To see the other types of publications on this topic, follow the link: Austenite residua.

Dissertations / Theses on the topic 'Austenite residua'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 22 dissertations / theses for your research on the topic 'Austenite residua.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Calcinelli, Luca. "Ottimizzazione del trattamento termico di acciai inossidabili martensitici per stampi." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.

Find full text
Abstract:
L’acciaio inossidabile martensitico AISI 420 viene impiegato per la realizzazione di stampi per la formatura di materie plastiche grazie alle sue elevate proprietà di resistenza all'usura e stabilità dimensionale. Esse sono funzione del trattamento termico che esso subisce e che può compromettere proprietà meccaniche e corrosive tipiche di questo acciaio. Il presente studio prende avvio proprio da queste considerazioni e dagli esiti di alcune failure analysis su stampi per bottiglie in PET, in cui sono state evidenziate rotture per fatica innescate da pitting corrosivo con propagazione intergranulare. Nell’ambito della sperimentazione riportata si è cercato di ottimizzare il trattamento termico di bonifica in modo da massimizzare resistenza a corrosione, a fatica e resilienza pur garantendo una sufficiente stabilità dimensionale. A seguito di un approfondimento bibliografico, si è definita una microstruttura obiettivo caratterizzata dalla presenza di carburi M23C6 globulizzati ed uniformemente distribuiti nella matrice martensitica e si sono testate differenti condizioni di trattamento termico. L'esito della sperimentazione, che si è avvalsa di tecniche di microscopia ottica ed elettronica, ha indicato come trattamento ottimale quello costituito da una austenitizzazione di 30 minuti a 1020°C seguito da una tempra in azoto a 10 bar ed un ciclo di tre rinvenimenti a 250°C. La ridotta temperatura di austenitizzazione ha permesso la limitazione dei tenori di austenite residua mentre elevata velocità di raffreddamento impiegata e ridotte temperature di rinvenimento hanno permesso di evitare la precipitazione di carburi fini infragilenti e causa di sensibilizzazione. Sono state inoltre eseguite numerose analisi che hanno permesso di accertare una certa variabilità microstrutturale del materiale allo stato di fornitura evidenziando come la microstruttura di quest'ultimo sia fondamentale per ottenere l'esito desiderato dal trattamento termico.
APA, Harvard, Vancouver, ISO, and other styles
2

Malmberg, Andreas. "The influence of carbonitriding on hardness, retained austenite and residual stress in 52100 steel." Thesis, KTH, Materialvetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-173804.

Full text
Abstract:
High rolling contact fatigue parts are vital for the long service life of fuel pumps. Cummins Fuel Systems are currently using an M2 tool steel for one of the most important roller bearing application in their pumps, namely the cam follower. The future design of the cam follower is a pin-less tappet roller. The wear and fatigue properties of the roller is vital to ensure reliability of the fuel system. M2 tool steel is an expensive material and becomes even more so if diamond like coating (DLC) is needed to decrease the friction coefficients. To cut costs of the fuel pump it might be possible to replace the M2 tool steel with 52100 steel (100Cr6). Competitive methods have proven that carbonitrided 52100 can reach excellent wear and fatigue properties making it a candidate to replace M2 tool steel. How the properties of hardness, toughness and compressive residual stresses are developed in 52100 and how they affect the fatigue and wear resistance has been researched from the literature. A big part of this project was to do an extensive analysis of a roller bearing that was believed to have gone through one of these competitive methods that produce excellent wear and fatigue resistance. The analysis was done with background to the knowledge gathered from the literature. Finally process trials were set up to carbonitride 52100 steel samples. The trials were done to develop a better understanding of how adding carbon together with nitrogen to the surface of 52100 steel will influence the metallurgical parameters that results in good wear and fatigue resistance. From this analysis Cummins hope to create a process recipe that can be used for carbonitriding the cam follower and maybe other components in their fuel systems.
APA, Harvard, Vancouver, ISO, and other styles
3

Iyer, Venkatramani S. "Effect of residual stress gradients in austenitic stainless steels on stress corrosion cracking." Thesis, Virginia Tech, 1991. http://hdl.handle.net/10919/42119.

Full text
Abstract:

The effect of the residual stresses developed during simulated weld heat affected zone in austenitic stainless steel specimen on the stress corrosion cracking susceptibility was studied. Residual stresses was measured using X-ray diffraction technique. Boiling Magnesium Chloride was used as corrosive environment. Compressive stresses developed in the HAZ of the specimen and in regions away from the HAZ stress free values were obtained. The magnitude of the stress gradient decreased as the peak temperature attained during simulated welding decreased. Transgranular cracks were observed in the compressive stress gradient region and time to cracking decreased with increasing stress gradient. Higher nickel content alloys took longer to crack as opposed to lower nickel content alloys at approximately the same stress gradient.
Master of Science

APA, Harvard, Vancouver, ISO, and other styles
4

Moturu, Shanmukha Rao. "Characterization of residual stress and plastic strain in austenitic stainless steel 316L(N) weldments." Thesis, Open University, 2015. http://oro.open.ac.uk/54875/.

Full text
Abstract:
Fusion welding processes commonly involve the localized input of intense heat, melting of dissimilar materials and the deposition of molten filler metal. The surrounding material undergoes complex thermo-mechanical cycles involving elastic and plastic deformation. This processing history creates large residual stress in and around the weld bead, which can be particularly detrimental in reducing the lifetime of fabricated structures, increasing their susceptibility to stress corrosion, fatigue and creep crack growth as well as reducing the fracture load. It is very important to have. a proper knowledge of the residual stress distribution in and around the weld region of structured components because knowing this allows their fitness to be assessed and the service life of critical components to be predicted. Characterizing weld residual stress fields either by measurement or finite element simulation is not straightforward because of the strain field complexity, inhomogeneity of the microstructure and the complex geometry of structural weldments. The residual stress distribution in a slot weld benchmark sample made from AISI 3 16L(N) austenitic stainless steel was analysed using the neutron diffraction at pulsed source. The presence of crevices and hydrogen containing super glue in the stress-free cuboids are some of the main issues effecting the neutron residual stress measurements. A residual stress of 400-450MPa was observed in first pass weld metal and in the HAZ of a three pass welded plate. The strain hardening behaviour of AISI 316L(N) steel around the slot weld was studied taking account of the asymmetric cyclic deformation and the typical strain rates experienced; inferences are drawn regarding how such effects should be modelled in finite element weld residual stress computations. The solution annealed material was tested under symmetric and asymmetric cyclic loading at both room and 550°C. During asymmetric cyclic loading, the 316L (N) material at room and high temperature was less strain hardened than in the same number of cycles of symmetric cyclic loading. At room temperature; the 316L (N) material deformed at fast strain rate showed higher strain hardening than at the slow strain rate. However, at high temperature (550°C); the 316L (N) material deformed at slow strain rate showed higher strain hardening than at the fast strain rate due to dynamic strain ageing. A mixed hardening model was to predict the strain hardening of the 316L (N) material at room and high temperature (550°C). However, the published mix~d hardening parameters were unsuccessful in predicting the strain hardening of the symmetric cyclic deformation at high temperature. Finally, the accumulated cyclic plastic strain resulting from the addition of each weld bead was studied using Electron Backscatter Diffraction (EBSD) and hardness measurements. The EBSD metrics showed a gradual increase of plastic strain and equivalent yield stress from the parent zone (approximately 0.02) to the fusion boundary (approximately 0.05-0.09). Although, in strain controlled cyclic loading, none of the EBSD metrics used were capable of assessing the plastic strain, below 58% cumulative plastic strain path. The quantified plastic strain (from the EBSD) and hardness analysis of the parent material indicates that the material deformed plastically. The EBSD derived plastic strain and equivalent yield stress correlate well with hardness, finite element prediction and von Mises equivalent residual stress.
APA, Harvard, Vancouver, ISO, and other styles
5

Manfrinato, Marcos Dorigão. ""Influência da nitretação a plasma no comportamento em fadiga dos aços inoxidáveis austeníticos AISI-SAE 304 e 316"." Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/88/88131/tde-15112006-221004/.

Full text
Abstract:
Os aços inoxidáveis austeníticos são materiais atrativos para serem utilizados em vários setores industriais que operam sob meios corrosivos, como por exemplo: indústria química, alcooleira, petroquímica, de papel e celulose, na prospecção de petróleo e nas indústrias têxtil e farmacêutica. Contudo, apresentam propriedades tribológicas pobres. No sentido de melhorar essas propriedades, como aumentar a dureza superficial, a resistência ao desgaste e a resistência à fadiga, vários métodos de tratamentos superficiais vêm sendo utilizados. Dentre eles, o mais eficiente é a nitretação por plasma. Este processo é realizado em uma câmara de vácuo sob uma mistura gasosa de hidrogênio e nitrogênio. É aplicada uma diferença de potencial entre o cátodo (porta amostras) e o ânodo (paredes da câmara), acelerando os íons contra a superfície da peça, aquecendo-a e arrancando elétrons de sua superfície. Os íons reagem com espécies da superfície do plasma formando compostos instáveis do tipo FeN que se recombinam para formarem nitretos estáveis. O sucesso deste tratamento se deve à baixa temperatura de operação, ao menor tempo efetivo de tratamento e ao controle da uniformidade da espessura da camada. A camada de nitretos formada durante o tratamento possui uma influência positiva na vida em fadiga de um componente, graças a dois motivos principais. O primeiro é o atraso na nucleação da trinca devido ao aumento da resistência mecânica superficial. O segundo motivo está relacionado com a introdução de tensões residuais compressivas durante o processo de endurecimento da superfície, que retarda a iniciação da trinca e diminui o fator de intensidade de tensão. Os corpos de prova foram nitretados a 400ºC durante 6 horas, com uma pressão de 4,5 mbar e utilizando uma mistura gasosa de 80% vol.H2 e 20%vol.N2. Ocorreu um aumento da resistência mecânica próxima á superfície, devido à camada de nitretos, o que ficou evidente com o sensível aumento no valor do limite de fadiga do material nitretado em relação ao não nitretado. O limite de fadiga do aço AISI 316 não tratado foi de 400MPa e do nitretado foi de 510MPa, enquanto que, para o aço AISI 304, o limite de fadiga do material não tratado foi de 380MPa e o limite para material submetido ao tratamento de nitretação foi de 560MPa.
The austenitic stainless steels are attractive materials to many industrial sectors which work on corrosive environments, as chemical industry alcohol, petrochemical, cellulose industries, in the petroleum prospection and pharmaceutical and textiles industries. However, they present poor tribological properties. In order to improve these properties, like increasing superficial hardness, wear and fatigue resistance superficial heat treatment methods have being used. The most efficient is the plasma nitriding process which occurs in a vacuum container under hydrogen and nitrogen gas mixture. A potential difference is applied between the cathode (samples receptor) and the anode (container walls), accelerating the ions against the piece, heating it and removing electron from the surface of material. These atoms react with the surface plasma species, producing unstable compounds like FeN, which recombine producing stable nitrides. The success of this treatment is due to the low temperature operation, the short effective time of treatment and to the uniformity control of the layer’s thickness. The nitrides layer produced during the treatment have a positive influence in the fatigue life of a component, thanks to two main reasons. The first is the retardation in crack nucleation due to increasing of superficial mechanical strength. The second reason is due to introduction of compressive residual stress during the surface hardening process, which retards de crack initiation process. The specimens were nitriding at 400°C during 6 hours, at a 4,5mbar pressure and using a gas mixture of 80% vol. H2 and 20% vol. N2. The surface mechanical strength increased, due to the nitrides layer, which was evident with the sensitive increase in the fatigue limit of the nitriding specimens, comparing to the untreated ones. The fatigue limit of the AlSl 316 steel in untreated condition was 400 MPa and in nitriding condition was 510 MPa, whereas AlSl 304 steel, the fatigue limit of the untreated condition was 480 MPa and the fatigue limit for the nitrided condition was 560 MPa.
APA, Harvard, Vancouver, ISO, and other styles
6

Nöbauer, Henrik. "Residual stresses and distortions in austenitic stainless steel 316L specimens manufactured by Selective Laser Melting." Thesis, Högskolan Väst, Avdelningen för svetsteknologi (SV), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-12771.

Full text
Abstract:
Residual stresses are one of the major challenges in additive manufacturing of metallic materials today. They are induced during manufacturing because of the rapid local heating and cooling and may cause distortions, cracking and delamination between layers. The magnitude of the residual stresses depends on factors such as manufacturing technology, material, part geometry, scanning strategy, process parameters, preheating temperature and density of the component. In the present work, the magnitudes of residual stresses and distortions in austenitic stainless steel 316L components manufactured by Selective Laser melting have been investigated. Four specimens with rectangular cross-sections where produced with different heights and wall thicknesses. The residual stresses were measured by two different methods, x-ray diffraction and Electronic Speckle Pattern Interferometry (ESPI) incremental hole drilling in order to see how well they correspond to each other. The results showed peaks of high tensile stresses in the building direction in all specimens. The magnitudes of stresses were similar in all four specimens. The largest distortions occurred when the wall thickness was increased, and the height was reduced. It was also shown that the measurements made by x-ray diffraction and ESPI incremental hole drilling were not consistent with each other. The latter showed unrealistically high measurements near the surface.
APA, Harvard, Vancouver, ISO, and other styles
7

Shapiro, Karen Naomi. "'The effect of residual stress and surface condition on the stress corrosion cracking of austenitic stainless steel'." Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.499863.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

McCluskey, Robert. "Residual stress effects on the fracture toughness behaviour of a narrow-gap austenitic stainless steel pipe weld." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/residual-stress-effects-on-the-fracture-toughness-behaviour-of-a-narrowgap-austenitic-stainless-steel-pipe-weld(7cc3ac9b-ff15-4fca-88ff-313d48f8858b).html.

Full text
Abstract:
Automated narrow-gap girth-butt welds are replacing conventional welding methods to join sections of austenitic stainless steel pipe in the primary circuit of Pressurised Water Reactors, to reduce manufacturing costs and improve quality. To ensure the safe operation of these systems, reliable structural integrity assessments have to be undertaken, requiring the mechanical properties of welded joints to be characterised alongside the weld residual stress magnitude and distribution.This research project characterised, for the first time, the weld residual stress field and the tensile and ductile fracture toughness properties of a 33 mm thick narrow-gap 304L stainless steel pipe weld. The residual stress was characterised using two complementary approaches: deep hole drilling and neutron diffraction. A novel neutron diffraction scanning technique was developed to characterise the residual stress field, without cutting an access window into the component, leaving the original weld residual stress field undisturbed. A modified deep hole drilling technique was developed to characterise the residual stress retained in fracture mechanics specimens extracted from the pipe weld in two orientations. The modified technique was shown to measure the original weld residual stress field more accurately than through conventional deep hole drilling. Residual stresses, exceeding 50% of the weld material proof strength, were retained in axially-orientated fracture mechanics specimens.Tensile tests showed that the weld was approximately 60% overmatched. It was demonstrated that neither retained residual stress, nor specimen orientation, had a discernible effect on the measured fracture toughness of the weld material. In less ductile materials, however, the level of retained residual stress may unduly influence the measurement of fracture toughness. At initiation, the fracture toughness properties of both the parent and weld materials were far in excess of the measuring capacity of the largest fracture mechanics specimens that could be machined from the weld.The influence of residual stress and fracture toughness on the performance of narrow-gap welded pipework was investigated. Full elastic-plastic finite element analyses were used to model the pipe weld, containing a postulated defect under combined primary and secondary loading. The results, applied within the framework of an R6 structural integrity assessment, compared different plasticity interaction parameters on the prediction of failure load; the conventional ρ-parameter approach was compared with the recently developed, more advanced, g-parameter. It was shown that the g-parameter significantly reduced the conservatism of the ρ-parameter approach. However, for this pipe weld, plastic collapse was predicted to precede failure by ductile initiation, suggesting that a plastic collapse solution may be an appropriate failure criterion to use in structural integrity assessments of similar component and defect combinations.
APA, Harvard, Vancouver, ISO, and other styles
9

Clitheroe, Linda Suzanne. "The physical and microstructural properties of peened austenitic stainless steel." Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/the-physical-and-microstructural-properties-of-peened-austenitic-stainless-steel(2576543d-5d47-4a41-9490-09eb1caf7204).html.

Full text
Abstract:
Surface treatments used to improve the life of a material known as peening are already extensively used in industry. The main aim of peening is to introduce compressive resiudal stress to the surface and subsurface of a metallic material, however literature also includes a number of microstructural and mechanical effects that peening introduces to a material when the compressive residual stress is established. The aim of this dissertation is compare and contrast the mechanical and microstructural effects of a current industrial peening method called shot peening, with three new increasingly competitive surface treatments. These are laser shock peening, ultrasonic impact treatment and water jet cavitation peening. The surface finish, and changes in microstructure, hardness depth profile, residual stress depth profile and plastic work depth profile of the four surface treatments are analysed. The effect of the peening parameters on the material is also determined, such as length of time of treatment, shot size, step size, direction of treatment, and irradiance per centimetre squared. The effect of peening on the residual stress depth profile of a gas tungsten eight pass grooved weld is also determined. Welding is a known region of early failure of material, with one of the factors affecting this being the introduction of tensile residual stress to the surface and near surface of the weld. An analysis to determine if peening the welded region alters the residual stress was carried out. In all experiments in this dissertation, the material that was used was austenitic stainless steel, as this material is highly used, especially within the nuclear industry. The results of this dissertation show that different peening types and peenign parameters produce a variety of surface, microstructural and mechanical effects to austenitic stainless steel. Peening of an aaustenitic stainless steel welded region results in teh near surface tensile residual stress to alter to ccompressive residual stress.
APA, Harvard, Vancouver, ISO, and other styles
10

Katemi, Richard Jackson [Verfasser], Franz [Akademischer Betreuer] Hoffmann, Franz [Gutachter] Hoffmann, and Udo [Gutachter] Fritsching. "Influence of Carbonitriding Process on Phase Transformation during Case Hardening, Retained Austenite and Residual Stresses / Richard Jackson Katemi ; Gutachter: Franz Hoffmann, Udo Fritsching ; Betreuer: Franz Hoffmann." Bremen : Staats- und Universitätsbibliothek Bremen, 2019. http://d-nb.info/1199003603/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Arun, Sutham. "Finite element modelling of fracture & damage in austenitic stainless steel in nuclear power plant." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/finite-element-modelling-of-fracture-and-damage-in-austenitic-stainless-steel-in-nuclear-power-plant(031e5ceb-b3b5-4499-8094-dbe362e27ff7).html.

Full text
Abstract:
The level of residual stresses in welded components is known to have a significant influence on their failure behaviour. It is, therefore, necessary to understand the combined effect of mechanical loading and residual stresses on the ductile fracture behaviour of these structures in order to provide the accurate structural safety assessment. Recently, STYLE (Structural integrity for lifetime management-non-RPV component) performed a large scale bending test on a welded steel pipe containing a circumferential through-thickness crack (the MU2 test). The purpose of this test is to study the impact of high magnitude weld residual stresses on the initiation and growth of cracks in austenitic stainless steels. This research presents the simulation part of the STYLE project which aims to develop the finite element model of MU2 test in ABAQUS to enhance the understanding and ability to predict the combined influence of mechanical loading and residual stresses on the ductile fracture behaviour of nuclear pressure vessel steels. This research employs both fracture mechanics principles (global approach) and Rousselier damage model (local approach) to study this behaviour including crack initiation and growth. In this research, the Rousselier model was implemented into ABAQUS via the user defined subroutines for ABAQUS/Standard and ABAQUS/Explicit modules, i.e. UMAT and VUMAT. The subroutines were developed based on the integration algorithm proposed by Aravas and Zhang. The validation of these subroutines was checked by comparing the FE results obtained from the implementation of these subroutines with the analytical and other benchmark solutions. This process showed that UMAT and VUMAT provide accurate results. However, the UMAT developed in this work shows convergence problems when the elements start to fail. Hence, only VUMAT was used in the construction of the finite element model of the MU2 test. As mentioned above, the results obtained from both fracture mechanics approach and Rousselier model are compared with the experimental data to validate the accuracy of the model. The results shows that both fracture mechanics approach and the Rousselier model predict similar final crack shapes which correspond closely to the test results in south direction. The other conclusions about the influence of residual stress on ductile fracture obtained from this work are also summarized in this thesis.
APA, Harvard, Vancouver, ISO, and other styles
12

Janin, Yin Jin. "Characterisation of residual stress and investigation of environmental effects on atmospheric-induced stress corrosion cracking of austenitic stainless steel nuclear waste containers." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/characterisation-of-residual-stress-and-investigation-of-environmental-effects-on-atmosphericinduced-stress-corrosion-cracking-of-austenitic-stainless-steel-nuclear-waste-containers(9b06d8fe-9395-4194-b276-73d698585e21).html.

Full text
Abstract:
This research has investigated the conditions necessary for atmospheric-induced stress corrosion cracking to occur in material taken from an intermediate level nuclear waste storage container by means of experiments in a humidity chamber. It has also characterised the residual stresses associated with the container welds by modelling and measurement. Based on the work conducted in this research, the major findings can be summarised as follows:• Deliquescence of salt particles is dependent on relative humidity but independent of the quantity of salt present.• The time to initiate cracking may be sensitive to temperature, getting longer as the temperature decreases, but the timeframe of work as not long enough to establish this conclusively.• AISCC can occur at a stress (residual or applied) of 400MPa (0.2% strain) or more if the other necessary conditions are present. While AISCC was not observed when no stress was present, the threshold of stress below which AISCC will definitely not occur has not been determined in this work.
APA, Harvard, Vancouver, ISO, and other styles
13

Pommier, Harry. "Fissuration en relaxation des aciers inoxydables austénitiques de type AISI 316L." Thesis, Paris, ENMP, 2015. http://www.theses.fr/2015ENMP0073/document.

Full text
Abstract:
La fissuration en relaxation (FER) peut apparaître dans les zones affectées par la chaleur de larges pièces soudées pendant leur utilisation entre 500 et 700°C. Il est admis que ce phénomène est induit par la relaxation à haute température de champs de contraintes résiduelles initialement introduits lors du soudage. L'objectif de ce travail est d'identifier, dans les aciers de type AISI 316L, les caractéristiques de ce type de matériaux, ainsi que les forces motrices, responsables du développement de la fissuration en relaxation.La méthodologie proposée consiste à reproduire les conditions de la FER dans cinq aciers de type AISI 316L de compositions chimiques différentes en utilisant des éprouvettes de type « Compact Tension » (CT) pré-comprimées. L'étude des éprouvettes à l'aide du MEB, de l'EBSD, du MET et de la tomographie X a révélé que de l'endommagement intergranulaire s'était développé dans quelques une d'entre elles. Le niveau d'endommagement mesuré dans chaque éprouvette dépend de la nuance de l'acier, de la température et de la durée d'exposition thermique, et du rayon d'entaille.Ce travail implique également la prédiction numérique des champs de déformations et de contraintes résiduelles dans les éprouvettes à l'aide d'une nouvelle loi de comportement viscoplastique à variables internes. La comparaison entre les champs de contraintes résiduelles prédits dans les éprouvettes de type CT et les distributions d'endommagement mesuré par tomographie a permis de déduire le niveau de contrainte résiduelle critique nécessaire pour l'initiation de la FER. Finalement, les distributions d'endommagement mesurées expérimentalement ont pu être correctement prédites numériquement avec une loi phénoménologique d'endommagement scalaire alimentée par les prédictions du modèle de comportement viscoplastique
Stress relaxation cracking can potentially be found in the heat affected zone of large welded parts after service in the 500-700°C temperature range. This phenomenon, known as reheat cracking (RC), is driven by the high temperature relaxation of residual stress fields initially introduced during welding. The main objective of this doctoral thesis is to identify the material and microstructural characteristics as well as the driving forces responsible for RC damage development in AISI 316L-type austenitic stainless steels.The proposed methodology relies on the reproduction of RC conditions in five chemically different AISI 316L-type steels using pre-compressed CT-like specimens. Subsequent investigation using SEM, EBSD, TEM and X-ray tomography revealed that intergranular damage had developed in some of the specimens. The extent of damage was found to depend on the steel grade, the temperature and duration of the thermal exposure, and the notch radius.The numerical investigation of the local residual stress and strain fields in the specimens was carried out using a novel internal state variable-based viscoplastic constitutive model. A comparison between the predicted residual stress fields in the CT-like specimens and the intergranular damage distributions measured by X-ray tomography enabled the threshold level of local residual stresses associated with the initiation of stress relaxation microcracks to be inferred. Finally, the distribution of the measured local RC damage was modelled numerically by explicitly linking a suitable phenomenological scalar damage law with the above constitutive model. The corresponding results were found to be consistent with the observed damage distributions
APA, Harvard, Vancouver, ISO, and other styles
14

Zhou, Jianqiang. "Experimental Study and Multi-scale Modelling of LCF Behaviour of Austenitic Steels Treated by SMAT." Thesis, Troyes, 2018. http://www.theses.fr/2018TROY0018.

Full text
Abstract:
Ce travail de thèse est focalisé sur des caractérisations microstructurales, des essais de fatigue et une modélisation multi-échelle du comportement en fatigue oligocyclique d’aciers 316L nanocristallisés superficiellement par SMAT. Le gradient de taille de grains superficiel, les contraintes résiduelles et l’écrouissage générés sont évalués à l’aide de différentes techniques : EBSD, DRX et essais de dureté. Le durcissement/adoucissement cyclique des éprouvettes SMATées et l'évolution de la microstructure au cours du chargement cyclique sont ensuite étudiés grâce à des essais de fatigue et des observations par EBSD. Une comparaison entre le SMAT et le grenaillage conventionnel est réalisée en analysant la topographie de surface, les champs de contraintes résiduelles et les profils d’écrouissage générés. Les effets de ces deux traitements sur la durée de vie en fatigue oligocyclique sont également étudiés.Une méthodologie de modélisation des contraintes résiduelles et de l’écrouissage est par ailleurs développée. Elle comporte une modélisation multi-échelle, la reconstruction des contraintes résiduelles et de l’écrouissage ainsi que la simulation du chargement cyclique. Une modélisation macroscopique de la plasticité cyclique de l’acier est d’abord réalisée. Une approche auto-cohérente du durcissement/adoucissement cyclique est ensuite développée. Enfin, une nouvelle méthode de reconstruction des contraintes résiduelles et de l’écrouissage est proposée et appliquée à une structure SMATée
This work focuses on experimental analysis and multiscale modelling of LCF behaviour of 316L steels treated by SMAT. The gradient microstructure features of a 316L steel treated by SMAT are characterized by EBSD, XRD and hardness tests. Grain size gradient, residual stress and plastic deformation are evaluated. The cyclic hardening/softening behaviour of the SMATed specimens and the evolution of the microstructures during cyclic loading are studied based on LCF tests and EBSD observations. A comparison between SMAT and conventional shot peening is performed by analysing the surface topography, residual stress fields, and work hardening profiles of the treated specimens as well as their effects on LCF life.A modelling methodology of residual stress and work hardening is developed including constitutive modelling, reconstruction technique, and cyclic loading simulation. First, a macroscopic constitutive modelling of the cyclic plasticity behaviour of a 316L steel is performed. Then, a self-consistent modelling of the cyclic hardening/softening behaviour is developed. Afterwards, a new method for reconstructing residual stress and work hardening is proposed and applied to a SMATed structure. Both of the previous macroscopic and microscopic models are used to predict the cyclic behaviour of the SMATed material
APA, Harvard, Vancouver, ISO, and other styles
15

Krawczyk, Benjamin. "Elucidating the corrosion performance of type 316L stainless steel product storage cans." Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/elucidating-the-corrosion-performance-of-type-316l-stainless-steel-product-storage-cans(faa47d8a-65c4-443d-a00a-2ecf64898efd).html.

Full text
Abstract:
Re-processed oxide fuel product from the Thermal Oxide Reprocessing Plant (THORP) is stored in Type 316L stainless steel, using a design of several nested cans, with the outer can providing the safety case containment barrier. The research reported in this PhD thesis aims to support the safety case related to these storage cans, by identifying and characterising susceptible microstructure sites and associated material surface conditions. The overarching goal of this project is to understand the propensity of THORP storage cans towards localised corrosion and Environment Assisted Cracking (EAC) in HCl and chloride-bearing atmospheric environments. The investigation focused on two possible corrosion cases: (1) understanding the effect of surface finishing on material performance in chloride-containing atmospheric environments, and (2) characterising the effects of the HCl aqueous solutions inside the can, with potential formation of HCl vapour. Microstructure investigations were carried out on surface-treated type 316L coupon specimens. The application of aqua blasting resulted in a deformed near-surface microstructure, containing compressive residual stresses to a depth of 100-120 micrometres. Subsequent laser engraving produced a recrystallized surface layer with tensile residual stresses reaching to a depth of 200 micrometres. Changes of surface roughness topography were accompanied by the development of a thick oxide/hydroxide film after laser engraving. Atmospheric exposure revealed similar corrosion attack for all samples, with laser engraving exhibiting the lowest number of corrosion sites, but with the largest average depth of attack. In addition, laser engraving led to atmospheric-induced stress corrosion cracking (AISCC) within two weeks of exposure to 386 ug/cm2 MgCl2-laden droplet deposits, with crack growth rates similar to ground U-bend samples. Strategies to reduce the likelihood of AISCC of laser-engraved components are discussed. The influence of HCl concentration and exposure temperature on the corrosion type and rate of annealed and cold rolled type 316L stainless steel has also been investigated. Cold rolling of up to 20 % reduction was introduced, with potentio-dynamic polarization measurements conducted in 0.01 - 3 M HCl aqueous solution. Results are compared to microstructures immersed under open circuit conditions, and to HCl-laden droplet deposits at temperatures up to 80C. Corrosion type diagrams are introduced to describe the transition between uniform corrosion, mixed-mode uniform with pitting corrosion, and pitting corrosion only, as a function of temperature, HCl concentration, and cold deformation. SCC tests of type 316L stainless steel have been carried out at 110C, by exposing U-Bend samples to HCl-laden droplets and HCl vapour. The humidity of the environment was controlled using defined volume fractions of H2O in a sealed environmental chamber. HCl-laden droplets with chloride deposition densities exceeding 1.5 ug/cm2 led to SCC after 90 minutes of exposure, whereas no corrosion attack was observed for samples with exposure to 0.15 ug/cm2 HCl. Increasing HCl concentrations resulted in fewer, but longer cracks, reaching up-to several hundreds of micrometres in length. HCl vapour exposure was carried out by adding various volumes of HCl solution in a beaker to the sealed test chambers. These HCl vapour tests confirmed a change of corrosion type with HCl concentration, from pitting corrosion with SCC, to the occurrence of uniform corrosion.
APA, Harvard, Vancouver, ISO, and other styles
16

Hermant, Alexandre. "Evolutions microstructurales d’un acier inoxydable austénitique (316 Nb) au cours de sollicitations thermomécaniques représentatives de différents procédés de forgeage." Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLEM081.

Full text
Abstract:
Les travaux de thèse ont permis de consolider et de compléter les connaissances sur les mécanismes de déformation et les évolutions microstructurales à chaud d’un acier inoxydable austénitique 316Nb. Comprendre la variation du comportement microstructural observée sur différentes pièces obtenues par forge libre permettra de pérenniser les connaissances et d’optimiser les gammes de forgeage. Du fait d’une variabilité de l’état de recristallisation, mise en évidence sur des pièces d’essai, et de son impact sur les propriétés mécaniques, des traitements thermomécaniques simplifiés sont réalisés en laboratoire afin de comprendre la genèse de ces différents états métallurgiques. L’influence de la température, du taux et de la vitesse de déformation ainsi que de la vitesse de refroidissement après l’essai (distinction entre les mécanismes dynamiques et post-dynamiques) est tout d’abord étudiée. De multiples passes de déformation, dans des conditions isothermes et anisothermes, sont ensuite appliquées afin de suivre les évolutions post-dynamiques de la microstructure entre les passes. Le rôle du traitement thermique post-déformation sur la microstructure (recristallisation statique) est étudié. Enfin, l’effet de la microstructure initiale, en termes de taille de grains et de composition chimique, notamment la teneur en niobium en solution solide, a été considéré.La recristallisation dynamique ne domine pas l’évolution de la microstructure, de par notamment une restauration dynamique avancée et une taille de grains élevée. Néanmoins, aux hautes températures et pour de faibles taux de déformation, une migration dynamique des joints de grains conduit à la formation progressive de nouveaux grains recristallisés. La recristallisation post-dynamique est très dépendante des conditions de déformation. A composition chimique donnée, la taille de grains (dans la gamme 60 – 250 µm) affecte peu la cinétique de recristallisation dynamique et post-dynamique. L’augmentation de la teneur en niobium de la solution solide entraîne, via sans doute un effet de traînage de soluté et une éventuelle modification de l’énergie de défaut d’empilement à haute température, un retard considérable de l’apparition de la recristallisation. Au cours du traitement thermique post-déformation, l’état de recristallisation final est essentiellement dépendant de la composition chimique (teneur en niobium de la solution solide et présence de ferrite δ résiduelle). Les précipités de niobium générés dans les conditions de déformation usuelles n’ont pas d’influence directe sur la cinétique de recristallisation
Mechanical properties and microstructure of 316Nb austenitic stainless steel may show some variability in hot forging products. This work aimed at improving knowledge about hot deformation mechanisms and microstructural evolution of this steel. Obtaining a homogeneous microstructure requires deep understanding of the hot deformation behaviour and mechanisms. In thick-walled components, both work hardening, dynamic recovery and recrystallization govern hot workability. Static and post-dynamic phenomena can induce further metallurgical evolution during interpass time and cooling. The influence of deformation temperature, strain, strain rate, cooling rate on recrystallization mechanisms has been studied by using hot torsion tests. Multiple-pass tests with isothermal and non-isothermal interpass allowed understanding post-dynamic mechanisms. Static phenomena were investigated using various annealing conditions. The effects of initial microstructural features such as grain size and chemical composition, specifically niobium solute content, on the hot deformation behaviour were eventually considered.The extent of dynamic recovery, coarse initial grain size, solute drag, and pinning of grain boundaries by fine Nb(C,N) particles strongly hinder dynamic recrystallization which does not dominate the metallurgical evolution over the range studied, in contrast to results reported on 316 steel. However, bulging of grain boundaries as a prelude to dynamic recrystallization was observed at low strains and high temperature. Grain boundary serrations progressively lead to the formation of subgrain boundaries, then of new high angle boundaries. A particular dynamic recrystallization mechanism explains progressive elimination of annealing twins. Interaction with dislocations depends on locally activated slip systems and whether they are common to both twin and parent grain. At moderate strain levels, post-dynamic recrystallization occurs by rapid growth of nuclei that depends on deformation temperature, and applied strain and strain rate. For a given chemical composition, neither dynamic nor post-dynamic recrystallization is affected by the initial grain size over the range studied. Increasing the free niobium content promotes solute drag and niobium carbide precipitation, which significantly delay recrystallization. The microstructure after annealing essentially depends on the availability of solute atoms such as niobium and on residual δ-ferrite. Nb(C,N) precipitates formed during hot deformation do not significantly influence recrystallization kinetics
APA, Harvard, Vancouver, ISO, and other styles
17

Ben, Afia Souhail. "Influence d'un traitement mécanique de nanocristallisation superficielle (SMAT) sur l'oxydation à hautes températures de l'acier 316L." Thesis, Troyes, 2016. http://www.theses.fr/2016TROY0007/document.

Full text
Abstract:
Ce travail a permis de mettre en évidence l’impact du procédé SMAT (Surface Mechanical Attrition Treatment) sur la résistance à l’oxydation des aciers de type AISI 316L. Cette étude a permis de comparer la composition et la morphologie des couches d’oxydes, la cinétique d'oxydation, les mécanismes de croissance et les contraintes résiduelles sur les surfaces des pièces traitées et oxydées à différentes températures. Ces observations ont montré l’existence d’un effet bénéfique du SMAT sur la résistance à l’oxydation de l’acier 316L pour des hautes températures. En effet, la cinétique d’oxydation des échantillons traités semble être reliée à une croissance préférentielle de chromine dès 700°C. Ceci nous a amenés à conclure que le procédé SMAT utilisé sur le 316L inverse la phase d’oxyde majoritaire, en inhibant la croissance de l’hématite et en favorisant celle de la chromine. Un scénario d’oxydation pour l’acier brut et Smaté a ainsi été proposé et le rôle de la densité des joints de grains introduits par le traitement a été explicité. Pendant ce travail, il a également été proposé un chaînage numérique complet qui prendrait en compte les paramètres du procédé et les propriétés mécaniques du matériau, afin de prévoir les caractéristiques de la nanostructure générée suite au traitement SMAT, en lien possible avec son influence sur l’oxydation à hautes températures
This work aims at highlighting the impact of the SMA process (Surface Mechanical Attrition Treatment) on the oxidation resistance of steels of type AISI 316L. This study compares the composition and morphology of the oxide layers, the oxidation kinetics, the growth mechanisms and the residual stresses on the surface of treated and oxidized samples at different temperatures. These observations show a beneficial effect of the SMA process on the oxidation resistance of the 316L steel for high temperatures. Indeed, the oxidation kinetics of the treated samples is shown to be related to a preferential growth of chromia starting at 700°C. This led us to conclude that the SMAT used on the 316L reverses the main oxide phase, inhibiting the growth of the hematite and promoting the chromia. An oxidation scenario for untreated and SMATed steel samples is proposed, demonstrating the role of the density of the grain boundaries introduced by the mechanical treatment. During this work, a comprehensive numerical chaining process is proposed. It takes into account the process parameters and mechanical properties of the material, in order to predict the characteristics of the nanostructure generated by SMAT, that could influence the oxidation of this stainless steel at high temperatures
APA, Harvard, Vancouver, ISO, and other styles
18

Clark, Tad Dee. "An Analysis of Microstructure and Corrosion Resistance in Underwater Friction Stir Welded 304L Stainless Steel." Diss., BYU ScholarsArchive, 2005. http://contentdm.lib.byu.edu/ETD/image/etd872.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Li, Linwei. "Etude thermo-chimico-mécanique de l’acier inoxydable AISI 316L oxydé entre 700°C et 900°C sous air humide." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS539.

Full text
Abstract:
La motivation de cette étude est d’étudier les effets de vapeur d’eau sur le comportement d’oxydation à haute température au point de vue des contraintes internes dans les couches d’oxyde. Les tests d’oxydation de l’acier inoxydable austénitique AISI 316L ont été effectués de 700°C à 900°C sous air contenant différentes humidités (0-8% vol) pendant différentes durées (6-96h). La morphologie de la surface d’oxyde, la microstructure de la section transversale, l’identification de phases d’oxyde, les contraintes de croissance et les contraintes résiduelles ont été analysées. Les résultats obtenus démontrent que : (1) La nature et la distribution des oxydes varient selon la température et la teneur de vapeur d’eau. (2) Les contraintes résiduelles sont en relation directe avec la température et la composition des oxydes. (3) La génération et la relaxation des contraintes pendant l’oxydation ont une importance majeure car elles jouent un rôle clé sur l’évolution de la microstructure. Les contraintes de croissance en traction et en compression conduisent à des microstructures distinctes des couches d’oxyde. (4) Les contraintes de croissance sont très sensibles à la présence de vapeur d’eau et leur teneur, en particulier les contraintes de croissance en traction développées sous air humide qui ont une relation très étroite avec le phénomène de l’oxydation « breakaway ». En final, en se basant sur les analyses thermo-chimie-mécanique, les mécanismes d’oxydation ont été proposés en tenant compte la présence ou pas de vapeur d’eau
The motivation of this study is to investigate the effects of water vapor on the oxidation behaviors of AISI 316L at high temperatures from the view of internal stresses in the oxide scales. Oxidation tests of AISI 316L austenitic stainless steel have been performed from 700˚C to 900˚C in the air with different water vapor contents (0 – 8 vol.%) for various durations (6 – 96 hours). The oxide surface morphology, cross-section microstructure, oxide phase identification and residual stresses in the oxide scales have been studied. The obtained results indicate that: (1) The oxide constituent distribution varies with both temperature and humidity. (2) Residual stresses show the temperature and chemical component dependence. (3) The stress generation and relaxation during oxidation are of great significance due to their key role in the oxide microstructure evolution. Net tensile and compressive growth stresses lead to distinct microstructures of oxide scales. (4) The growth stress also shows sensitivity to water vapor and its concentration, particularly the tensile growth stress developed in humid air, which has a close relationship with breakaway oxidation. Finally based on thermo-chemo-mechanical analyses, oxidation mechanisms have been proposed in two cases in regard to water vapor presence or absence
APA, Harvard, Vancouver, ISO, and other styles
20

Lee, Chen-Yu, and 李承育. "The Study of Residual Stress on Ferrite and Austenite in AISI 304 Weld." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/724tbx.

Full text
Abstract:
碩士
國立中興大學
材料科學與工程學系所
106
The purpose of this study is to investigate the residual stress of ferrite and austenite in AISI 304 weld by different time of shot peening and vibratory stress relief (VSR). At first, AISI 304 stainless steel was selected as substrate and the gas tungsten arc welding (GTAW) was applied, then various time of shot peening was brought to create different stress status. After that, the vibratory stress relief technology with waveform analysis by LabVIEW program was used to eliminate stress, and corrosion resistance test was applied finally. The Cr target cosα-method was used to measure the residual stress whole the study. The results show that δ-ferrite was generated by AISI 304 after weiding, and there is no transition in crystal structure by different time of shot peening. By observing of microstructure, both of the ferrite and austenite show grain refinement gradually increasing of the shot peening time. The grain-refine fraction of ferrite and austenite achieve respectively 31% and 50% after shot peening for 4 minutes. In the analysis of residual stress, results revealed that the uniformity of residual stress for ferrite and austenite went up to 32% and 41%, respectively, as weld shot peening for 4 minutes comparing with shot peening for 1 minute. In addition, the effect of vibratory stress relief for ferrite and austenite will be decreased as the time of shot peening increased. At the same condition of shot peening, the consequent of residual stress elimination on austenite is better than that of ferrite around 5~7%. The mean-FWHM of ferrite and austenite raise as increasing of shot peening time, which decline with extension of sub-surface and tend to balance. Eventually, it is found that the corrosion current density of weld fall from 29.5 mA/cm2 to 0.5 mA/cm2 as the time of shot peening from 1 minute rise to 4 minutes.
APA, Harvard, Vancouver, ISO, and other styles
21

Chang, Tai-Chuan, and 張泰權. "Establish the standard microstructures for determining the residual austenite content of carburizing steels." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/98154022490667868557.

Full text
Abstract:
碩士
大同大學
材料工程學系(所)
103
High carbon steels, which have ferrite and carbides matrix, were be transformed to martensite, retained austenite and undissolved carbides after heat treatment. When the austeniting temperature were heated over the Acm, carbides were dissolved and retained austenite were increased. In order to establish the standard metallographic microstructures for determining the residual austenite content of specific carburizing steels, SUJ2 and SK2 steels were used to evaluate and establish the amount of retained austenite by X-ray diffraction analysis. Besides that , the salt bath carburizing of SCM415 steel were conducted to compared the residual austenite and retained stress by the metallographic method and XRD method. In the field application the amount of retained austenite in the carburized case were required below 5%. Establishment of the standard metallographic microstructures at the different amount of retained austenite confirmed by X-ray diffraction analysis has been presented in this study.
APA, Harvard, Vancouver, ISO, and other styles
22

Chen, Pin Yei, and 陳炳宜. "Effect of Nitrogen Content on the Residual Stress and Angular Distortion in Austenitic Stainless Steel Weldment." Thesis, 1999. http://ndltd.ncl.edu.tw/handle/64970133740904752452.

Full text
Abstract:
碩士
國立彰化師範大學
工業教育學系
87
This study aimed at the investigation of the effect of the addition of nitrogen in shielding gas on the residual stress and angular distortion in the austenitic stainless steel weldment. Also, its mechanism will be investigated by the comparison of Type 310 and 316L austenitic stainless steel. In this study, the TIG arc welding is used, the experimental parameters include: 0、1、2、4、6、8 % nitrogen addition. The materials of types 316L and 310 stainless steel are used. The residual stress were determined by using the hole-drilling strain-gage method of ASTM standard E837. During welding, the thermal cycle of different locations in weldment were recorded. The experimental results showed that the residual stress can be increased with the addition of nitrogen in shielding gas. The increasing of heat input was the main factor. Due to arc coefficient and thermal conductivity coefficient in nitrogen is better than arogen. But ressidual stress can be decreased with ressidual δ-ferrite exisited. Also, ressidual δ-ferrite was evidenced can decreased angular distortion
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography