Academic literature on the topic 'Austenite'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Austenite.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Austenite"
Lu, Lilin, Jiaqi Ni, Zhixian Peng, Haijun Zhang, and Jing Liu. "Hydrogen Embrittlement and Improved Resistance of Al Addition in Twinning-Induced Plasticity Steel: First-Principles Study." Materials 12, no. 8 (April 24, 2019): 1341. http://dx.doi.org/10.3390/ma12081341.
Full textBerecz, Tibor, and Peter J. Szabo. "Crystallographic relations during decomposition of the ferritic phase by isothermal ageing of duplex stainless steel." Journal of Applied Crystallography 46, no. 1 (December 8, 2012): 135–41. http://dx.doi.org/10.1107/s0021889812044536.
Full textFeng, Yun Li, Shao Qiang Yuan, and Meng Song. "Microstructure Evolution of Undercooled Austenite during Deformation for Medium-Carbon Si-Mn Steel." Materials Science Forum 704-705 (December 2011): 903–6. http://dx.doi.org/10.4028/www.scientific.net/msf.704-705.903.
Full textReis, Adriano Gonçalves, Danieli Aparecida Pereira Reis, Antônio Jorge Abdalla, Antônio Augusto Couto, and Jorge Otubo. "An In Situ High-Temperature X-Ray Diffraction Study of Phase Transformations in Maraging 300 Steel." Defect and Diffusion Forum 371 (February 2017): 73–77. http://dx.doi.org/10.4028/www.scientific.net/ddf.371.73.
Full textGautam, J. Prakash, A. Miroux, Jaap Moerman, and Leo Kestens. "Tnr Dependent Hot Rolling Microstructure and Texture Development in C-Mn Dual Phase and HSLA Steels." Defect and Diffusion Forum 391 (February 2019): 120–27. http://dx.doi.org/10.4028/www.scientific.net/ddf.391.120.
Full textKawasaki, Yoshiyasu, Yuki Toji, Yokota Takeshi, and Yoshimasa Funakawa. "Effects of Tensile Testing Temperature on Mechanical Properties and Deformation Behavior in Medium Mn Steels." Materials Science Forum 1016 (January 2021): 1823–29. http://dx.doi.org/10.4028/www.scientific.net/msf.1016.1823.
Full textSilva Leite, Carla Gabriela, Eli Jorge da Cruz Junior, Mattia Lago, Andrea Zambon, Irene Calliari, and Vicente Afonso Ventrella. "Nd: YAG Pulsed Laser Dissimilar Welding of UNS S32750 Duplex with 316L Austenitic Stainless Steel." Materials 12, no. 18 (September 9, 2019): 2906. http://dx.doi.org/10.3390/ma12182906.
Full textPinedo, Carlos Eduardo, and André Paulo Tschiptschin. "Low temperature plasma carburizing of AISI 316L austenitic stainless steel and AISI F51 duplex stainless steel." Rem: Revista Escola de Minas 66, no. 2 (June 2013): 209–14. http://dx.doi.org/10.1590/s0370-44672013000200011.
Full textKang, Jun-Yun, Jaecheol Yun, Byunghwan Kim, Jungho Choe, Sangsun Yang, Seong-Jun Park, Ji-Hun Yu, and Yong-Jin Kim. "Micro-Texture Analyses of a Cold-Work Tool Steel for Additive Manufacturing." Materials 13, no. 3 (February 9, 2020): 788. http://dx.doi.org/10.3390/ma13030788.
Full textStone, H. J., M. J. Peet, H. K. D. H. Bhadeshia, P. J. Withers, S. S. Babu, and E. D. Specht. "Synchrotron X-ray studies of austenite and bainitic ferrite." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 464, no. 2092 (January 29, 2008): 1009–27. http://dx.doi.org/10.1098/rspa.2007.0201.
Full textDissertations / Theses on the topic "Austenite"
Del, Sant Ricardo. "Estudo da transformação da austenita retida em martensita induzida por deformação plástica em aços multifásicos /." Guaratinguetá : [s.n.], 2010. http://hdl.handle.net/11449/103753.
Full textBanca: Marcelo dos Santos Pereira
Banca: Alfeu Saraiva Ramos
Banca: Jorge Otubo
Banca: Rosinei Batista Ribeiro
Resumo: Os aços multifásicos constituídos de ferrita, bainita, austenita retida e martensita apresentam combinações muito atrativas de resistência e tenacidade. Há ainda um potencial adicional de melhorias de propriedades mecânicas quando a fração de austenita retida for alta, conferindo alta conformabilidade pelo efeito TRIP. Neste contexto, é fundamental a análise qualitativa e quantitativa das fases, especialmente de austenita retida e sua transformação em martensita induzida por deformação. Este trabalho enfoca a transformação da austenita retida em martensita por deformação em tração monotônica em um aço AISI 4340 com estrutura multifásica. Os resultados confirmam a transformação da austenita retida em martensita atingindo cerca de 80% de transformação. As frações volumétricas de austenita retida antes e após a deformação foram estimadas por duas técnicas. A primeira foi feita por análise de imagens em microscopia óptica e a segunda por magnetização de saturação, tendo em vista o caráter paramagnético desta fase. As frações estimadas pelas duas técnicas foram comparadas, concluindo-se que o método magnético deve ser reavaliado, tendo sido proposto um fator de correção na equação básica deste processo e presenta na literatura.
Abstract: The multiphase steels made of ferrite, bainite, retained austenite and martensite present very attractive combinations and toughness. There is still an additional potential of improvement of the mechanical properties when the fraction of retained austenite is high allowing high conformability by the TRIP effect. In this context the qualitative and quantitative analysis of the phases is essentual specially from retained austenite and its transformation in martensite induced by deformation. This work focus on the transformation of retained austenite in martensite by the deformation in monotonic traction in one steel AISI 4340 with multiphasic structure. The results confirm the transformation of retained in martensite reaching about 80% of transformation. The volumetric of retained austenite before and after the deformation were estimated by two technique: the first was made by the anllysis of images in optic microscopy and the second by magnetization of saturation taking into consideration the paramagnetica character of this phase. The estimated fraction by the two technique were compared leading to the conclusion that the magnetic method must be evaluated again using a proposed factor of correction in the basic equation of this process and present in the literature.
Doutor
Singh, Shiv Brat. "Phase transformations from deformed austenite." Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246513.
Full textEvteev, Alexander V., Elena V. Levchenko, Irina V. Belova, and Graeme E. Murch. "Carbon diffusion in austenite: computer simulation and theoretical analysis: Carbon diffusion in austenite: computer simulation andtheoretical analysis." Diffusion fundamentals 6 (2007) 16, S. 1-2, 2007. https://ul.qucosa.de/id/qucosa%3A14190.
Full textLeguen, Claire. "Prior Austenite Grain Size Controlled by Precipitates." Phd thesis, INSA de Lyon, 2010. http://tel.archives-ouvertes.fr/tel-00511322.
Full textStormvinter, Albin. "Low Temperature Austenite Decomposition in Carbon Steels." Doctoral thesis, KTH, Metallografi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-100993.
Full textQC 20120824
Hero-m
Tafteh, Reza. "Austenite decomposition in an X80 linepipe steel." Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/34583.
Full textKaya, Ali Arslan. "Decomposition of austenite in high chromium steels." Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.316869.
Full textDel, Sant Ricardo [UNESP]. "Estudo da transformação da austenita retida em martensita induzida por deformação plástica em aços multifásicos." Universidade Estadual Paulista (UNESP), 2010. http://hdl.handle.net/11449/103753.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Os aços multifásicos constituídos de ferrita, bainita, austenita retida e martensita apresentam combinações muito atrativas de resistência e tenacidade. Há ainda um potencial adicional de melhorias de propriedades mecânicas quando a fração de austenita retida for alta, conferindo alta conformabilidade pelo efeito TRIP. Neste contexto, é fundamental a análise qualitativa e quantitativa das fases, especialmente de austenita retida e sua transformação em martensita induzida por deformação. Este trabalho enfoca a transformação da austenita retida em martensita por deformação em tração monotônica em um aço AISI 4340 com estrutura multifásica. Os resultados confirmam a transformação da austenita retida em martensita atingindo cerca de 80% de transformação. As frações volumétricas de austenita retida antes e após a deformação foram estimadas por duas técnicas. A primeira foi feita por análise de imagens em microscopia óptica e a segunda por magnetização de saturação, tendo em vista o caráter paramagnético desta fase. As frações estimadas pelas duas técnicas foram comparadas, concluindo-se que o método magnético deve ser reavaliado, tendo sido proposto um fator de correção na equação básica deste processo e presenta na literatura.
The multiphase steels made of ferrite, bainite, retained austenite and martensite present very attractive combinations and toughness. There is still an additional potential of improvement of the mechanical properties when the fraction of retained austenite is high allowing high conformability by the TRIP effect. In this context the qualitative and quantitative analysis of the phases is essentual specially from retained austenite and its transformation in martensite induced by deformation. This work focus on the transformation of retained austenite in martensite by the deformation in monotonic traction in one steel AISI 4340 with multiphasic structure. The results confirm the transformation of retained in martensite reaching about 80% of transformation. The volumetric of retained austenite before and after the deformation were estimated by two technique: the first was made by the anllysis of images in optic microscopy and the second by magnetization of saturation taking into consideration the paramagnetica character of this phase. The estimated fraction by the two technique were compared leading to the conclusion that the magnetic method must be evaluated again using a proposed factor of correction in the basic equation of this process and present in the literature.
Carvalho, Leandro Gomes de. "Estudo dilatométrico das transformações de fase em aços maraging M300 e M350." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/3/3133/tde-26032012-112344/.
Full textMaraging steels are steels with a low carbon martensitic structure (BCC), which are hardened by precipitation of intermetallic phases. The aim of this work is to study the phase transformations of these steels: precipitation, martensite to austenite reversion and martensitic transformation. In this study, one cast of 300 grade and three casts of 350 grade were characterized using several complementary techniques: optical microscopy, scanning el ectron microscopy with energy dispersive analysis, microhardness, X-ray diffraction, ferritoscope and dilatometry. The results showed that the casts with higher concentrations of cobalt and titanium showed higher microhardness in the solution annealed and aged states. On the other hand, dilatometry measurements showed that there is a significant influence of both the chemical composition and the heating rate on the reactions of precipitation and reversion of martensite to austenite. However, the martensitic transformation was dependent solely on the heating rate.
Riehm, Derek J. "Kinetics of the pearlite to austenite reversion transformation." Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/29739.
Full textApplied Science, Faculty of
Materials Engineering, Department of
Graduate
Books on the topic "Austenite"
Jeleńkowski, Jerzy. Przemiana martenzytu w austenit w stopach Fe-(23-26) Ni-(2-3)ti-(Nb) z dodatkami aluminium lub molibdenu. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej, 1996.
Find full textN, Gotalʹskiĭ I͡U. Svarka perlitnykh staleĭ austenitnymi materialami. 2nd ed. Kiev: Nauk. dumka, 1992.
Find full textIbraheem, A. K. Precipitation in the austenite of microalloyed low carbon steel. Manchester: UMIST, 1995.
Find full textBuddy, Damm E., Merwin Matthew J, Iron and Steel Society of AIME. Product Physical Metallurgy Committee., and Minerals, Metals and Materials Society. Materials Processing and Manufacturing Division. Phase Transformations Committee., eds. Austenite formation and decomposition: Proceedings of symposia : held at the Materials, Science & Technology 2003 Meeting in Chicago, Illinois, USA, November 9-12, 2003. Warrendale, Pa: TMS, 2003.
Find full textJanus, Andrzej. Kształtowanie struktury odlewów z austenitycznego żeliwa Ni-Mn-Cu: Forming cast structure of austenitic nickel-manganese-copper cast iron. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej, 2013.
Find full textBrooks, Charlie R. Principles of the austenitization of steels. London: Elsevier Applied Science, 1992.
Find full textSaleh, M. Husin Bin. Retained austenite in dual phase steel and its effect on mechanical properties. Manchester: UMIST, 1998.
Find full textPatel, Pratful. Modelling the recrystallisation-stop temperature of vanadium austenite by single pass rolling. Manchester: UMIST, 1997.
Find full textFookes, B. G. Factors influencing the sub-critical decomposition of austenite in iron-silicon-carbon alloys. Uxbridge: BrunelUniversity, 1985.
Find full textRyś, Janusz. Krystalograficzne aspekty oddziaływania ferrytu i austenitu w bikryształach i stalach dwufazowych: Crystallographic aspects of ferrite and austenite interaction in two-phase steels and bicrystals. Kraków: Wydawnictwa AGH, 2013.
Find full textBook chapters on the topic "Austenite"
Durand-Charre, Madeleine. "The decomposition of austenite." In Microstructure of Steels and Cast Irons, 179–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08729-9_9.
Full textSamoilov, Andrej, Yuri Titovets, Nikolay Zolotorevsky, Gottfried Hribernig, and Andreas Pichler. "Modeling the Effect of Austenite Grain Size Distribution on Austenite Decomposition Kinetics." In THERMEC 2006, 4584–89. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-428-6.4584.
Full textSawaguchi, Takahiro. "Designing High-Mn Steels." In The Plaston Concept, 237–57. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7715-1_11.
Full textHao, Wang, Liu Guoquan, and Xu Kuangdi. "Austenite, Structure and Characteristic of." In The ECPH Encyclopedia of Mining and Metallurgy, 1. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0740-1_100-1.
Full textHao, Wang, and Liu Guoquan. "Austenite, Structure and Characteristic of." In The ECPH Encyclopedia of Mining and Metallurgy, 96–97. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-2086-0_100.
Full textZhenbao, Sun. "Transformation Diagram of Undercooled Austenite." In The ECPH Encyclopedia of Mining and Metallurgy, 2193–98. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-2086-0_1058.
Full textZhenbao, Sun, and Xu Kuangdi. "Transformation Diagram of Undercooled Austenite." In The ECPH Encyclopedia of Mining and Metallurgy, 1–6. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-0740-1_1058-1.
Full textAn, Dong, Shiyan Pan, Qing Yu, Chen Lin, Ting Dai, Bruce Krakauer, and Mingfang Zhu. "Modeling of Ferrite-Austenite Phase Transformation." In TMS2015 Supplemental Proceedings, 791–98. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119093466.ch96.
Full textAn, Dong, Shiyan Pan, Qing Yu, Chen Lin, Ting Dai, Bruce Krakauer, and Mingfang Zhu. "Modeling of Ferrite-Austenite Phase Transformation." In TMS 2015 144th Annual Meeting & Exhibition, 791–98. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-48127-2_96.
Full textLi, Jian, and Pei Liu. "Austenite Stability Under Focused Ion Beam Milling." In The Minerals, Metals & Materials Series, 81–88. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36628-5_8.
Full textConference papers on the topic "Austenite"
Sumiya, Kenzo, Shinkichi Tokuyama, Tatsuyuki Aoki, Junichi Fukui, Atsushi Nishiyama, and Akio Nishimoto. "Active-Screen Plasma Nitriding of an Austenitic Stainless Steel Small Thin Rolled Plate." In IFHTSE 2024, 139–44. ASM International, 2024. http://dx.doi.org/10.31399/asm.cp.ifhtse2024p0139.
Full textMohr, A., O. Schwabe, K. Ernst, H. Hill, and P. Kluge. "Thermal Spraying of a Novel Nickel-Free High Strength and Corrosion Resistant Austenitic Steel." In ITSC2022. DVS Media GmbH, 2022. http://dx.doi.org/10.31399/asm.cp.itsc2022p0631.
Full textDaniel, Tobias, Annika Boemke, Marek Smaga, and Tilmann Beck. "Investigations of Very High Cycle Fatigue Behavior of Metastable Austenitic Steels Using Servohydraulic and Ultrasonic Testing Systems." In ASME 2018 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/pvp2018-84639.
Full textPaidar, V. "Mechanisms of austenite-martensite transition." In ESOMAT 2009 - 8th European Symposium on Martensitic Transformations. Les Ulis, France: EDP Sciences, 2009. http://dx.doi.org/10.1051/esomat/200902026.
Full textMakhneva, Tatyana, Arkadiy Sukhikh, Vyacheslav Dementyev, and Sergey Makarov. "Segregated austenite in maraging steel." In PROCEEDINGS OF THE V INTERNATIONAL SCIENTIFIC CONFERENCE ON ADVANCED TECHNOLOGIES IN AEROSPACE, MECHANICAL AND AUTOMATION ENGINEERING: (MIST: Aerospace-V 2023). AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0199904.
Full textYu, Haixuan, Yuan Lu, Xiaoqing Cai, and Richard D. Sisson. "The Effects of Tempering on the Structure of Martensite in 52100 Steel." In HT 2015. ASM International, 2015. http://dx.doi.org/10.31399/asm.cp.ht2015p0060.
Full textEskandari Sabzi, Hossein, Andrew Hamilton, Xinjiang Hao, and Pedro E. J. Rivera-Díaz-del-Castillo. "Transformation-Induced Plasticity In Additively Manufactured Tool Steel." In Euro Powder Metallurgy 2024 Congress & Exhibition. EPMA, 2024. http://dx.doi.org/10.59499/ep246228829.
Full textHashimoto, Tadafumi, Shigetaka Okano, Shinro Hirano, Masahito Mochizuki, and Kazutoshi Nishimoto. "Residual Stress by X-Ray Diffraction and Microstructure for Multi-Pass Girth Welded Pipe Joint in Austenitic Stainless Steel Type 316L." In ASME 2011 Pressure Vessels and Piping Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/pvp2011-57434.
Full textSpiegel, Michael, and Patrik Schraven. "Power Austenite- A Novel σ-Phase Hardened High Temperature Alloy for 700 °C (1292 °F) Fired Boilers." In AM-EPRI 2016, edited by J. Parker, J. Shingledecker, and J. Siefert. ASM International, 2016. http://dx.doi.org/10.31399/asm.cp.am-epri-2016p0304.
Full textPSODA, M., and R. SOT. "RETAINED AUSTENITE DETERMINATION IN ROLLING BEARINGS." In Proceedings of the XVIII Conference. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811325_0048.
Full textReports on the topic "Austenite"
Williams, D., and W. Maxey. NR198506 Evaluation of an X70 Low-Carbon Bainitic-Steel Pipe. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), October 1985. http://dx.doi.org/10.55274/r0011411.
Full textMilitzer, M., R. Pandi, and E. B. Hawbolt. Austenite to ferrite transformation kinetics during continuous cooling. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/34419.
Full textFocht, E. M. Static Recrystallization Behavior of Austenite in HSLA 100 During Thermomechanical Controlled Processing (TMCP). Fort Belvoir, VA: Defense Technical Information Center, November 1994. http://dx.doi.org/10.21236/ada288737.
Full textVitek, J. M., S. A. Vitek, and S. A. David. Modeling the ferrite-to-austenite transformation in the heat-affected zone of stainless steel multi-pass welds. Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/201775.
Full textHicho, G. E., W. J. Boettinger, L. Swartzendruber, and T. R. Shives. Examination of the excessive retained austenite on the surface of a section of 17-7 precipitation hardening stainless steel. Gaithersburg, MD: National Institute of Standards and Technology, 1991. http://dx.doi.org/10.6028/nist.ir.4502.
Full textBeavers and Jaske. L51498 Girth Welding Linepipe made from Stainless Steel Either Solid or Internally Clad Phase I. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), February 1986. http://dx.doi.org/10.55274/r0010649.
Full textAnderl, R. A., and P. K. Nagata. Helium permeability through austenitic stainless steel. Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/7171431.
Full textLaura Carroll, Julian Benz, and Richard Wright. Creep-Fatigue of Advanced Austenitic Alloys. Office of Scientific and Technical Information (OSTI), August 2010. http://dx.doi.org/10.2172/993156.
Full textDalder, E. N. C., and M. C. Juhas. Austenitic stainless steels for cryogenic service. Office of Scientific and Technical Information (OSTI), September 1985. http://dx.doi.org/10.2172/5083581.
Full textMcEvily, A. J. Fatigue of ferritic and austenitic steels. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5576198.
Full text