Academic literature on the topic 'Audio data mining'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Audio data mining.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Audio data mining"

1

Levy, Marcel Andrew. "Ringermute an audio data mining toolkit /." abstract and full text PDF (free order & download UNR users only), 2005. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1433402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kohlsdorf, Daniel. "Data mining in large audio collections of dolphin signals." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53968.

Full text
Abstract:
The study of dolphin cognition involves intensive research of animal vocal- izations recorded in the field. In this dissertation I address the automated analysis of audible dolphin communication. I propose a system called the signal imager that automatically discovers patterns in dolphin signals. These patterns are invariant to frequency shifts and time warping transformations. The discovery algorithm is based on feature learning and unsupervised time series segmentation using hidden Markov models. Researchers can inspect the patterns visually and interactively run com- parative statistics between the distribution of dolphin signals in different behavioral contexts. The required statistics for the comparison describe dolphin communication as a combination of the following models: a bag-of-words model, an n-gram model and an algorithm to learn a set of regular expressions. Furthermore, the system can use the patterns to automatically tag dolphin signals with behavior annotations. My results indicate that the signal imager provides meaningful patterns to the marine biologist and that the comparative statistics are aligned with the biologists’ domain knowledge.
APA, Harvard, Vancouver, ISO, and other styles
3

Thambiratnam, Albert J. K. "Acoustic keyword spotting in speech with applications to data mining." Thesis, Queensland University of Technology, 2005. https://eprints.qut.edu.au/37254/1/Albert_Thambiratnam_Thesis.pdf.

Full text
Abstract:
Keyword Spotting is the task of detecting keywords of interest within continu- ous speech. The applications of this technology range from call centre dialogue systems to covert speech surveillance devices. Keyword spotting is particularly well suited to data mining tasks such as real-time keyword monitoring and unre- stricted vocabulary audio document indexing. However, to date, many keyword spotting approaches have su®ered from poor detection rates, high false alarm rates, or slow execution times, thus reducing their commercial viability. This work investigates the application of keyword spotting to data mining tasks. The thesis makes a number of major contributions to the ¯eld of keyword spotting. The ¯rst major contribution is the development of a novel keyword veri¯cation method named Cohort Word Veri¯cation. This method combines high level lin- guistic information with cohort-based veri¯cation techniques to obtain dramatic improvements in veri¯cation performance, in particular for the problematic short duration target word class. The second major contribution is the development of a novel audio document indexing technique named Dynamic Match Lattice Spotting. This technique aug- ments lattice-based audio indexing principles with dynamic sequence matching techniques to provide robustness to erroneous lattice realisations. The resulting algorithm obtains signi¯cant improvement in detection rate over lattice-based audio document indexing while still maintaining extremely fast search speeds. The third major contribution is the study of multiple veri¯er fusion for the task of keyword veri¯cation. The reported experiments demonstrate that substantial improvements in veri¯cation performance can be obtained through the fusion of multiple keyword veri¯ers. The research focuses on combinations of speech background model based veri¯ers and cohort word veri¯ers. The ¯nal major contribution is a comprehensive study of the e®ects of limited training data for keyword spotting. This study is performed with consideration as to how these e®ects impact the immediate development and deployment of speech technologies for non-English languages.
APA, Harvard, Vancouver, ISO, and other styles
4

Fenet, Sébastien. "Empreintes audio et stratégies d'indexation associées pour l'identification audio à grande échelle." Thesis, Paris, ENST, 2013. http://www.theses.fr/2013ENST0051/document.

Full text
Abstract:
Dans cet ouvrage, nous définissons précisément ce qu’est l’identification audio à grande échelle. En particulier, nous faisons une distinction entre l’identification exacte, destinée à rapprocher deux extraits sonores provenant d’un même enregistrement, et l’identification approchée, qui gère également la similarité musicale entre les signaux. A la lumière de ces définitions, nous concevons et examinons plusieurs modèles d’empreinte audio et évaluons leurs performances, tant en identification exacte qu’en identificationapprochée<br>N this work we give a precise definition of large scale audio identification. In particular, we make a distinction between exact and approximate matching. In the first case, the goal is to match two signals coming from one same recording with different post-processings. In the second case, the goal is to match two signals that are musically similar. In light of these definitions, we conceive and evaluate different audio-fingerprint models
APA, Harvard, Vancouver, ISO, and other styles
5

Fenet, Sébastien. "Empreintes audio et stratégies d'indexation associées pour l'identification audio à grande échelle." Electronic Thesis or Diss., Paris, ENST, 2013. http://www.theses.fr/2013ENST0051.

Full text
Abstract:
Dans cet ouvrage, nous définissons précisément ce qu’est l’identification audio à grande échelle. En particulier, nous faisons une distinction entre l’identification exacte, destinée à rapprocher deux extraits sonores provenant d’un même enregistrement, et l’identification approchée, qui gère également la similarité musicale entre les signaux. A la lumière de ces définitions, nous concevons et examinons plusieurs modèles d’empreinte audio et évaluons leurs performances, tant en identification exacte qu’en identificationapprochée<br>N this work we give a precise definition of large scale audio identification. In particular, we make a distinction between exact and approximate matching. In the first case, the goal is to match two signals coming from one same recording with different post-processings. In the second case, the goal is to match two signals that are musically similar. In light of these definitions, we conceive and evaluate different audio-fingerprint models
APA, Harvard, Vancouver, ISO, and other styles
6

Ferroudj, Meriem. "Detection of rain in acoustic recordings of the environment using machine learning techniques." Thesis, Queensland University of Technology, 2015. https://eprints.qut.edu.au/82848/1/Meriem_Ferroudj_Thesis.pdf.

Full text
Abstract:
This thesis is concerned with the detection and prediction of rain in environmental recordings using different machine learning algorithms. The results obtained in this research will help ecologists to efficiently analyse environmental data and monitor biodiversity.
APA, Harvard, Vancouver, ISO, and other styles
7

Bayle, Yann. "Apprentissage automatique de caractéristiques audio : application à la génération de listes de lecture thématiques." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0087/document.

Full text
Abstract:
Ce mémoire de thèse de doctorat présente, discute et propose des outils de fouille automatique de mégadonnées dans un contexte de classification supervisée musical.L'application principale concerne la classification automatique des thèmes musicaux afin de générer des listes de lecture thématiques.Le premier chapitre introduit les différents contextes et concepts autour des mégadonnées musicales et de leur consommation.Le deuxième chapitre s'attelle à la description des bases de données musicales existantes dans le cadre d'expériences académiques d'analyse audio.Ce chapitre introduit notamment les problématiques concernant la variété et les proportions inégales des thèmes contenus dans une base, qui demeurent complexes à prendre en compte dans une classification supervisée.Le troisième chapitre explique l'importance de l'extraction et du développement de caractéristiques audio et musicales pertinentes afin de mieux décrire le contenu des éléments contenus dans ces bases de données.Ce chapitre explique plusieurs phénomènes psychoacoustiques et utilise des techniques de traitement du signal sonore afin de calculer des caractéristiques audio.De nouvelles méthodes d'agrégation de caractéristiques audio locales sont proposées afin d'améliorer la classification des morceaux.Le quatrième chapitre décrit l'utilisation des caractéristiques musicales extraites afin de trier les morceaux par thèmes et donc de permettre les recommandations musicales et la génération automatique de listes de lecture thématiques homogènes.Cette partie implique l'utilisation d'algorithmes d'apprentissage automatique afin de réaliser des tâches de classification musicale.Les contributions de ce mémoire sont résumées dans le cinquième chapitre qui propose également des perspectives de recherche dans l'apprentissage automatique et l'extraction de caractéristiques audio multi-échelles<br>This doctoral dissertation presents, discusses and proposes tools for the automatic information retrieval in big musical databases.The main application is the supervised classification of musical themes to generate thematic playlists.The first chapter introduces the different contexts and concepts around big musical databases and their consumption.The second chapter focuses on the description of existing music databases as part of academic experiments in audio analysis.This chapter notably introduces issues concerning the variety and unequal proportions of the themes contained in a database, which remain complex to take into account in supervised classification.The third chapter explains the importance of extracting and developing relevant audio features in order to better describe the content of music tracks in these databases.This chapter explains several psychoacoustic phenomena and uses sound signal processing techniques to compute audio features.New methods of aggregating local audio features are proposed to improve song classification.The fourth chapter describes the use of the extracted audio features in order to sort the songs by themes and thus to allow the musical recommendations and the automatic generation of homogeneous thematic playlists.This part involves the use of machine learning algorithms to perform music classification tasks.The contributions of this dissertation are summarized in the fifth chapter which also proposes research perspectives in machine learning and extraction of multi-scale audio features
APA, Harvard, Vancouver, ISO, and other styles
8

Wallace, Roy Geoffrey. "Fast and accurate phonetic spoken term detection." Thesis, Queensland University of Technology, 2010. https://eprints.qut.edu.au/39610/1/Roy_Wallace_Thesis.pdf.

Full text
Abstract:
For the first time in human history, large volumes of spoken audio are being broadcast, made available on the internet, archived, and monitored for surveillance every day. New technologies are urgently required to unlock these vast and powerful stores of information. Spoken Term Detection (STD) systems provide access to speech collections by detecting individual occurrences of specified search terms. The aim of this work is to develop improved STD solutions based on phonetic indexing. In particular, this work aims to develop phonetic STD systems for applications that require open-vocabulary search, fast indexing and search speeds, and accurate term detection. Within this scope, novel contributions are made within two research themes, that is, accommodating phone recognition errors and, secondly, modelling uncertainty with probabilistic scores. A state-of-the-art Dynamic Match Lattice Spotting (DMLS) system is used to address the problem of accommodating phone recognition errors with approximate phone sequence matching. Extensive experimentation on the use of DMLS is carried out and a number of novel enhancements are developed that provide for faster indexing, faster search, and improved accuracy. Firstly, a novel comparison of methods for deriving a phone error cost model is presented to improve STD accuracy, resulting in up to a 33% improvement in the Figure of Merit. A method is also presented for drastically increasing the speed of DMLS search by at least an order of magnitude with no loss in search accuracy. An investigation is then presented of the effects of increasing indexing speed for DMLS, by using simpler modelling during phone decoding, with results highlighting the trade-off between indexing speed, search speed and search accuracy. The Figure of Merit is further improved by up to 25% using a novel proposal to utilise word-level language modelling during DMLS indexing. Analysis shows that this use of language modelling can, however, be unhelpful or even disadvantageous for terms with a very low language model probability. The DMLS approach to STD involves generating an index of phone sequences using phone recognition. An alternative approach to phonetic STD is also investigated that instead indexes probabilistic acoustic scores in the form of a posterior-feature matrix. A state-of-the-art system is described and its use for STD is explored through several experiments on spontaneous conversational telephone speech. A novel technique and framework is proposed for discriminatively training such a system to directly maximise the Figure of Merit. This results in a 13% improvement in the Figure of Merit on held-out data. The framework is also found to be particularly useful for index compression in conjunction with the proposed optimisation technique, providing for a substantial index compression factor in addition to an overall gain in the Figure of Merit. These contributions significantly advance the state-of-the-art in phonetic STD, by improving the utility of such systems in a wide range of applications.
APA, Harvard, Vancouver, ISO, and other styles
9

Ziegler, Thomas. "Auswertung von Audit-Daten zur Optimierung von Workflows." [S.l. : s.n.], 2001. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB9386075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Tian. "Effective Thermal Resistance of Commercial Buildings Using Data Analysis of Whole-Building Electricity Data." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1586524438396894.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography