Dissertations / Theses on the topic 'Austenite formation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 19 dissertations / theses for your research on the topic 'Austenite formation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Azizi-Alizamini, Hamid. "Austenite formation and grain refinement in C-Mn steels." Thesis, University of British Columbia, 2010. http://hdl.handle.net/2429/30513.
Full textChelladurai, Isaac. "Characterization of Phase Transformation and Twin Formation in Automotive Sheet Metal Alloys to Quantify and Understand Their Impact on Ductility." BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/8628.
Full textTao, Xiao. "Investigations on the role of Cr, Mn and Ni on the formation, structure, and metastability of nitrogen-expanded austenite on Fe-based austenitic alloys under triode-plasma nitriding." Thesis, University of Sheffield, 2018. http://etheses.whiterose.ac.uk/21957/.
Full textGyhlesten, Back Jessica. "Modelling and Characterisation of the Martensite Formation in Low Alloyed Carbon Steels." Licentiate thesis, Luleå tekniska universitet, Material- och solidmekanik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-62369.
Full textJavaheri, V. (Vahid). "Design, thermomechanical processing and induction hardening of a new medium-carbon steel microalloyed with niobium." Doctoral thesis, Oulun yliopisto, 2019. http://urn.fi/urn:isbn:9789526223582.
Full textTiivistelmä Tämä väitöskirja on tehty osana Euroopan teollisuustohtori (European Industrial Doctorate, EID) -ohjelmaa projektissa eli Matematiikka ja materiaalitiede teräksen valmistuksessa ja käytössä (Mathematics and Materials Science for Steel Production and Manufacturing, MIMESIS). Ohjelmassa on viisi partneria: EFD Induction Norjasta; SSAB, Outokumpu ja Oulun yliopisto Suomesta; ja Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Saksasta. Työn päätavoitteina oli kehittää teräksen koostumusta ja prosessointireittiä, jotka soveltuvat lietteen kuljetusputken valmistukseen induktiokarkaisun avulla, sekä karakterisoida prosessin eri vaiheiden aikana tapahtuvat faasimuutokset ja mikrorakenteet. Uusi teräskoostumus suunniteltiin metallurgisten periaatteiden pohjalta hyödyntämällä laskennallista termodynamiikkaa ja kinetiikkaa. Suunniteltu teräs on niobilla mikroseostettu, matalaseosteinen ja keskihiilinen, eli painoprosentteina 0,40 C, 0,20 Si, 0,25 Mn, 0,50 Mo, 0,90 Cr ja 0,012 Nb. Teräs valettiin, valssattiin ja jäähdytettiin termomekaanisesti laboratoriovalssaimella kahdeksi bainiittiseksi mikrorakenteeksi ja lopulta altistettiin lämpösykleille, joiden ennustettiin olevan tyypillisiä sisäisesti induktiokarkaistulle teräsputkelle. Simuloidun tuotantoprosessin eri vaiheissa havaitut faasimuutokset ja mikrorakenteet on karakterisoitu. Sen lisäksi on kehitetty algoritmit, jotka mahdollistavat mikrorakenteen ja kovuuden optimoinnin putken seinämän paksuuden läpi
Bellavoine, Marion. "Transformations de phases et recristallisation dans les aciers Dual Phase microalliés au titane niobium : étude expérimentale et modélisation." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0262.
Full textTo meet the need for weight reductions in the automotive industry, new advanced high-strength steels are being developed. The achievement of a better balance between high strength and high formability requires a deep understanding of both the effect of chemical composition and processing parameters on the formation of microstructures. The present work contributes to such an objective and deals with the mechanisms occurring during annealing of Dual Phase steels microalloyed with Ti and Nb. Microstructural changes during this stage include precipitation of microalloying elements, ferrite recrystallization and austenite formation. These mechanisms are investigated using complementary experimental techniques at different scales such as in situ XRD, SEM, TEM and APT in various Dual Phase steel grades having the same bainite-martensite initial cold-rolled microstructure. Using combined experimental and modeling approaches, the present work clarifies the separate influence of microalloying elements Ti, Nb and Mo and heating rate on the mechanisms occurring during annealing and their interactions
Marceaux, Dit Clément Arthur. "Interactions entre transformations de phases et recristallisation au recuit : influence de la microstructure initiale pour des aciers à 0,2 % de carbone." Electronic Thesis or Diss., Aix-Marseille, 2020. http://www.theses.fr/2020AIXM0297.
Full textHigh-strength steels are widely used in the automotive industry because of the good mechanical properties – formability ratio they offer. Numerous research activities are still ongoing to further improve their formability properties. High-carbon chemistries can help reach this goal. This thesis focuses on the microstructural evolutions during the annealing of two 0.2 wt.% carbon steels with Ti-Nb microalloy, for which cold-rolled initial microstructures are different (bainite-martensite and bainite-pearlite). Interactions between recovery, recrystallization, cementite precipitation, microalloying elements precipitation and austenite formation can lead to the formation of many kinds of final microstructures after annealing. The origin of banded microstructures, detrimental to good formability properties and linked to incomplete recrystallization during annealing, is studied
Esham, Kathryn V. "The Effect of Nanoscale Precipitates on the Templating of Martensite Twin Microstructure in NiTiHf High Temperature Shape Memory Alloys." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1494251602171757.
Full textPhilippot, Clément. "Etude des mécanismes de précipitation, de recristallisation et de transformation de phases dans les aciers Dual Phase microalliés au titane niobium lors du recuit." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4342.
Full textLightening the weight of vehicles is one of the main challenging objectives of the automotive industry to reach the environmental regulation in term of CO2 emissions. The development of multiphase high strength steels is a common solution to reduce the thickness of sheet steel used in vehicles while keeping the same level of passenger’s safety requirements. The present study deals with the optimization of industrial process parameters applied to obtain one of these steels: the high strength microalloyed Dual Phase steels; i.e. with ultimate tensile strength superior to 800MPa.From an initial cold rolled microstructure made of bainite + martensite, the phenomena occurring during the annealing are characterized since the heating up to the end of the intercritical holding. The influence of process parameters as the heating rate, the holding temperature and the holding time are studied. The triple interactions system between the precipitation of microalloying elements, the recrystallization and the austenite formation is the core of the problem. A scenario of microstructural evolutions has been established based on the characterized phenomena. The studied fine microstructure (sub-microns) requires the combination of multiscale characterization techniques: SEM, TEM, atom probe tomography, nano-SIMS
Bellavoine, Marion. "Transformations de phases et recristallisation dans les aciers Dual Phase microalliés au titane niobium : étude expérimentale et modélisation." Electronic Thesis or Diss., Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0262.
Full textTo meet the need for weight reductions in the automotive industry, new advanced high-strength steels are being developed. The achievement of a better balance between high strength and high formability requires a deep understanding of both the effect of chemical composition and processing parameters on the formation of microstructures. The present work contributes to such an objective and deals with the mechanisms occurring during annealing of Dual Phase steels microalloyed with Ti and Nb. Microstructural changes during this stage include precipitation of microalloying elements, ferrite recrystallization and austenite formation. These mechanisms are investigated using complementary experimental techniques at different scales such as in situ XRD, SEM, TEM and APT in various Dual Phase steel grades having the same bainite-martensite initial cold-rolled microstructure. Using combined experimental and modeling approaches, the present work clarifies the separate influence of microalloying elements Ti, Nb and Mo and heating rate on the mechanisms occurring during annealing and their interactions
Cho, Jae-Young. "Effect of [delta] ferrite on edge-crack formation during hot rolling of austenitic stainless steel." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0027/MQ50595.pdf.
Full textCho, Jae-Young 1970. "Effect of [delta] ferrite on edge-crack formation during hot rolling of austenitic stainless steel." Thesis, McGill University, 1999. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=21284.
Full textWestin, Elin M. "Microstructure and properties of welds in the lean duplex stainless steel LDX 2101." Doctoral thesis, KTH, Metallografi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-27387.
Full textQC 20101213
Westin, Elin M. "Welds in the lean duplex stainless steel LDX 2101 : effect of microstructure and weld oxide on corrosion properties." Licentiate thesis, KTH, Materials Science and Engineering, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-9299.
Full textDuplex stainless steels are a very attractive alternative to austenitic grades due to their higher strength and good corrosion performance. The austenitic grades can often be welded autogenously, while the duplex grades normally require addition of filler metal. This is to counteract segregation of important alloying elements and to give sufficient austenite formation to prevent precipitation of chromium nitrides that could have a negative effect on impact toughness and pitting resistance. The corrosion performance of the recently-developed lean duplex stainless steel LDX 2101 is higher than that of 304 and can reach the level of 316. This thesis summarises pitting resistance tests performed on laser and gas tungsten arc (GTA) welded LDX 2101. It is shown here that this material can be autogenously welded, but additions of filler metal, nitrogen in the shielding gas and use of hybrid methods increases the austenite formation and the pitting resistance by further suppressing formation of chromium nitride precipitates in the weld metal. If the weld metal austenite formation is sufficient, the chromium nitride precipitates in the heat-affected zone (HAZ) could cause local pitting, however, this was not seen in this work. Instead, pitting occurred 1–3 mm from the fusion line, in the parent metal rather than in the high temperature HAZ (HTHAZ). This is suggested here to be controlled by the heat tint, and the effect of residual weld oxides on the pitting resistance is studied. The composition and the thickness of weld oxide formed on LDX 2101 and 2304 were determined using X-ray photoelectron spectroscopy (XPS). The heat tint on these lean duplex grades proved to contain significantly more manganese than what has been reported for standard austenitic stainless steels in the 300 series. A new approach on heat tint formation is consequently presented. Evaporation of material from the weld metal and subsequent deposition on the weld oxide are suggested to contribute to weld oxide formation. This is supported by element loss in LDX 2101 weld metal, and nitrogen additions to the GTA shielding gas further increase the evaporation.
Westin, Elin M. "Welds in the lean duplex stainless steel LDX 2101 : effect of microstructure and weld oxides on corrosion properties." Licentiate thesis, Stockholm : Industriell teknik och management, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-9299.
Full textLi, Wei. "An investigation into the effect of stress on the formation and stability of carbon s-phase on austenitic stainless steel." Thesis, University of Birmingham, 2011. http://etheses.bham.ac.uk//id/eprint/2894/.
Full textBouquet, Nicolas. "Etude de la formation des joints soudés par diffusion : application aux échangeurs de chaleur compacts." Thesis, Dijon, 2014. http://www.theses.fr/2014DIJOS050/document.
Full textCompact diffusion bonded heat exchangers are an attractive option in many fields (nuclear, (petro-)chemistry, solar…) due to their performance. This type of concept is especially intended for manufacturing the energy conversion system of the ASTRID reactor. During diffusion bonding by HIP, the problem is twofold: the channel deformation and microstructure evolution must be controlled, while at the same time, highly resistant interfaces are desired. This thesis is focused on the understanding and the control of the bonded components microstructure prepared by HIP in order to define « process » criteria to achieve welds in agreement with specifications of components containing fluidic channels: interfaces unaffected by the process and small grain size. After a detailed characterization of their surface and microstructural evolution during heating, the behavior of AISI 316L austenitic steel sheets has been examined in a parametric study by varying the parameters related to process (diffusion bonding temperature and pressure) and welding material (thickness, surface finish…). The results show that the interface formation is driven by conventional grain growth mechanisms with an interfacial pining more or less marked depending on surface characteristics. The mechanical properties of assemblies have been tested to determine the influence of defects. Though pores are the most critical default, the influence of other heterogeneities has also been highlighted. The different steps of bond formation have been identified by performing interrupted diffusion bonding test. The interest of modeling approach by Level-Set method to simulate microstructure evolution has been finally discussed
Cho, Yeong-Bong. "The kinetics of austenite formation during continuous heating of a multi-phase steel." Thesis, 2000. http://hdl.handle.net/2429/10582.
Full textYi-ShanHsu and 徐儀珊. "Effect of Austenite Grain Size and Cooling Rate on the Formation of Acicular Ferrite in SM570 Steel." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/37033585784391403993.
Full text國立成功大學
材料科學及工程學系
102
The study is divided into two parts experiment, first one is simulation of the heat affected zone of welding process and calculate the equation of austenite grain size and holding time. Second, simulate the different cooling rate and observe the acicular ferrite and calculate the volume proportion of each phase. The heat treatment process was designed to get the proper microstructure. OM analysis was checked the AF structure. EDS analysis identify the inclusion type. EBSD reconfirm the AF structure. By heat treatment experiment to simulate HAZ and observe growth of austenite grain size, we can construct the austenite grain growth equation of austenite grain size v.s holding time. Simulating various cooling rates, we can find that most appropriate cooling rate for the formation of acicular ferrite is air cooling. AF has a characteristic that the value of KAM will be relatively large, and the peak value at around 0.4.