoir, VA: Defense Technical Information Center, January 1991. http://dx.doi.org/10.21236/ada254238.
Full textArbeit, Caren A., Alexander Bentz, Emily Forrest Cataldi, and Herschel Sanders. Alternative and Independent: The universe of technology-related “bootcamps". RTI Press, February 2019. http://dx.doi.org/10.3768/rtipress.2019.rr.0033.1902.
Full textFerraiolo, David F., Ramaswamy Chandramouli, Vincent C. Hu, and D. Richard R. Kuhn. A Comparison of Attribute Based Access Control (ABAC) Standards for Data Service Applications. National Institute of Standards and Technology, October 2016. http://dx.doi.org/10.6028/nist.sp.800-178.
Full textCafferata, Fernando G., Bridget Lynn Hoffmann, and Carlos Scartascini. How Can We Improve Air Pollution?: Try Increasing Trust First. Inter-American Development Bank, August 2021. http://dx.doi.org/10.18235/0003453.
Full text