To see the other types of publications on this topic, follow the link: AuIII.

Journal articles on the topic 'AuIII'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'AuIII.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Dann, Thomas, Dragoş-Adrian Roşca, Joseph A. Wright, Gregory G. Wildgoose, and Manfred Bochmann. "Electrochemistry of AuII and AuIII pincer complexes: determination of the AuII–AuII bond energy." Chemical Communications 49, no. 86 (2013): 10169. http://dx.doi.org/10.1039/c3cc45984e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bennett, M. A., S. K. Bhargava, F. Mohr, L. L. Welling, and A. C. Willis. "Synthesis and X-Ray Structure of a Heterovalent, Cycloaurated Pentafluorophenylgold(I)/Pentafluorophenylgold(III) Complex." Australian Journal of Chemistry 55, no. 4 (2002): 267. http://dx.doi.org/10.1071/ch02034.

Full text
Abstract:
The heterovalent gold(I)/gold(III) complex [(C6F5)AuI(μ-2-Ph2PC6H3-6-Me)AuIII(C6F5){η2-(6-MeC6H3-2-PPh2)}] has been prepared and structurally characterized by X-ray crystallography. It shows square planar stereochemistry at AuIII incorporating a four-membered chelate ring and linear arrangement at AuI. The compound is a rare example of a heterovalent complex containing an aryl ligand on each gold atom.
APA, Harvard, Vancouver, ISO, and other styles
3

Barakat, Khaldoon, and Thomas R. Cundari. "Chemical and photophysical properties of AuI, AuII, AuIII, and AuI-dimer complexes." Chemical Physics 311, no. 1-2 (April 2005): 3–11. http://dx.doi.org/10.1016/j.chemphys.2004.10.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Doležal, Josef, and Lumír Sommer. "HPLC of Platinum Metals and Gold Based on Their Bromo Complexes." Collection of Czechoslovak Chemical Communications 62, no. 7 (1997): 1029–42. http://dx.doi.org/10.1135/cccc19971029.

Full text
Abstract:
PtII,IV, PdII, and AuIII can be separated and quantitated by HPLC in the form of ion-associates of their bromo complexes with the cetyltrimethylammonium (CTMA) cation, using the acetonitrile-water 60 : 40 system containing 0.002 mol l-1 CTMA and 0.05 mol l-1 NaBr (pH 3) as the mobile phase and detection at 240 nm. In such circumstances the detection limits for the injection of 20 μl sample are 6.7, 0.4, 0.9, and 4.3 ng for PtII, PtIV, PdII, and AuIII, respectively. Excess Fe3+, Al3+, Mg2+, Ca2+, NO3-, SO42-, and Cl- does not interfere. On-line preconcentration of the PtII,IV bromo complexes on Separon SGX RPS is recommended.
APA, Harvard, Vancouver, ISO, and other styles
5

Bennett, Martin A., Nedaossadat Mirzadeh, Steven H. Privér, Jörg Wagler, and Suresh K. Bhargava. "Trinuclear Mixed-valent Gold Complexes Derived from 2-C6F4PPh2: Phosphine Oxide Complexes of Gold(III) and an ortho-Metallated Complex of Gold(I)." Zeitschrift für Naturforschung B 64, no. 11-12 (December 1, 2009): 1463–68. http://dx.doi.org/10.1515/znb-2009-11-1229.

Full text
Abstract:
Crystals of two mixed-valent gold complexes [(O2NO)AuI(μ-2-C6F4PPh2)AuIII{κ2-2-C6- F4P(O)Ph2}(μ-2-C6F4PPh2)AuI(ONO2)] (14) and [(O2NO)AuI(μ-2-C6F4PPh2)AuIII{κ3-2-C6F4- P(O)Ph(C6H4)}(μ-2-C6F4PPh2)AuI] (15) have been obtained from the reaction of the digold(I,III) complex [ClAuI(μ-2-C6F4PPh2)(κ2-2-C6F4PPh2)AuIIICl] (5) with, respectively, a small and a large excess of silver nitrate. Both complexes contain three, approximately collinear metal atoms, the central gold(III) atom being planar-coordinated by a chelate (O,C)-phosphine oxide formed by oxidation of 2-C6F4PPh2 and the carbon atoms of two bridging 2-C6F4PPh2 groups. In 14 each of the terminal gold(I) atoms is coordinated by a monodentate nitrate ion and the phosphorus atom of μ-2-C6F4PPh2, whereas in 15 the nitrate ion on one of the gold(I) atoms of 14 has been replaced by the carbon atom of a bridging C6H4 group derived by Ag+-promoted cyclometallation of a phenyl group on the neighbouring phosphine oxide
APA, Harvard, Vancouver, ISO, and other styles
6

Jones, Peter G., and Carsten Thöne. "Gold Complexes with Selenium Ligands, II [1] Preparation and Crystal Structures of the Gold Diphenylselenide Complexes Ph2SeAuCl and Ph2SeAuCl3." Zeitschrift für Naturforschung B 46, no. 1 (January 1, 1991): 50–54. http://dx.doi.org/10.1515/znb-1991-0111.

Full text
Abstract:
The complexes Ph2SeAuCl (green) and Ph2SeAuCl3 (brown) are prepared by direct reaction between the diphenylselenide ligand and the corresponding gold chloride. The crystal structures confirm the presence of monomeric, linear (AuI) or square planar (AuIII) coordinated complexes with bond lengths A u(I)-Se 2.378(1), Au(III)-Se 2.445(1) Å. Short non-bonded contacts Au(I) ··· Au(I) and Au(III) ··· Cl are observed.
APA, Harvard, Vancouver, ISO, and other styles
7

Kumar, Roopender, and Cristina Nevado. "Cyclometallierte AuIII -Komplexe: Synthese, Reaktivität und physikalisch-chemische Eigenschaften." Angewandte Chemie 129, no. 8 (January 23, 2017): 2024–46. http://dx.doi.org/10.1002/ange.201607225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Reeds, Jonathan P., Mark P. Healy, and Ian J. S. Fairlamb. "Mechanistic examination of AuIII-mediated 1,5-enyne cycloisomerization by AuBr2(N-imidate)(NHC)/AgX precatalysts – is the active catalyst AuIII or AuI?" Catal. Sci. Technol. 4, no. 10 (2014): 3524–33. http://dx.doi.org/10.1039/c4cy00617h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Murray, H. H., Guillermo Garzon, Raphael G. Raptis, Anthony M. Mazany, Leigh C. Porter, and John P. Fackler. "Sulfur-containing gold(III) chelates and their use in heterovalent dimer synthesis: crystal structures of AuIII[CH2P(S)Ph2]2Br, [AuIII[S2P(OH)Ph]2]Cl, and AuIII[CH2P(S)Ph2][S2CN(Et)2]2." Inorganic Chemistry 27, no. 5 (March 1988): 836–42. http://dx.doi.org/10.1021/ic00278a018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ishikawa, A., M. Kurasawa, S. Kitahara, A. Sasane, N. Kojima, and R. Ikeda. "A 35Cl NQR Study on Cs2[AUICl2] [AuIIICl4]." Zeitschrift für Naturforschung A 53, no. 6-7 (July 1, 1998): 590–94. http://dx.doi.org/10.1515/zna-1998-6-751.

Full text
Abstract:
Abstract A pair of 35Cl NQR spin echo signals has been observed for the mixed valence complex Cs2 [AuICl2] [AuIIICl4] between 77 and 243 K. At 77 K, two resonance lines with the half widths ΔvQ ~ 50 kHz were located at vQ1 = 17.28 MHz for the AuI-Cl chlorine and at vQ2 = 27.10 MHz for the AuIII -Cl chlorine in accordance with the crystal structure. The chlorine ionic characters of the AuI-Cl and AuIII-Cl bonds are estimated as 0.63 and 0.42, respectively. The central gold atom carries a fractional protonic charge of 0.26 in [AuICl2]- and 0.68 in [AuIIICl4]-. The charge distributions in the complex anions differ insignificantly from those in the isolated [AuCl2]- and [AuCl4]- for ordinary complexes, indicating that the charge transfer interactions between the anions are weak in the mixed valence complex. The observed linear temperature dependencies of VQ and log TlQ are well explained by the lattice vibration. When the temperature was increased from 77 K, the resonance lines became gradually weak without changing ΔvQ and immeasurable above 215 K. ESR spectra taken at various temperatures revealed the presence of paramagnetic sites of ca. 5 x 1020 mol- 1 arising from Au(II). The small but finite concentration of Au(II) or some other reason should be responsible for the fade out phenomenon and the large ΔvQ observed.
APA, Harvard, Vancouver, ISO, and other styles
11

Mageed, Ahmed H., Brian W. Skelton, Alexandre N. Sobolev, and Murray V. Baker. "Formation of Dinuclear AuII and AuI /AuIII Mixed-Valence Complexes is Directed by Structural Constraints Imposed by Cyclophane-NHC Ligands." European Journal of Inorganic Chemistry 2018, no. 1 (January 10, 2018): 109–20. http://dx.doi.org/10.1002/ejic.201701272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kumar, Roopender, Anthony Linden, and Cristina Nevado. "Evidence for Direct Transmetalation of AuIII–F with Boronic Acids." Journal of the American Chemical Society 138, no. 42 (October 14, 2016): 13790–93. http://dx.doi.org/10.1021/jacs.6b07763.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Xing, Yalan, Ming Zhang, Sarah Ciccarelli, John Lee, and Bryant Catano. "AuIII-Catalyzed Formation of α-Halomethyl Ketones from Terminal Alkynes." European Journal of Organic Chemistry 2017, no. 4 (December 28, 2016): 781–85. http://dx.doi.org/10.1002/ejoc.201601416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Gasperini, Danila, Mark D. Greenhalgh, Rehan Imad, Shezaib Siddiqui, Anum Malik, Fizza Arshad, Muhammad Iqbal Choudhary, et al. "Chiral AuI - and AuIII -Isothiourea Complexes: Synthesis, Characterization and Application." Chemistry - A European Journal 25, no. 4 (December 21, 2018): 1064–75. http://dx.doi.org/10.1002/chem.201804653.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Su, Yi-Bing, Yong-Jun Yuan, Xiao-Le Liu, Guang-Hui Chen, Xin Chen, Zhen-Tao Yu, and Zhi-Gang Zou. "A Heterobimetallic AuIII -PtII Photocatalyst for Water Reduction to Hydrogen." Chemistry - An Asian Journal 14, no. 4 (January 21, 2019): 527–31. http://dx.doi.org/10.1002/asia.201801591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Tian, Xiaohui, Guotai Hong, Ying Liu, BinBo Jiang, and Yongrong Yang. "Catalytic performance of AuIII supported on SiO2 modified activated carbon." RSC Adv. 4, no. 68 (2014): 36316–24. http://dx.doi.org/10.1039/c4ra06068g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Haketa, Yohei, Yuya Bando, Yoshifumi Sasano, Hiroki Tanaka, Nobuhiro Yasuda, Ichiro Hisaki, and Hiromitsu Maeda. "Liquid Crystals Comprising π-Electronic Ions from Porphyrin–AuIII Complexes." iScience 14 (April 2019): 241–56. http://dx.doi.org/10.1016/j.isci.2019.03.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Hopkinson, Matthew N., Antony D. Gee, and Véronique Gouverneur. "AuI/AuIII Catalysis: An Alternative Approach for CC Oxidative Coupling." Chemistry - A European Journal 17, no. 30 (June 15, 2011): 8248–62. http://dx.doi.org/10.1002/chem.201100736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Levchenko, Volodymyr, Sigurd Øien-Ødegaard, David Wragg, and Mats Tilset. "Crystal structure of (N^C) cyclometalated AuIII diazide at 100 K." Acta Crystallographica Section E Crystallographic Communications 76, no. 11 (October 9, 2020): 1725–27. http://dx.doi.org/10.1107/s2056989020012955.

Full text
Abstract:
The title compound, an (N^C)-cyclometalated gold(III) diazide, namely, diazido[5-ethoxycarbonyl-2-(5-ethoxycarbonylpyridin-2-yl)phenyl-κ2 C 1,N]gold(III), [Au(C17H16NO4)(N3)2] or Au(ppyEt)(N3)2, was synthesized by reacting Au(ppyEt)Cl2 with NaN3 in water for 24 h. The complex has been structurally characterized and features a gold center with a square-planar environment. The Au—N(azide) bond lengths are significantly different depending on the influence of the atom trans to the azide group [Au—N(trans to C) of 2.067 (2) Å versus Au—N(trans to N) of 2.042 (2) Å]. The azide groups are twisted in-and-out of plane by 56.2 (2)°.
APA, Harvard, Vancouver, ISO, and other styles
20

Alcaide, Benito, Pedro Almendros, Sara Cembellín, Israel Fernández, and Teresa Martínez del Campo. "Cationic AuIII versus AuI : Catalyst-Controlled Divergent Reactivity of Alkyne-Tethered Lactams." Chemistry - A European Journal 23, no. 13 (February 6, 2017): 3012–15. http://dx.doi.org/10.1002/chem.201700234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ferraz de Paiva, Raphael Enoque, Douglas Hideki Nakahata, and Pedro Paulo Corbi. "Synthesis and crystal structure of dichlorido(1,10-phenanthroline-κ2N,N′)gold(III) hexafluoridophosphate." Acta Crystallographica Section E Crystallographic Communications 73, no. 7 (June 16, 2017): 1048–51. http://dx.doi.org/10.1107/s2056989017008763.

Full text
Abstract:
A gold(III) salt of composition [AuCl2(C12H8N2)]PF6was prepared and characterized by elemental and mass spectrometric analysis (ESI(+)–QTOF–MS),1H nuclear magnetic resonance measurements and by single-crystal X-ray diffraction. The square-planar coordination sphere of AuIIIcomprises the bidentate 1,10-phenanthroline ligand and two chloride ions, with the AuIIIion only slightly shifted from the least-squares plane of the ligating atoms (r.m.s. = 0.018 Å). In contrast to two other previously reported AuIII-phenantroline structures that are stabilized by interactions involving the chlorido ligands, the packing of the title compound does not present these features. Instead, the hexafluoridophosphate counter-ion gives rise to anion...π interactions that are a crucial factor for the crystal packing.
APA, Harvard, Vancouver, ISO, and other styles
22

O’Loughlin, Edward J., Shelly D. Kelly, Kenneth M. Kemner, Roseann Csencsits, and Russell E. Cook. "Reduction of AgI, AuIII, CuII, and HgII by FeII/FeIII hydroxysulfate green rust." Chemosphere 53, no. 5 (November 2003): 437–46. http://dx.doi.org/10.1016/s0045-6535(03)00545-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Williams, Morwen, Adam I. Green, Julio Fernandez-Cestau, David L. Hughes, Maria A. O'Connell, Mark Searcey, Benoît Bertrand, and Manfred Bochmann. "(C^Npz^C)AuIII complexes of acyclic carbene ligands: synthesis and anticancer properties." Dalton Trans. 46, no. 39 (2017): 13397–408. http://dx.doi.org/10.1039/c7dt02804k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Wong, Zhi Xiang, and Matthias Lein. "Homogeneous Catalysis with AuIII: Insights into the Mechanism of the Alkoxylation of Alkynes." European Journal of Inorganic Chemistry 2015, no. 14 (April 17, 2015): 2381–86. http://dx.doi.org/10.1002/ejic.201500152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Jürgens, Eva, Oliver Back, Johannes J. Mayer, Katja Heinze, and Doris Kunz. "Synthesis of copper(II) and gold(III) bis(NHC)-pincer complexes." Zeitschrift für Naturforschung B 71, no. 10 (October 1, 2016): 1011–18. http://dx.doi.org/10.1515/znb-2016-0158.

Full text
Abstract:
AbstractCuII and AuIII chlorido complexes bearing the bis(NHC) carbazolide pincer ligand (bimca) were synthesized by transmetallation from the respective lithium complex [Li(bimca)] (NHC=N-heterocyclic carbene). In the case of copper, two different molecular structures were obtained depending on the copper source. With Cu(II) chloride the paramagnetic mononuclear [Cu(bimca)Cl] complex is formed and has been characterized by EPR spectroscopy and X-ray structure analysis, while copper(I) chloride leads under oxidation to a dinuclear structure in which two cationic [CuII(bimca)] moieties are bridged by one chlorido ligand. The positive charge is compensated by the [CuCl2]− counter ion, as proven by X-ray structure analysis. Transmetallation of [Li(bimca)] with AuCl3 leads to the [Au(bimca)Cl]+ complex with a tetrachloridoaurate counter ion.
APA, Harvard, Vancouver, ISO, and other styles
26

Harkat, Hassina, Albert Yénimégué Dembelé, Jean-Marc Weibel, Aurélien Blanc, and Patrick Pale. "Cyclization of alkynoic acids with gold catalysts: a surprising dichotomy between AuI and AuIII." Tetrahedron 65, no. 9 (February 2009): 1871–79. http://dx.doi.org/10.1016/j.tet.2008.10.112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Zhang, Di-Han, Lun-Zhi Dai, and Min Shi. "C(sp3)-C(sp3) Bond Breaking in Methylenecyclopropanes Involving a AuI/AuIII Catalytic Cycle." European Journal of Organic Chemistry 2010, no. 28 (August 16, 2010): 5454–59. http://dx.doi.org/10.1002/ejoc.201000765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Bhattacharjee, Rameswar, and Ayan Datta. "Understanding Thermal and Photochemical Aryl-Aryl Cross-Coupling by the AuI /AuIII Redox Couple." Chemistry - A European Journal 24, no. 51 (August 20, 2018): 13636–46. http://dx.doi.org/10.1002/chem.201802634.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Fayyaz, Sharmeen, Muniza Shaikh, Danila Gasperini, Steven P. Nolan, Andrew D. Smith, and M. Iqbal Choudhary. "In vitro and in cellulo anti-diabetic activity of AuI- and AuIII-isothiourea complexes." Inorganic Chemistry Communications 130 (August 2021): 108666. http://dx.doi.org/10.1016/j.inoche.2021.108666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Ou, Zhongping, Weihua Zhu, Yuanyuan Fang, Paul J. Sintic, Tony Khoury, Maxwell J. Crossley, and Karl M. Kadish. "Unusual Multi-Step Sequential AuIII/AuIIProcesses of Gold(III) Quinoxalinoporphyrins in Acidic Non-Aqueous Media." Inorganic Chemistry 50, no. 24 (December 19, 2011): 12802–9. http://dx.doi.org/10.1021/ic2019567.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

O'Loughlin, Edward J., Kenneth M. Kemner, and David R. Burris. "Effects of AgI, AuIII, and CuIIon the Reductive Dechlorination of Carbon Tetrachloride by Green Rust." Environmental Science & Technology 37, no. 13 (July 2003): 2905–12. http://dx.doi.org/10.1021/es030304w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Miura, Yuji, Tomoyuki Mochida, Satoshi Motodate, and Keisuke Kato. "Synthesis and thermal properties of salts comprising cationic bis(oxazoline)-AuIII complexes and fluorinated anions." Polyhedron 113 (July 2016): 1–4. http://dx.doi.org/10.1016/j.poly.2016.04.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Collado, Alba, Jan Bohnenberger, María-José Oliva-Madrid, Pierrick Nun, David B. Cordes, Alexandra M. Z. Slawin, and Steven P. Nolan. "Synthesis of AuI- and AuIII-Bis(NHC) Complexes: Ligand Influence on Oxidative Addition to AuISpecies." European Journal of Inorganic Chemistry 2016, no. 25 (August 11, 2016): 4111–22. http://dx.doi.org/10.1002/ejic.201600791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Zeng, Jie, Yanyun Ma, Unyong Jeong, and Younan Xia. "AuI: an alternative and potentially better precursor than AuIII for the synthesis of Au nanostructures." Journal of Materials Chemistry 20, no. 12 (2010): 2290. http://dx.doi.org/10.1039/b922571d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Hasany, Syed Moosa, and Munawar Hussain Chaudhary. "Removal of Cobalt from Aqueous Solutions using Haro River Sand." Adsorption Science & Technology 12, no. 4 (December 1995): 307–15. http://dx.doi.org/10.1177/026361749501200405.

Full text
Abstract:
The sorption of cobalt on Haro river sand has been optimized with respect to shaking time, amount of sand and concentration of cobalt. Maximum sorption (>94%) was achieved from deionized water at a v/w ratio of 90 cm3/g. Among the ions tested, EDTA, citrate, thiosulphate, tartrate, PbII, ZnII, CrIII, AlIII, CdII and MnII reduced the sorption significantly. Manganese(II), ZnII, SeIV, CrIII and HlIV showed low sorption affinity towards the sand whereas ScIII, AuIII and ZrIV were strongly sorbed. Cobalt, along with elements having higher sorption, could be separated from metal ions showing low sorption. The sand could be used for the preconcentration and removal of cobalt from aqueous solutions. The sand may be exploited for wastewater treatment and water pollution abatement. The sorption data followed the Freundlich adsorption isotherm. The characteristic parameters 1/n = 0.81 ± 0.03 and A = 14.2 ± 0.5 mmol/g were evaluated for the system.
APA, Harvard, Vancouver, ISO, and other styles
36

Schmidt, Ricardo, Sergio A. Moya, Pedro Aguirre, Mauricio Fuentealba, Markus Leboschka, Monika Sieger, Mark Niemeyer, and Wolfgang Kaim. "Synthesis, Characterization and Structure of Tribromo(2-phenyl- 1,8-naphthyridine)gold(III)." Zeitschrift für Naturforschung B 66, no. 7 (July 1, 2011): 677–80. http://dx.doi.org/10.1515/znb-2011-0704.

Full text
Abstract:
Neutral tribromo(2-phenyl-1,8-naphthyridine)gold(III), AuBr3(N-N), has been prepared by reaction of KAuBr4 with the ligand in CHCl3/C2H5OH and was characterized by 1H NMR spectroscopy and X-ray diffraction. The molecular and crystal structure of AuBr3(N-N) · 0.5 THF (triclinic, P1̄, a = 11.314(2), b = 12.350(3), c = 14.628(3) A° , α = 107.96(3), β = 98.86(3), γ = 107.29(3)◦, Z = 4, 173 K) shows coordination of the N8 nitrogen atom situated in the unsubstituted pyridine ring to the planar four-coordinate AuIII center. Whereas the AuBr3N best planes and the coordinated naphthyridine rings are not far from orthogonal (ω ~ 105◦), the phenyl substituents were found in the crystal with a ca. 22◦ dihedral angle relative to the naphthyridine plane. Intermolecular Au· · ·Br distances close to the sum of the van der Waals radii indicate very weak interactions to form a quasi-dimeric arrangement in the crystal.
APA, Harvard, Vancouver, ISO, and other styles
37

Mallick, Asadulla, Yakkala Mallikharjunarao, Parasuraman Rajasekaran, Rashmi Roy, and Yashwant D. Vankar. "AuIII-Halide/Phenylacetylene-Cata­lysed Glycosylations Using 1-O-Acetyl­furanoses and Pyranose 1,2-Ortho­esters as Glycosyl Donors." European Journal of Organic Chemistry 2016, no. 3 (December 2, 2015): 579–88. http://dx.doi.org/10.1002/ejoc.201501245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Ishida, Shin-ichiro, Takanori Soya, and Atsuhiro Osuka. "A Stable Antiaromatic 5,20-Dibenzoyl [28]Hexaphyrin(1.1.1.1.1.1): Core AuIII Metalation and Subsequent Peripheral BIII Metalation." Angewandte Chemie 130, no. 41 (September 11, 2018): 13828–31. http://dx.doi.org/10.1002/ange.201808513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Ishida, Shin-ichiro, Takanori Soya, and Atsuhiro Osuka. "A Stable Antiaromatic 5,20-Dibenzoyl [28]Hexaphyrin(1.1.1.1.1.1): Core AuIII Metalation and Subsequent Peripheral BIII Metalation." Angewandte Chemie International Edition 57, no. 41 (September 11, 2018): 13640–43. http://dx.doi.org/10.1002/anie.201808513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Schmidt, Sylke, F. Dietze, and E. Hoyer. "Zur Stabilit�t von PdII-, AuIII- und HgII-Komplexen mit N-Acyl-thioharnstoffen in L�sung." Zeitschrift f�r anorganische und allgemeine Chemie 603, no. 1 (October 1991): 33–39. http://dx.doi.org/10.1002/zaac.19916030106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Zhang, Di-Han, Lun-Zhi Dai, and Min Shi. "ChemInform Abstract: C(sp3)-C(sp3) Bond Breaking in Methylenecyclopropanes Involving a AuI/AuIII Catalytic Cycle." ChemInform 42, no. 7 (January 20, 2011): no. http://dx.doi.org/10.1002/chin.201107036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Pichugina, D. A., A. F. Shestakov, and N. E. Kuz’menko. "Quantum chemical study of C—H bond activation in methane molecule by AuIII aqua chloride complexes." Russian Chemical Bulletin 55, no. 2 (February 2006): 195–206. http://dx.doi.org/10.1007/s11172-006-0237-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Sánchez Delgado, Giset Y., Júlio F. A. Arvellos, Diego F. S. Paschoal, and Hélio F. Dos Santos. "Role of the Enzymatic Environment in the Reactivity of the AuIII-C^N^C Anticancer Complexes." Inorganic Chemistry 60, no. 5 (February 18, 2021): 3181–95. http://dx.doi.org/10.1021/acs.inorgchem.0c03521.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Zhang, Xin, and Avelino Corma. "Efficient addition of alcohols, amines and phenol to unactivated alkenes by AuIII or PdII stabilized by CuCl2." Dalton Trans., no. 3 (2008): 397–403. http://dx.doi.org/10.1039/b714617e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Younesi, Yasamin, Bahare Nasiri, Rasool BabaAhmadi, Charlotte E. Willans, Ian J. S. Fairlamb, and Alireza Ariafard. "Theoretical rationalisation for the mechanism of N-heterocyclic carbene-halide reductive elimination at CuIII, AgIII and AuIII." Chemical Communications 52, no. 28 (2016): 5057–60. http://dx.doi.org/10.1039/c6cc01299j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Chou, Chang-Chuan, Chia-Chi Yang, Hao-Ching Chang, Way-Zen Lee, and Ting-Shen Kuo. "Weaving an infinite 3-D supramolecular network via AuI⋯AuIII aurophilicity and C–H⋯Cl hydrogen bonding." New Journal of Chemistry 40, no. 3 (2016): 1944–47. http://dx.doi.org/10.1039/c5nj02860d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Fierro-Gonzalez, Juan C., Vinesh A. Bhirud, and Bruce C. Gates. "A highly active catalyst for CO oxidation at 298 K: mononuclear Auiii complexes anchored to La2O3 nanoparticles." Chemical Communications, no. 42 (2005): 5275. http://dx.doi.org/10.1039/b509629d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Zeng, Jie, Yanyun Ma, Unyong Jeong, and Younan Xia. "ChemInform Abstract: AuI: An Alternative and Potentially Better Precursor than AuIII for the Synthesis of Au Nanostructures." ChemInform 41, no. 29 (June 24, 2010): no. http://dx.doi.org/10.1002/chin.201029223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Wan, Hong, Zihao Liu, Qiujing He, Dong Wei, Sakil Mahmud, and Huihong Liu. "Bioreduction (AuIII to Au0) and stabilization of gold nanocatalyst using Kappa carrageenan for degradation of azo dyes." International Journal of Biological Macromolecules 176 (April 2021): 282–90. http://dx.doi.org/10.1016/j.ijbiomac.2021.02.085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

López-de-Luzuriaga, José M., Miguel Monge, M. Elena Olmos, and David Pascual. "Experimental and Theoretical Comparison of the Metallophilicity between d10–d10 AuI–HgII and d8–d10 AuIII–HgII Interactions." Inorganic Chemistry 53, no. 3 (January 14, 2014): 1275–77. http://dx.doi.org/10.1021/ic403036s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography