Academic literature on the topic 'Augmented Krylov Model Order Reduction'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Augmented Krylov Model Order Reduction.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Augmented Krylov Model Order Reduction"

1

Olsson, K. Henrik A. "Model Order Reduction with Rational Krylov Methods." Doctoral thesis, Stockholm, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Maciver, Mark Alasdair. "Electromagnetic characterisation of structures using Krylov subspace model order reduction methods." Thesis, University of Glasgow, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.433619.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Agbaje, Oluwaleke Abimbola. "Krylov subspace model order reduction for nonlinear and bilinear control systems." Thesis, Coventry University, 2016. http://curve.coventry.ac.uk/open/items/62c3a18c-4d39-4397-9684-06d77b9cd187/1.

Full text
Abstract:
The use of Krylov subspace model order reduction for nonlinear/bilinear systems, over the past few years, has become an increasingly researched area of study. The need for model order reduction has never been higher, as faster computations for control, diagnosis and prognosis have never been higher to achieve better system performance. Krylov subspace model order reduction techniques enable this to be done more quickly and efficiently than what can be achieved at present. The most recent advances in the use of Krylov subspaces for reducing bilinear models match moments and multimoments at some expansion points which have to be obtained through an optimisation scheme. This therefore removes the computational advantage of the Krylov subspace techniques implemented at an expansion point zero. This thesis demonstrates two improved approaches for the use of one-sided Krylov subspace projection for reducing bilinear models at the expansion point zero. This work proposes that an alternate linear approximation can be used for model order reduction. The advantages of using this approach are improved input-output preservation at a simulation cost similar to some earlier works and reduction of bilinear systems models which have singular state transition matrices. The comparison of the proposed methods and other original works done in this area of research is illustrated using various examples of single input single output (SISO) and multi input multi output (MIMO) models.
APA, Harvard, Vancouver, ISO, and other styles
4

Yan, Boyuan. "Advanced non-Krylov subspace model order reduction techniques for interconnect circuits." Diss., [Riverside, Calif.] : University of California, Riverside, 2009. http://proquest.umi.com/pqdweb?index=0&did=1957340951&SrchMode=2&sid=4&Fmt=2&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1268670715&clientId=48051.

Full text
Abstract:
Thesis (Ph. D.)--University of California, Riverside, 2009.<br>Includes abstract. Available via ProQuest Digital Dissertations. Title from first page of PDF file (viewed March 12, 2010). Includes bibliographical references (p. 122-126). Also issued in print.
APA, Harvard, Vancouver, ISO, and other styles
5

Barkouki, Houda. "Rational Lanczos-type methods for model order reduction." Thesis, Littoral, 2016. http://www.theses.fr/2016DUNK0440/document.

Full text
Abstract:
La solution numérique des systèmes dynamiques est un moyen efficace pour étudier des phénomènes physiques complexes. Cependant, dans un cadre à grande échelle, la dimension du système rend les calculs infaisables en raison des limites de mémoire et de temps, ainsi que le mauvais conditionnement. La solution de ce problème est la réduction de modèles. Cette thèse porte sur les méthodes de projection pour construire efficacement des modèles d'ordre inférieur à partir des systèmes linéaires dynamiques de grande taille. En particulier, nous nous intéressons à la projection sur la réunion de plusieurs sous-espaces de Krylov standard qui conduit à une classe de modèles d'ordre réduit. Cette méthode est connue par l'interpolation rationnelle. En se basant sur ce cadre théorique qui relie la projection de Krylov à l'interpolation rationnelle, quatre algorithmes de type Lanczos rationnel pour la réduction de modèles sont proposés. Dans un premier temps, nous avons introduit une méthode adaptative de type Lanczos rationnel par block pour réduire l'ordre des systèmes linéaires dynamiques de grande taille, cette méthode est basée sur l'algorithme de Lanczos rationnel par block et une méthode adaptative pour choisir les points d'interpolation. Une généralisation de ce premier algorithme est également donnée, où différentes multiplicités sont considérées pour chaque point d'interpolation. Ensuite, nous avons proposé une autre extension de la méthode du sous-espace de Krylov standard pour les systèmes à plusieurs-entrées plusieurs-sorties, qui est le sous-espace de Krylov global. Nous avons obtenu des équations qui décrivent cette procédure. Finalement, nous avons proposé une méthode de Lanczos étendu par block et nous avons établi de nouvelles propriétés algébriques pour cet algorithme. L'efficacité et la précision de tous les algorithmes proposés, appliqués sur des problèmes de réduction de modèles, sont testées dans plusieurs exemples numériques<br>Numerical solution of dynamical systems have been a successful means for studying complex physical phenomena. However, in large-scale setting, the system dimension makes the computations infeasible due to memory and time limitations, and ill-conditioning. The remedy of this problem is model reductions. This dissertations focuses on projection methods to efficiently construct reduced order models for large linear dynamical systems. Especially, we are interesting by projection onto unions of Krylov subspaces which lead to a class of reduced order models known as rational interpolation. Based on this theoretical framework that relate Krylov projection to rational interpolation, four rational Lanczos-type algorithms for model reduction are proposed. At first, an adaptative rational block Lanczos-type method for reducing the order of large scale dynamical systems is introduced, based on a rational block Lanczos algorithm and an adaptive approach for choosing the interpolation points. A generalization of the first algorithm is also given where different multiplicities are consider for each interpolation point. Next, we proposed another extension of the standard Krylov subspace method for Multiple-Input Multiple-Output (MIMO) systems, which is the global Krylov subspace, and we obtained also some equations that describe this process. Finally, an extended block Lanczos method is introduced and new algebraic properties for this algorithm are also given. The accuracy and the efficiency of all proposed algorithms when applied to model order reduction problem are tested by means of different numerical experiments that use a collection of well known benchmark examples
APA, Harvard, Vancouver, ISO, and other styles
6

Wyatt, Sarah Alice. "Issues in Interpolatory Model Reduction: Inexact Solves, Second-order Systems and DAEs." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/27668.

Full text
Abstract:
Dynamical systems are mathematical models characterized by a set of differential or difference equations. Model reduction aims to replace the original system with a reduced system of significantly smaller dimension that still describes the important dynamics of the large-scale model. Interpolatory model reduction methods define a reduced model that interpolates the full model at selected interpolation points. The reduced model may be obtained through a Krylov reduction process or by using the Iterative Rational Krylov Algorithm (IRKA), which iterates this Krylov reduction process to obtain an optimal $\mathcal{H}_2$ reduced model. This dissertation studies interpolatory model reduction for first-order descriptor systems, second-order systems, and DAEs. The main computational cost of interpolatory model reduction is the associated linear systems. Especially in the large-scale setting, inexact solves become desirable if not necessary. With the introduction of inexact solutions, however, exact interpolation no longer holds. While the effect of this loss of interpolation has previously been studied, we extend the discussion to the preconditioned case. Then we utilize IRKA's convergence behavior to develop preconditioner updates. We also consider the interpolatory framework for DAEs and second-order systems. While interpolation results still hold, the singularity associated with the DAE often results in unbounded model reduction errors. Therefore, we present a theorem that guarantees interpolation and a bounded model reduction error. Since this theorem relies on expensive projectors, we demonstrate how interpolation can be achieved without explicitly computing the projectors for index-1 and Hessenberg index-2 DAEs. Finally, we study reduction techniques for second-order systems. Many of the existing methods for second-order systems rely on the model's associated first-order system, which results in computations of a $2n$ system. As a result, we present an IRKA framework for the reduction of second-order systems that does not involve the associated $2n$ system. The resulting algorithm is shown to be effective for several dynamical systems.<br>Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
7

Hijazi, Abdallah. "Implementation of harmonic balance reduce model order equation." Thesis, Limoges, 2015. http://www.theses.fr/2015LIMO0139/document.

Full text
Abstract:
MOR (Model Order Reduction) est devenu un domaine très répondu dans la recherche grâce à l'intérêt qu'il peut apporter dans la réduction des systèmes, ce qui permet d'économiser du temps, de la mémoire et le coût de CPU pour les outils de CAO. Ce domaine contient principalement deux branches: linéaires et non linéaires. MOR linéaire est un domaine mature avec des techniques numériques bien établie et bien connus dans la domaine de la recherche, par contre le domaine non linéaire reste vague, et jusqu'à présent il n'a pas montré des bons résultats dans la simulation des circuits électriques. La recherche est toujours en cours dans ce domaine, en raison de l’intérêt qu'il peut fournir aux simulateurs contemporains, surtout avec la croissance des puces électroniques en termes de taille et de complexité, et les exigences industrielles vers l'intégration des systèmes sur la même puce.Une contribution significative, pour résoudre le problème de Harmonic Balance (Equilibrage Harmonique) en utilisant la technique MOR, a été proposé en 2002 par E. Gad et M. Nakhla. La technique a montré une réduction substantielle de la dimension du système, tout en préservant, en sortie, la précision de l'analyse en régime permanent. Cette méthode de MOR utilise la technique de projection par l'intermédiaire de Krylov, et il préserve la passivité du système. Cependant, il souffre de quelques limitations importantes dans la construction de la matrice “pre-conditioner“ qui permettrait de réduire le système. La limitation principale est la nécessité d'une factorisation explicite comme une suite numérique de l'équation des dispositifs non linéaires . cette limitation rend la technique difficile à appliquer dans les conditions générales d'un simulateur. Cette thèse examinera les aspects non linéaires du modèle de réduction pour les équations de bilan harmoniques, et il étudiera les solutions pour surmonter les limitations mentionnées ci-dessus, en particulier en utilisant des approches de dérivateur numériques<br>MOR recently became a well-known research field, due to the interest that it shows in reducing the system, which saves time, memory, and CPU cost for CAD tools. This field contains two branches, linear and nonlinear MOR, the linear MOR is a mature domain with well-established theory and numerical techniques. Meanwhile, nonlinear MOR domain is still stammering, and so far it didn’t show good and successful results in electrical circuit simulation. Some improvements however started to pop-up recently, and research is still going on this field because of the help that it can give to the contemporary simulators, especially with the growth of the electronic chips in terms of size and complexity due to industrial demands towards integrating systems on the same chip. A significant contribution in the MOR technique of HB solution has been proposed a decade ago by E. Gad and M. Nakhla. The technique has shown to provide a substantial system dimension reduction while preserving the precision of the output in steady state analysis. This MOR method uses the technique of projection via Krylov, and it preserves the passivity of the system. However, it suffers a number of important limitations in the construction of the pre-conditioner matrix which is ought to reduce the system. The main limitation is the necessity for explicit factorization as a power series of the equation of the nonlinear devices. This makes the technique difficult to apply in general purpose simulator conditions. This thesis will review the aspects of the nonlinear model order reduction technique for harmonic balance equations, and it will study solutions to overcome the above mentioned limitations, in particular using numerical differentiation approaches
APA, Harvard, Vancouver, ISO, and other styles
8

Panzer, Heiko [Verfasser]. "Model Order Reduction by Krylov Subspace Methods with Global Error Bounds and Automatic Choice of Parameters / Heiko Panzer." München : Verlag Dr. Hut, 2014. http://d-nb.info/1063222176/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Panzer, Heiko K. F. [Verfasser], Boris [Akademischer Betreuer] Lohmann, and Athanasios C. [Akademischer Betreuer] Antoulas. "Model Order Reduction by Krylov Subspace Methods with Global Error Bounds and Automatic Choice of Parameters / Heiko K. F. Panzer. Gutachter: Athanasios C. Antoulas ; Boris Lohmann. Betreuer: Boris Lohmann." München : Universitätsbibliothek der TU München, 2014. http://d-nb.info/1064976263/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Panzer, Heiko [Verfasser], Boris [Akademischer Betreuer] Lohmann, and Athanasios C. [Akademischer Betreuer] Antoulas. "Model Order Reduction by Krylov Subspace Methods with Global Error Bounds and Automatic Choice of Parameters / Heiko K. F. Panzer. Gutachter: Athanasios C. Antoulas ; Boris Lohmann. Betreuer: Boris Lohmann." München : Universitätsbibliothek der TU München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:91-diss-20140916-1207822-0-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography