To see the other types of publications on this topic, follow the link: Au/TS-1.

Journal articles on the topic 'Au/TS-1'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Au/TS-1.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Harris, James W., Jeremy Arvay, Garrett Mitchell, W. Nicholas Delgass, and Fabio H. Ribeiro. "Propylene oxide inhibits propylene epoxidation over Au/TS-1." Journal of Catalysis 365 (September 2018): 105–14. http://dx.doi.org/10.1016/j.jcat.2018.06.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fu, Jinsong, Xiaoming Zhang, Wuyang Liang, Qian Lei, Bing Sun, Wujun He, and Guowei Deng. "Direct Gas-Phase Oxidation of Propylene to Acetone in the Presence of H2 and O2 over Au/TS-1 Catalyst." Current Organic Synthesis 17, no. 8 (October 28, 2020): 685–90. http://dx.doi.org/10.2174/1570179417666200615154837.

Full text
Abstract:
A novel process for the preparation of acetone is reported by gas-phase oxidation of propylene in the presence of H2 and O2 with Au supported TS-1 catalyst (Au/TS-1). By elevating the reaction temperature to 280 oC, Au/TS-1 catalyzes 11.6% propylene generating acetone with 70.6% selectivity, and 8.2% acetone in onepass yield. Acetone is originated from propylene oxide isomerization, which is mainly attributed to the surface of the Lewis base and high reaction temperature. Furthermore, small Au nanoparticle size promotes the reaction.
APA, Harvard, Vancouver, ISO, and other styles
3

Joshi, Ajay M., W. Nicholas Delgass, and Kendall T. Thomson. "H2 adsorption and H/D exchange on Au/TS-1 and Au/S-1 catalysts." Topics in Catalysis 44, no. 1-2 (June 2007): 27–39. http://dx.doi.org/10.1007/s11244-007-0275-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bukowski, Brandon C., W. Nicholas Delgass, and Jeffrey Greeley. "Gold Stability and Diffusion in the Au/TS-1 Catalyst." Journal of Physical Chemistry C 125, no. 8 (February 17, 2021): 4519–31. http://dx.doi.org/10.1021/acs.jpcc.0c10193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

CUMARANATUNGE, L., and W. DELGASS. "Enhancement of Au capture efficiency and activity of Au/TS-1 catalysts for propylene epoxidation." Journal of Catalysis 232, no. 1 (May 15, 2005): 38–42. http://dx.doi.org/10.1016/j.jcat.2005.02.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jiang, Jian, Harold H. Kung, Mayfair C. Kung, and Jiantai Ma. "Aqueous phase epoxidation of 1-butene catalyzed by suspension of Au/TiO2 +TS-1." Gold Bulletin 42, no. 4 (December 2009): 280–87. http://dx.doi.org/10.1007/bf03214950.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Lu, Jiajun Dai, Yan Xu, Yingling Hong, Jiale Huang, Daohua Sun, and Qingbiao Li. "Titanium silicalite-1 zeolite encapsulating Au particles as a catalyst for vapor phase propylene epoxidation with H2/O2: a matter of Au–Ti synergic interaction." Journal of Materials Chemistry A 8, no. 8 (2020): 4428–36. http://dx.doi.org/10.1039/c9ta12470e.

Full text
Abstract:
Seed-directed solvent-free crystallization combined with bio-extract integration is used to encapsulate Au into TS-1, enhancing Au–Ti synergic interaction. The resulted Au–Ti@MFI exhibits excellent performances for vapor phase propylene epoxidation.
APA, Harvard, Vancouver, ISO, and other styles
8

YANG, Peng-fei, Ji-cheng ZHOU, De-hua LI, and Wen-ming REN. "Catalytic performance of Au/TS-1 in selective oxidation of nitrogen monoxide." Journal of Fuel Chemistry and Technology 38, no. 1 (February 2010): 80–85. http://dx.doi.org/10.1016/s1872-5813(10)60022-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Lina, Pinran Lin, and Shaofeng Liu. "Research on Direct Epoxidation of Propylene on Modified Au / TS-1 Catalysts." IOP Conference Series: Earth and Environmental Science 218 (February 24, 2019): 012155. http://dx.doi.org/10.1088/1755-1315/218/1/012155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sasidharan, Manickam, Astam K. Patra, Yoshimichi Kiyozumi, and Asim Bhaumik. "Fabrication, characterization and catalytic oxidation of propylene over TS-1/Au membranes." Chemical Engineering Science 75 (June 2012): 250–55. http://dx.doi.org/10.1016/j.ces.2012.03.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Li, Zhishan, Xiaoyang Chen, Weihua Ma, and Qin Zhong. "Effect of TS-1 Crystal Planes on the Catalytic Activity of Au/TS-1 for Direct Propylene Epoxidation with H2 and O2." ACS Sustainable Chemistry & Engineering 8, no. 23 (May 26, 2020): 8496–504. http://dx.doi.org/10.1021/acssuschemeng.9b07205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Aly, Mostafa, and Mark Saeys. "Selective silylation boosts propylene epoxidation with H2 and O2 over Au/TS-1." Chem Catalysis 1, no. 4 (September 2021): 761–62. http://dx.doi.org/10.1016/j.checat.2021.07.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Ren, Yingjie, Le Xu, Liyan Zhang, Jianggan Wang, Yueming Liu, Mingyuan He, and Peng Wu. "Selective epoxidation of propylene to propylene oxide with H2 and O2 over Au/Ti-MWW catalysts." Pure and Applied Chemistry 84, no. 3 (November 23, 2011): 561–78. http://dx.doi.org/10.1351/pac-con-11-07-10.

Full text
Abstract:
Direct epoxidation of propylene to propylene oxide (PO) with H2 and O2 has been performed on bifunctional catalysts, Au nanoparticles supported on novel Ti-MWW titanosilicate (Au/Ti-MWW). In comparison to conventional Au/TS-1 catalysts, Au/Ti-MWW exhibited a similar phenomenon with respect to PO formation, that is, the PO selectivity increased with increasing Si/Ti ratio of titanosilicate. However, at optimized Ti contents corresponding to Si/Ti ratio >140, the PO selectivity of Au/Ti-MWW catalysts was lower than 60 % in comparison to ca. 90 % achieved on Au/TS-1. A large number of boron species and defect-site-related hydroxyl groups contained in Ti-MWW were assumed to retard the desorption of PO from the channels or crystallite surface of zeolite, which favors side reactions such as over-oxidation and decomposition of PO. Poststructural rearrangement was then carried out on Ti-MWW with piperidine (PI) solution to improve effectively its hydrophobicity, leading to defect-less Re-Ti-MWW. This enhanced significantly the PO selectivity of Au/Re-Ti-MWW thus prepared, which reached as high as 92 % at Si/Ti ratio of 135. Au/Re-Ti-MWW(135) then gave the highest PO formation rate of 22.0 gPO kg–1 h–1.
APA, Harvard, Vancouver, ISO, and other styles
14

Song, Zhaoning, Xiang Feng, Nan Sheng, Dong Lin, Yichuan Li, Yibin Liu, Xiaobo Chen, Xinggui Zhou, De Chen, and Chaohe Yang. "Propene epoxidation with H2 and O2 on Au/TS-1 catalyst: Cost-effective synthesis of small-sized mesoporous TS-1 and its unique performance." Catalysis Today 347 (May 2020): 102–9. http://dx.doi.org/10.1016/j.cattod.2018.04.068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Nobari, Hadi, Mustafa Sögüt, Rafael Oliveira, Jorge Pérez-Gómez, Katsuhiko Suzuki, and Hassane Zouhal. "Wearable Inertial Measurement Unit to Accelerometer-Based Training Monotony and Strain during a Soccer Season: A within-Group Study for Starters and Non-Starters." International Journal of Environmental Research and Public Health 18, no. 15 (July 28, 2021): 8007. http://dx.doi.org/10.3390/ijerph18158007.

Full text
Abstract:
The purpose of this study was to analyze the intragroup differences in weekly training monotony (TM) and training strain (TS) between starter and non-starter male professional soccer players at accelerometry based variables throughout the periods of a season. TM and TS of different accelerations and decelerations zones for twenty-one players were followed for forty-eight weeks. Regardless of group, players obtained the highest mean TM (starters = 3.3 ± 0.6, non-starters = 2.2 ± 1.1, in arbitrary unit, AU) and TS (starters = 1288.9 ± 265.2, non-starters = 765.4 ± 547.5, AU) scores in the pre-season for accelerations at Zone 1 (<2 m/s2). The results also indicated that both groups exhibited similar TM and TS scores in accelerations at Zones 2 (2 to 4 m/s2) and 3 (>4 m/s2) across the entire season. While the starters showed the highest TM and TS scores at deceleration Zone 1 (<−2 m/s2) in the end-season, the non-starters exhibited the highest scores at the deceleration Zone 1 in pre-season. It seems that in pre-season, coaches applied higher levels of training with greater emphasis on deceleration for non-starters. This tendency was reduced over time for non-starters, while starters presented higher values of deceleration Zone 1. These results highlight the variations in TM and TS across the different periods of a full season according to match starting status among professional soccer players, and the results suggest that non-starter players should receive higher levels of load to compensate for non-participation in matches throughout a soccer season.
APA, Harvard, Vancouver, ISO, and other styles
16

Saxena, Samidha, Reena Dwivedi, Sheenu Bhadauria, V. Chumbhale, and Rajendra Prasad. "Kinetics studies and mechanism evolution of the epoxidation of styrene over nanoporous Au doped TS-1." Polish Journal of Chemical Technology 12, no. 4 (January 1, 2010): 72–78. http://dx.doi.org/10.2478/v10026-010-0054-6.

Full text
Abstract:
Kinetics studies and mechanism evolution of the epoxidation of styrene over nanoporous Au doped TS-1 A kinetic investigation of the slurry phase epoxidation of styrene with hydrogen peroxide has been carried out, for the first time, over nanoporous Au doped TS-1 catalyst, in a batch reactor, in the temperature range of 313-333 K. It was found that product selectivity and the rate of reaction are greatly influenced by concentrations of styrene and hydrogen peroxide. Kinetics studies reveal that the mechanism of the reaction is of the "Redox" type. The rate equation, r = k1 k2 PO PH / (k1 PO + k2 PH) deduced, assuming a steady state involving two stage oxidation-reduction process, represent the data most satisfactorily for the conversion of styrene to styrene oxide. A tentative mechanism of the process has also been suggested.
APA, Harvard, Vancouver, ISO, and other styles
17

Lu, Ji-Qing, Na Li, Xiao-Rong Pan, Chao Zhang, and Meng-Fei Luo. "Direct propylene epoxidation with H2 and O2 over In modified Au/TS-1 catalysts." Catalysis Communications 28 (November 2012): 179–82. http://dx.doi.org/10.1016/j.catcom.2012.09.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

TAYLOR, B., J. LAUTERBACH, G. BLAU, and W. DELGASS. "Reaction kinetic analysis of the gas-phase epoxidation of propylene over Au/TS-1." Journal of Catalysis 242, no. 1 (August 15, 2006): 142–52. http://dx.doi.org/10.1016/j.jcat.2006.06.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

BRAVOSUAREZ, J., K. BANDO, T. FUJITANI, and S. OYAMA. "Mechanistic study of propane selective oxidation with H2 and O2 on Au/TS-1." Journal of Catalysis 257, no. 1 (July 1, 2008): 32–42. http://dx.doi.org/10.1016/j.jcat.2008.04.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Joshi, Ajay M., W. Nicholas Delgass, and Kendall T. Thomson. "Adsorption of Small Aun(n= 1−5) and Au−Pd Clusters Inside the TS-1 and S-1 Pores." Journal of Physical Chemistry B 110, no. 33 (August 2006): 16439–51. http://dx.doi.org/10.1021/jp061754o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Li, Naixu, Bin Yang, Ming Liu, Yong Chen, and Jiancheng Zhou. "Synergetic photo-epoxidation of propylene with molecular oxygen over bimetallic Au–Ag/TS-1 photocatalysts." Chinese Journal of Catalysis 38, no. 5 (May 2017): 831–43. http://dx.doi.org/10.1016/s1872-2067(17)62832-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Ren, Yue-gong, Jiahui Huang, Qiang Lv, Yan Xie, An-Hui Lu, and Masatake Haruta. "Dual-component gas pretreatment for Au/TS-1: Enhanced propylene epoxidation with oxygen and hydrogen." Applied Catalysis A: General 584 (August 2019): 117172. http://dx.doi.org/10.1016/j.apcata.2019.117172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Zhu, Yongfeng, Qian Liu, Xinyu Yang, Jiacheng Wang, Shuirong Li, Duo Wang, Yuanyuan Ye, Dechao Wang, and Zhifeng Zheng. "Direct catalytic conversion cellulose pyrolysis vapors into long chain alkanes (LCAs) over Au/TS-1." Journal of the Energy Institute 98 (October 2021): 11–19. http://dx.doi.org/10.1016/j.joei.2021.05.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Feng, X., D. Chen, and X. G. Zhou. "Thermal stability of TPA template and size-dependent selectivity of uncalcined TS-1 supported Au catalyst for propene epoxidation with H2 and O2." RSC Advances 6, no. 50 (2016): 44050–56. http://dx.doi.org/10.1039/c6ra05772a.

Full text
Abstract:
An Au/TS-1-B catalyst, whose internal TPA template is stable below 350 °C, shows volcano-shaped activity with reaction temperature and reaches a noteworthy PO formation rate (220 gPO h−1 kgCat−1) at 260 °C. Moreover, intrinsic size-dependent selectivity is also studied.
APA, Harvard, Vancouver, ISO, and other styles
25

Zhan, Guowu, Mingming Du, Daohua Sun, Jiale Huang, Xin Yang, Yao Ma, Abdul-Rauf Ibrahim, and Qingbiao Li. "Vapor-Phase Propylene Epoxidation with H2/O2over Bioreduction Au/TS-1 Catalysts: Synthesis, Characterization, and Optimization." Industrial & Engineering Chemistry Research 50, no. 15 (August 3, 2011): 9019–26. http://dx.doi.org/10.1021/ie200099z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Gaudet, Jason, Kyoko K. Bando, Zhaoxia Song, Tadahiro Fujitani, Wei Zhang, Dang Sheng Su, and S. Ted Oyama. "Effect of gold oxidation state on the epoxidation and hydrogenation of propylene on Au/TS-1." Journal of Catalysis 280, no. 1 (May 2011): 40–49. http://dx.doi.org/10.1016/j.jcat.2011.03.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Lee, Wen-Sheng, M. Cem Akatay, Eric A. Stach, Fabio H. Ribeiro, and W. Nicholas Delgass. "Reproducible preparation of Au/TS-1 with high reaction rate for gas phase epoxidation of propylene." Journal of Catalysis 287 (March 2012): 178–89. http://dx.doi.org/10.1016/j.jcat.2011.12.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Paris, P., C. Heteau, O. Maillet, and A. Heron. "Facteurs de risque suicidaire et troubles dépressifs." European Psychiatry 29, S3 (November 2014): 565. http://dx.doi.org/10.1016/j.eurpsy.2014.09.243.

Full text
Abstract:
L’objectif de notre étude comparative est d’isoler des facteurs de risque de passage à l’acte suicidaire en cas de troubles dépressifs. Des patients adultes déprimés sont inclus dans l’étude, après 48 heures d’hospitalisation dans le service de psychiatrie, en distinguant les patients déprimés admis suite à une Tentative de Suicide (groupe « TS ») et les patients déprimés sans TS (groupe « Control »). Le bilan clinique est effectué à l’aide d’auto-questionnaires et d’hétéro-évaluations (Hamilton, coping, insight, dépendance interpersonnelle…) [1–4].Alors que les deux groupes possèdent des caractéristiques sociodémographiques ainsi que des dimensions dépressives comparables, cette étude montre que les patients « TS » sont plus isolés socialement et ont des ATCD familiaux de TS pour 67 % d’entre eux (contre 31 % chez les « Control »). Ces patients « TS » ont un pauvre insight comparé aux patients « Control » et ont une conscience partielle de leurs troubles psychiatriques. Aussi, les deux groupes se distinguent clairement selon les facteurs de coping, tout en ne montrant pas de différence au niveau de la dépendance interpersonnelle. À partir de ces données, nous proposons de nous interroger sur les modalités de sortie des patients déprimés et de discuter d’un programme spécifique de suivi ambulatoire post-crise.
APA, Harvard, Vancouver, ISO, and other styles
29

Feng, Xiang, Xuezhi Duan, Jia Yang, Gang Qian, Xinggui Zhou, De Chen, and Weikang Yuan. "Au/uncalcined TS-1 catalysts for direct propene epoxidation with H2 and O2: Effects of Si/Ti molar ratio and Au loading." Chemical Engineering Journal 278 (October 2015): 234–39. http://dx.doi.org/10.1016/j.cej.2014.09.108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Hong, Yingling, Lanting Ke, Zhanhai Li, Jiale Huang, Guowu Zhan, Yao Zhou, Daohua Sun, Jinli Zhang, and Qingbiao Li. "Seed-Induced Zeolitic TS-1 Immobilized with Bioinspired-Au Nanoparticles for Propylene Epoxidation with O2 and H2." Catalysis Letters 150, no. 6 (January 3, 2020): 1798–811. http://dx.doi.org/10.1007/s10562-019-03086-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Du, Mingming, Guowu Zhan, Xin Yang, Huixuan Wang, Wenshuang Lin, Yao Zhou, Jing Zhu, et al. "Ionic liquid-enhanced immobilization of biosynthesized Au nanoparticles on TS-1 toward efficient catalysts for propylene epoxidation." Journal of Catalysis 283, no. 2 (October 2011): 192–201. http://dx.doi.org/10.1016/j.jcat.2011.08.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Liu, Tong, Pelin Hacarlioglu, S. Ted Oyama, Meng-Fei Luo, Xiao-Rong Pan, and Ji-Qing Lu. "Enhanced reactivity of direct propylene epoxidation with H2 and O2 over Ge-modified Au/TS-1 catalysts." Journal of Catalysis 267, no. 2 (October 25, 2009): 202–6. http://dx.doi.org/10.1016/j.jcat.2009.08.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Song, Zhaoning, Xiang Feng, Nan Sheng, Dong Lin, Yichuan Li, Yibin Liu, Xiaobo Chen, De Chen, Xinggui Zhou, and Chaohe Yang. "Cost-efficient core-shell TS-1/silicalite-1 supported Au catalysts: Towards enhanced stability for propene epoxidation with H2 and O2." Chemical Engineering Journal 377 (December 2019): 119927. http://dx.doi.org/10.1016/j.cej.2018.09.088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Wang, Gang, Yueqiang Cao, Zhihua Zhang, Jialun Xu, Mengke Lu, Gang Qian, Xuezhi Duan, Weikang Yuan, and Xinggui Zhou. "Surface Engineering and Kinetics Behaviors of Au/Uncalcined TS-1 Catalysts for Propylene Epoxidation with H2 and O2." Industrial & Engineering Chemistry Research 58, no. 37 (August 27, 2019): 17300–17307. http://dx.doi.org/10.1021/acs.iecr.9b03708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Hong, Yingling, Jiale Huang, Guowu Zhan, and Qingbiao Li. "Biomass-Modified Au/TS-1 as Highly Efficient and Stable Nanocatalysts for Propene Epoxidation with O2 and H2." Industrial & Engineering Chemistry Research 58, no. 48 (November 8, 2019): 21953–60. http://dx.doi.org/10.1021/acs.iecr.9b04107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Ren, Yuegong, Xi Sun, Jiahui Huang, Liyun Zhang, Bingsen Zhang, Masatake Haruta, and An-Hui Lu. "Dual-Component Sodium and Cesium Promoters for Au/TS-1: Enhancement of Propene Epoxidation with Hydrogen and Oxygen." Industrial & Engineering Chemistry Research 59, no. 17 (April 7, 2020): 8155–63. http://dx.doi.org/10.1021/acs.iecr.9b07011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Zhan, Guowu, Yingling Hong, Fenfen Lu, Abdul-Rauf Ibrahim, Mingming Du, Daohua Sun, Jiale Huang, Qingbiao Li, and Jun Li. "Kinetics of liquid phase oxidation of benzyl alcohol with hydrogen peroxide over bio-reduced Au/TS-1 catalysts." Journal of Molecular Catalysis A: Chemical 366 (January 2013): 215–21. http://dx.doi.org/10.1016/j.molcata.2012.09.026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Li, Zhishan, Lin Gao, Xiangshuai Zhu, Weihua Ma, Xiang Feng, and Qin Zhong. "Synergistic Enhancement over Au‐Pd/TS‐1 Bimetallic Catalysts for Propylene Epoxidation with H 2 and O 2." ChemCatChem 11, no. 20 (September 25, 2019): 5116–23. http://dx.doi.org/10.1002/cctc.201900845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Lu, Jiqing, Xiaoming Zhang, Juan J. Bravo-Suárez, Tadahiro Fujitani, and S. Ted Oyama. "Effect of composition and promoters in Au/TS-1 catalysts for direct propylene epoxidation using H2 and O2." Catalysis Today 147, no. 3-4 (October 2009): 186–95. http://dx.doi.org/10.1016/j.cattod.2008.09.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Zhan, Guowu, Mingming Du, Jiale Huang, and Qingbiao Li. "Green synthesis of Au/TS-1 catalysts via two novel modes and their surprising performance for propylene epoxidation." Catalysis Communications 12, no. 9 (April 2011): 830–33. http://dx.doi.org/10.1016/j.catcom.2011.01.026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Taylor, Bradley, Jochen Lauterbach, and W. Nicholas Delgass. "The effect of mesoporous scale defects on the activity of Au/TS-1 for the epoxidation of propylene." Catalysis Today 123, no. 1-4 (May 2007): 50–58. http://dx.doi.org/10.1016/j.cattod.2007.01.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

YAP, N. "Reactivity and stability of Au in and on TS-1 for epoxidation of propylene with H2 and O2." Journal of Catalysis 226, no. 1 (August 2004): 156–70. http://dx.doi.org/10.1016/j.jcat.2004.05.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Sheng, Nan, Zhikun Liu, Zhaoning Song, Dong Lin, Xiang Feng, Yibin Liu, Xiaobo Chen, De Chen, Xinggui Zhou, and Chaohe Yang. "Enhanced stability for propene epoxidation with H2 and O2 over wormhole-like hierarchical TS-1 supported Au nanocatalyst." Chemical Engineering Journal 377 (December 2019): 119954. http://dx.doi.org/10.1016/j.cej.2018.09.115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Liu, Yujia, Chenyang Zhao, Bing Sun, Hongwei Zhu, and Wei Xu. "Preparation and modification of Au/TS-1 catalyst in the direct epoxidation of propylene with H2 and O2." Applied Catalysis A: General 624 (August 2021): 118329. http://dx.doi.org/10.1016/j.apcata.2021.118329.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Li, Zhishan, Weihua Ma, and Qin Zhong. "Effect of Core–Shell Support on Au/S-1/TS-1 for Direct Propylene Epoxidation and Design of Catalyst with Higher Activity." Industrial & Engineering Chemistry Research 58, no. 10 (February 22, 2019): 4010–16. http://dx.doi.org/10.1021/acs.iecr.8b04662.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Vaiva, G. "N’oublions pas les survivants ! Impact psycho-économique de la tentative de suicide sur les proches du suicidant." European Psychiatry 28, S2 (November 2013): 46–47. http://dx.doi.org/10.1016/j.eurpsy.2013.09.120.

Full text
Abstract:
HypothèseLa tentative de suicide d’un sujet propage une souffrance en cascade sur les différents cercles de l’entourage familial et affectif, qui peut se mesurer en termes de stress traumatique et d’impact médicoéconomique. Chaque année, 3 750 000 français sont concernés par une TS de l’un de leurs proches.Sujets étudiésHomme ou femme, âgé de plus de 16 ans sans limite supérieure d’âge, membre de l’entourage proche d’un suicidant (sujets habitant sous le même toit que le suicidant). Au total, 171 familles ; soit 171 suicidants et 171 « informateurs ménages ». Ces sujets ont été comparés aux données de l’Institut de recherche et de documentation en économie de la santé (IRDES) sur la population française (échantillon de 20 000 personnes, représentatif de 95 % des ménages français). L’ensemble des sujets a été recontacté par téléphone après 3 mois et 1 an.RésultatsQuatre-vingt-sept pour cent des proches vont « plutôt bien » à 1 an ; les 13 % qui vont moins bien sont importants à qualifier au plus tôt après la TS. Un modèle explicatif de la probabilité d’aller mal après 1 an est possible ; modèle dominé par l’impact psychotraumatique de la scène suicidaire ou de l’activation des secours (70 % de symptômes psychotraumatiques dans ce sous-groupe). Sur le plan médicoéconomique, nous observons une grande stabilité des contacts de soin à 1 an, qui contraste avec une forte augmentation des consommations médicamenteuses (×2,37) ; toutes les catégories pharmacologiques sont concernées. L’hypothèse d’une automédication en partie non consciente et non perçue est soulevée.
APA, Harvard, Vancouver, ISO, and other styles
47

Lian, Ting, Wei Zeng, Hai Liu, Jing Yu, Jiale Huang, Haitao Wang, and Daohua Sun. "The Influence of Active Biomolecules in Plant Extracts on the Performance of Au/TS-1 Catalysts in Propylene Epoxidation." European Journal of Inorganic Chemistry 2019, no. 23 (June 12, 2019): 2853–59. http://dx.doi.org/10.1002/ejic.201900397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Xu, Le, Yingjie Ren, Haihong Wu, Yueming Liu, Zhendong Wang, Yingtian Zhang, Jiajia Xu, Honggen Peng, and Peng Wu. "Core/shell-structured TS-1@mesoporous silica-supported Au nanoparticles for selective epoxidation of propylene with H2 and O2." Journal of Materials Chemistry 21, no. 29 (2011): 10852. http://dx.doi.org/10.1039/c1jm10483g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Du, Mingming, Jiale Huang, Daohua Sun, and Qingbiao Li. "Propylene epoxidation over biogenic Au/TS-1 catalysts by Cinnamomum camphora extract in the presence of H2 and O2." Applied Surface Science 366 (March 2016): 292–98. http://dx.doi.org/10.1016/j.apsusc.2016.01.086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Prieto, Alejandro, Miguel Palomino, Urbano Díaz, and Avelino Corma. "One-pot two-step process for direct propylene oxide production catalyzed by bi-functional Pd(Au)@TS-1 materials." Applied Catalysis A: General 523 (August 2016): 73–84. http://dx.doi.org/10.1016/j.apcata.2016.05.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography