Journal articles on the topic 'Au/WO3'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Au/WO3.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Xue, Dongping, and Zhanying Zhang. "Au-sensitized WO3 nanoparticles synthesized and their enhanced acetone sensing properties." Functional Materials Letters 11, no. 04 (2018): 1850071. http://dx.doi.org/10.1142/s1793604718500716.
Full textMinggu, Lorna Jeffery, Nurul Akmal Jaafar, Kim Hang Ng, Khuzaimah Arifin, and Rozan Mohamad Yunus. "Electrodeposited WO3/Au Photoanodes for Photoelectrochemical Reactions." Sains Malaysiana 49, no. 12 (2020): 3155–63. http://dx.doi.org/10.17576/jsm-2020-4912-27.
Full textJeffery Minggu, Lorna, Nurul Akmal Jaafar, Kim Hang Ng, Khuzaimah Arifin, and Rozan Mohamad Yunus. "Electrodeposited WO3/Au Photoanodes for Photoelectrochemical Reactions." Sains Malaysiana 49, no. 12 (2020): 3209–17. http://dx.doi.org/10.17576/jsm-2020-4912-32.
Full textFigueiredo, Nuno M., Filipe Vaz, Luís Cunha, and Albano Cavaleiro. "Au-WO3 Nanocomposite Coatings for Localized Surface Plasmon Resonance Sensing." Materials 13, no. 1 (2020): 246. http://dx.doi.org/10.3390/ma13010246.
Full textPaliwal, Ayushi, Monika Tomar, and Vinay Gupta. "Thickness Dependent Optical Properties of WO3 Thin Film using Surface Plasmon Resonance." MRS Proceedings 1494 (2013): 233–38. http://dx.doi.org/10.1557/opl.2013.137.
Full textSzékely, István, Zoltán Kovács, Mihai Rusu, et al. "Tungsten Oxide Morphology-Dependent Au/TiO2/WO3 Heterostructures with Applications in Heterogenous Photocatalysis and Surface-Enhanced Raman Spectroscopy." Catalysts 13, no. 6 (2023): 1015. http://dx.doi.org/10.3390/catal13061015.
Full textYoo, Ran, Hyun-Sook Lee, Wonkyung Kim, et al. "Selective Detection of Nitrogen-Containing Compound Gases." Sensors 19, no. 16 (2019): 3565. http://dx.doi.org/10.3390/s19163565.
Full textLamichhane, Shiva, Savita Sharma, Monika Tomar, and Arijit Chowdhuri. "Effect of variation in glancing angle deposition on resistive switching property of WO3 thin films for RRAM devices." Journal of Applied Physics 132, no. 13 (2022): 134102. http://dx.doi.org/10.1063/5.0103236.
Full textFauzi, Aynul Sakinah Ahmad, Nur Laila Hamidah, Shota Kitamura, et al. "Electrochemical Detection of Ethanol in Air Using Graphene Oxide Nanosheets Combined with Au-WO3." Sensors 22, no. 9 (2022): 3194. http://dx.doi.org/10.3390/s22093194.
Full textBalázsi, Csaba, Radu Ionescu, and Katarína Sedlácková. "Hexagonal WO3 Films with Carbon Nanotubes for Sensing Applications." Materials Science Forum 589 (June 2008): 67–71. http://dx.doi.org/10.4028/www.scientific.net/msf.589.67.
Full textCastello Lux, Kevin, Katia Fajerwerg, Julie Hot, et al. "Nano-Structuration of WO3 Nanoleaves by Localized Hydrolysis of an Organometallic Zn Precursor: Application to Photocatalytic NO2 Abatement." Nanomaterials 12, no. 24 (2022): 4360. http://dx.doi.org/10.3390/nano12244360.
Full textNiran F. Abdul-Jabbar, Issam M.Ibrahim, and Abeer H. Fezaa. "The effect of gold Nanoparticles on Structural and Electrical properties of WO3 thin films." Tikrit Journal of Pure Science 23, no. 2 (2023): 114–22. http://dx.doi.org/10.25130/tjps.v23i2.659.
Full textLin, Jin Yang, Yong Ai Zhang, Ling Jie Wang, and Tai Liang Guo. "WO3-Based Sensor Based on Hall Effect for NO2 Detection: Designed and Investigation." Advanced Materials Research 148-149 (October 2010): 1042–46. http://dx.doi.org/10.4028/www.scientific.net/amr.148-149.1042.
Full textKrajczewski, Jan, Robert Ambroziak, Sylwia Turczyniak-Surdacka, and Małgorzata Dziubałtowska. "WO3 Nanopores Array Modified by Au Trisoctahedral NPs: Formation, Characterization and SERS Application." Materials 15, no. 23 (2022): 8706. http://dx.doi.org/10.3390/ma15238706.
Full textDesseigne, Margaux, Virginie Chevallier, Véronique Madigou, et al. "Plasmonic Photocatalysts Based on Au Nanoparticles and WO3 for Visible Light-Induced Photocatalytic Activity." Catalysts 13, no. 10 (2023): 1333. http://dx.doi.org/10.3390/catal13101333.
Full textNajafi-Ashtiani, Hamed. "The effect of different surface morphologies on WO3 and WO3-Au gas-sensors performance." Journal of Materials Science: Materials in Electronics 30, no. 13 (2019): 12224–33. http://dx.doi.org/10.1007/s10854-019-01581-w.
Full textSagidolda, Yerulan, Saule Yergaliyeva, Zhandos Tolepov, et al. "Peculiarities of the Structure of Au-TiO2 and Au-WO3 Plasmonic Nanocomposites." Materials 16, no. 20 (2023): 6809. http://dx.doi.org/10.3390/ma16206809.
Full textRusu, M., M. Baia, Zs Pap, V. Danciu, and L. Baia. "Structural investigations of TiO2–WO3–Au porous composites." Journal of Molecular Structure 1073 (September 2014): 150–56. http://dx.doi.org/10.1016/j.molstruc.2014.04.087.
Full textWang, Xiaoguang, Honghui Pan, Minghui Sun, and Yanrong Zhang. "Au single atom-anchored WO3/TiO2 nanotubes for the photocatalytic degradation of volatile organic compounds." Journal of Materials Chemistry A 10, no. 11 (2022): 6078–85. http://dx.doi.org/10.1039/d1ta08143h.
Full textAl-Kuhaili, M. F., A. H. Al-Aswad, S. M. A. Durrani, and I. A. Bakhtiari. "Energy-saving transparent heat mirrors based on tungsten oxide–gold WO3/Au/WO3 multilayer structures." Solar Energy 86, no. 11 (2012): 3183–89. http://dx.doi.org/10.1016/j.solener.2012.08.008.
Full textDeng, Henghua, Dongfang Yang, Bo Chen, and Chii-Wann Lin. "Simulation of surface plasmon resonance of Au–WO3−x and Ag–WO3−x nanocomposite films." Sensors and Actuators B: Chemical 134, no. 2 (2008): 502–9. http://dx.doi.org/10.1016/j.snb.2008.05.032.
Full textDePuccio, Daniel P., Lidia Ruíz-Rodríguez, Enrique Rodríguez-Castellón, Pablo Botella, José M. López Nieto, and Christopher C. Landry. "Investigating the Influence of Au Nanoparticles on Porous SiO2–WO3 and WO3 Methanol Transformation Catalysts." Journal of Physical Chemistry C 120, no. 49 (2016): 27954–63. http://dx.doi.org/10.1021/acs.jpcc.6b08125.
Full textXu, Fang, Yanwen Yao, Dandan Bai, et al. "Au nanoparticle decorated WO3 photoelectrode for enhanced photoelectrochemical properties." RSC Advances 5, no. 74 (2015): 60339–44. http://dx.doi.org/10.1039/c5ra06241a.
Full textАлмаев, А. В., Н. Н. Яковлев, Е. В. Черников та О. П. Толбанов. "Селективные сенсоры двуокиси азота на основе тонких пленок оксида вольфрама при воздействии оптического излучения". Письма в журнал технической физики 45, № 20 (2019): 7. http://dx.doi.org/10.21883/pjtf.2019.20.48384.17901.
Full textFigueiredo, N. M., Y. T. Pei, J. T. M. De Hosson, and A. Cavaleiro. "Structural and functional properties of nanocomposite Au–WO3 coatings." Surface and Coatings Technology 280 (October 2015): 201–7. http://dx.doi.org/10.1016/j.surfcoat.2015.08.057.
Full textNg, Kim Hang, Lorna Jeffery Minggu, Nurul Akmal Jaafar, Khuzaimah Arifin, and Mohammad Bin Kassim. "Enhanced plasmonic photoelectrochemical response of Au sandwiched WO3 photoanodes." Solar Energy Materials and Solar Cells 172 (December 2017): 361–67. http://dx.doi.org/10.1016/j.solmat.2017.07.040.
Full textPark, Kyung-Won. "Electrochromic properties of Au–WO3 nanocomposite thin-film electrode." Electrochimica Acta 50, no. 24 (2005): 4690–93. http://dx.doi.org/10.1016/j.electacta.2005.03.001.
Full textReddy, B. Narsimha, P. Naresh Kumar, and Melepurath Deepa. "A Poly(3,4-ethylenedioxypyrrole)-Au@WO3-Based Electrochromic Pseudocapacitor." ChemPhysChem 16, no. 2 (2014): 377–89. http://dx.doi.org/10.1002/cphc.201402625.
Full textIbrahim, Isam M. "The effect of gold nanoparticles on WO3 thin film." Iraqi Journal of Physics (IJP) 16, no. 36 (2018): 11–28. http://dx.doi.org/10.30723/ijp.v16i36.22.
Full textShujah, T., M. Ikram, A. R. Butt, et al. "H2S Gas Sensor Based on WO3 Nanostructures Synthesized via Aerosol Assisted Chemical Vapor Deposition Technique." Nanoscience and Nanotechnology Letters 11, no. 9 (2019): 1247–56. http://dx.doi.org/10.1166/nnl.2019.3011.
Full textQamar, M., Z. H. Yamani, M. A. Gondal, and K. Alhooshani. "Synthesis and comparative photocatalytic activity of Pt/WO3 and Au/WO3 nanocomposites under sunlight-type excitation." Solid State Sciences 13, no. 9 (2011): 1748–54. http://dx.doi.org/10.1016/j.solidstatesciences.2011.07.002.
Full textMustafa, M. H., and A. A. Shihab. "Effect of ratio gold nanoparticles on the properties and efficiency photovoltaic of thin films of amorphous tungsten trioxide." Journal of Ovonic Research 19, no. 6 (2023): 623–30. http://dx.doi.org/10.15251/jor.2023.196.623.
Full textWang, Dongran, Kai Xia, Haibin Tang, et al. "UV–Vis–NIR broad spectral photodetectors facilely fabricated with nonmetal plasmonic WO3−x nanosheets." Applied Physics Letters 121, no. 25 (2022): 253503. http://dx.doi.org/10.1063/5.0130645.
Full textKim, Soohyun, Sunghoon Park, Suyoung Park, and Chongmu Lee. "Acetone sensing of Au and Pd-decorated WO3 nanorod sensors." Sensors and Actuators B: Chemical 209 (March 2015): 180–85. http://dx.doi.org/10.1016/j.snb.2014.11.106.
Full textWang, Yinglin, Bo Zhang, Jie Liu, et al. "Au-loaded mesoporous WO3: Preparation and n-butanol sensing performances." Sensors and Actuators B: Chemical 236 (November 2016): 67–76. http://dx.doi.org/10.1016/j.snb.2016.05.097.
Full textBose, R. Jolly, V. S. Kavitha, C. Sudarsanakumar, and V. P. Mahadevan Pillai. "Phase modification and surface plasmon resonance of Au/WO3 system." Applied Surface Science 379 (August 2016): 505–15. http://dx.doi.org/10.1016/j.apsusc.2016.04.100.
Full textLi, Wei, Dongdong Huang, Tingting Wang, et al. "Au nanoparticle decorated WO3 nanorods with enhanced optical limiting activity." Optical Materials Express 10, no. 10 (2020): 2655. http://dx.doi.org/10.1364/ome.403617.
Full textChen, Bo, Dongfang Yang, and Chii-Wann Lin. "Surface plasmon resonance response of Au–WO3−x composite films." Applied Physics A 97, no. 2 (2009): 489–96. http://dx.doi.org/10.1007/s00339-009-5249-4.
Full textLiu, Chunlei, Jikai Yang, Haorui Liu, and Yiming Zhao. "Electrochromism and photoelectrochemical performance of WO3/Au composite film electrodes." Optoelectronics Letters 19, no. 11 (2023): 673–80. http://dx.doi.org/10.1007/s11801-023-3087-9.
Full textDePuccio, Daniel P., Pablo Botella, Bruce O’Rourke, and Christopher C. Landry. "Degradation of Methylene Blue Using Porous WO3, SiO2–WO3, and Their Au-Loaded Analogs: Adsorption and Photocatalytic Studies." ACS Applied Materials & Interfaces 7, no. 3 (2015): 1987–96. http://dx.doi.org/10.1021/am507806a.
Full textQamar, M., Z. H. Yamani, M. A. Gondal, and K. Alhooshani. "ChemInform Abstract: Synthesis and Comparative Photocatalytic Activity of Pt/WO3 and Au/WO3 Nanocomposites under Sunlight-Type Excitation." ChemInform 42, no. 49 (2011): no. http://dx.doi.org/10.1002/chin.201149011.
Full textThakur, Uttam Narendra, Radha Bhardwaj, Pawan K. Ajmera, and Arnab Hazra. "ANN based approach for selective detection of breath acetone by using hybrid GO-FET sensor array." Engineering Research Express 4, no. 2 (2022): 025008. http://dx.doi.org/10.1088/2631-8695/ac6487.
Full textHe, Tao, Ying Ma, Ya-an Cao, Wen-sheng Yang, and Jian-nian Yao. "Improved photochromism of WO3 thin films by addition of Au nanoparticles." Physical Chemistry Chemical Physics 4, no. 9 (2002): 1637–39. http://dx.doi.org/10.1039/b108531j.
Full textDePuccio, Daniel P., and Christopher C. Landry. "Photocatalytic oxidation of methanol using porous Au/WO3 and visible light." Catalysis Science & Technology 6, no. 20 (2016): 7512–20. http://dx.doi.org/10.1039/c6cy01449f.
Full textDrmosh, Qasem Ahmed. "Variation of Sputtered WO3 Film Thickness in Ag (NPs)/WO3/Au (NPs) System for Optimizing Sensing Behaviors to NH3." ECS Meeting Abstracts MA2021-01, no. 56 (2021): 1476. http://dx.doi.org/10.1149/ma2021-01561476mtgabs.
Full textChen, Yu, Liang Shen, Wenjuan Yu, et al. "Highly efficient ITO-free polymer solar cells based on metal resonant microcavity using WO3/Au/WO3 as transparent electrodes." Organic Electronics 15, no. 7 (2014): 1545–51. http://dx.doi.org/10.1016/j.orgel.2014.04.026.
Full textYOO, J., D. OH, and E. WACHSMAN. "Investigation of WO3-based potentiometric sensor performance (M/YSZ/WO3, M = Au, Pd, and TiO2) with varying counter electrode." Solid State Ionics 179, no. 37 (2008): 2090–100. http://dx.doi.org/10.1016/j.ssi.2008.07.020.
Full textJiang, Zikai, Weigen Chen, Lingfeng Jin, Fang Cui, Zihao Song, and Chengzhi Zhu. "High Performance Acetylene Sensor with Heterostructure Based on WO3 Nanolamellae/Reduced Graphene Oxide (rGO) Nanosheets Operating at Low Temperature." Nanomaterials 8, no. 11 (2018): 909. http://dx.doi.org/10.3390/nano8110909.
Full textDePuccio, Daniel P., Pablo Botella, Bruce O’Rourke, and Christopher C. Landry. "Correction to “Degradation of Methylene Blue Using Porous WO3, SiO2–WO3, and Their Au-Loaded Analogs: Adsorption and Photocatalytic Studies”." ACS Applied Materials & Interfaces 7, no. 51 (2015): 28714–15. http://dx.doi.org/10.1021/acsami.5b11407.
Full textRhaman, Md Masudur, Sumon Ganguli, Sandipan Bera, Sher Bahadur Rawal, and Ashok Kumar Chakraborty. "Visible-light responsive novel WO3/TiO2 and Au loaded WO3/TiO2 nanocomposite and wastewater remediation: Mechanistic inside and photocatalysis pathway." Journal of Water Process Engineering 36 (August 2020): 101256. http://dx.doi.org/10.1016/j.jwpe.2020.101256.
Full text