Academic literature on the topic 'Austenitic stainless steel. Grain boundaries'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Austenitic stainless steel. Grain boundaries.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Austenitic stainless steel. Grain boundaries"
Dehghan-Manshadi, A., Hossein Beladi, Matthew R. Barnett, and Peter D. Hodgson. "Recrystallization in 304 Austenitic Stainless Steel." Materials Science Forum 467-470 (October 2004): 1163–68. http://dx.doi.org/10.4028/www.scientific.net/msf.467-470.1163.
Full textKokawa, Hiroyuki, W. Z. Jin, Zhan Jie Wang, M. Michiuchi, Yutaka S. Sato, Wei Dong, and Yasuyuki Katada. "Grain Boundary Engineering of High-Nitrogen Austenitic Stainless Steel." Materials Science Forum 539-543 (March 2007): 4962–67. http://dx.doi.org/10.4028/www.scientific.net/msf.539-543.4962.
Full textWang, Min, and Hong Zhen Guo. "Influence of Deformation Heat Treatment on the Ultra-Fine Structure of Austenitic Stainless Steel." Materials Science Forum 551-552 (July 2007): 421–25. http://dx.doi.org/10.4028/www.scientific.net/msf.551-552.421.
Full textMeng, Li Jun, Hui Xing, and Jian Sun. "Precipitation Behavior in AL6XN Austenitic Stainless Steel." Materials Science Forum 654-656 (June 2010): 2330–33. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.2330.
Full textCaul, M. D., and V. Randle. "Grain-Boundary Characteristics in Austenitic Steel." Proceedings, annual meeting, Electron Microscopy Society of America 54 (August 11, 1996): 344–45. http://dx.doi.org/10.1017/s0424820100164180.
Full textShen, Lie, Liang Wang, Jiu Jun Xu, and Ying Chun Shan. "Effect of Pre-Shot Peening on Plasma Nitriding Kinetics of Austenitic Stainless Steel." Advanced Materials Research 634-638 (January 2013): 2955–59. http://dx.doi.org/10.4028/www.scientific.net/amr.634-638.2955.
Full textRitoni, Marcio, M. Martins, F. C. Nascimento, and Paulo Roberto Mei. "Phase Transformations on ASTM a 744 Gr. CN3MN Superaustenitic Stainless Steel after Heat Treatment." Defect and Diffusion Forum 312-315 (April 2011): 56–63. http://dx.doi.org/10.4028/www.scientific.net/ddf.312-315.56.
Full textWasnik, D. N., Vivekanand Kain, I. Samajdar, Bert Verlinden, and P. K. De. "Effects of Overall Grain Boundary Nature on Localized Corrosion in Austenitic Stainless Steels." Materials Science Forum 467-470 (October 2004): 813–18. http://dx.doi.org/10.4028/www.scientific.net/msf.467-470.813.
Full textBriant, C. L. "Nitrogen segregation to grain boundaries in austenitic stainless steel." Scripta Metallurgica 21, no. 1 (January 1987): 71–74. http://dx.doi.org/10.1016/0036-9748(87)90409-1.
Full textZhang, Shu Cai, Hong Chun Zhu, De Gang Liu, Hao Feng, Hua Bing Li, Zhou Hua Jiang, Guang Wei Fan, Wei Zhang, and Lei Ying Wang. "Research on Precipitation Kinetics of Super Austenitic Stainless Steel with High Mo and N." Applied Mechanics and Materials 687-691 (November 2014): 4197–201. http://dx.doi.org/10.4028/www.scientific.net/amm.687-691.4197.
Full textDissertations / Theses on the topic "Austenitic stainless steel. Grain boundaries"
Bruemmer, Stephen M. "Quantitative measurement and modeling of sensitization development in stainless steels /." Full text open access at:, 1988. http://content.ohsu.edu/u?/etd,165.
Full textAl, Tooq Zainab. "Simulating radiation damage in austenitic stainless steel and Ni-based alloys." Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/12599.
Full textShenton, Paul Aidan. "Grain growth during the thermomechanical processing of austenitic stainless steel." Thesis, University of Sheffield, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364249.
Full textTyas, Nicholas Harvey. "Grain refinement of austenitic stainless steel welds to facilitate ultrasonic inspection." Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620965.
Full textLaws, Mark S. "Segregation at grain boundaries in sensitised A.I.S.I. 316 stainless steel." Thesis, University of Surrey, 1990. http://epubs.surrey.ac.uk/799994/.
Full textEngelberg, Dirk Lars. "Grain boundary engineering for intergranular stress corrosion resistance in austenitic stainless steel." Thesis, University of Manchester, 2006. http://www.manchester.ac.uk/escholar/uk-ac-man-scw:207805.
Full textKurban, Michael. "Intergranular boron segregation and grain boundary character in Alloy 304 austenitic stainless steel." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ63141.pdf.
Full textGullberg, Daniel. "Influence of composition, grain size and manufacture process on the anisotropy of tube materials." Thesis, Uppsala University, Department of Engineering Sciences, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-125336.
Full textA problem with cold pilgered tubes for OCTG applications is that they can get anisotropic properties with regard to yield strength. One source of anisotropy is texture that is developed during the cold deformation. EBSD measurements have been made on several austenitic stainless steels with different deformations to see what influence the composition has on the texture formation. The same measurements were used to study the influence of grain size on texture formation. The conclusion was that the composition can have an impact on the texture and hence has potential to also affect the anisotropy. The differences in texture cannot be associated with a specific alloying element, but is rather a synergetic effect. It was also concluded that grain structure has no strong influence on texture formation. An evaluation of three different tool designs used for cold pilgering was made. The designs evaluated are referred to as design A, B and C. EBSD measurements showed large deviations in texture in the middle of the wall compared to close to the surface of pilgered OCTG. However, the measurements showed no large differences between the three designs and the texture could not be coupled to the anisotropy.
Kisko, A. (Anna). "Microstructure and properties of reversion treated low-Ni high-Mn austenitic stainless steels." Doctoral thesis, Oulun yliopisto, 2016. http://urn.fi/urn:isbn:9789526212159.
Full textTiivistelmä Väitöstyössä tutkittiin reversiohehkutuksen vaikutusta metastabiilin 1% nikkeliä ja 9% mangaania sisältävien austeniittisten ruostumattomien terästen mikrorakenteeseen ja mekaanisiin ominaisuuksiin sekä austeniitin raekoon ja mikrorakenteen vaikutusta muokkausmartensiitin syntyyn vetokokeessa. Koeteräksistä osa oli lisäksi niobiseostettuja. Tavoitteena oli nostaa teräksien lujuutta ja ymmärtää ultrahienorakeisen austeniittisten ruostumattomien terästen käyttäytymistä muokkauksessa. Teräkset kylmämuokattiin 60% valssausreduktiolla, jolloin austeniittiseen rakenteeseen muodostui muokkausmartensiittia enimmillään 60%. Reversiohehkutukset tehtiin Gleeble termomekaanisella simulaattorilla lämpötiloissa 450–1100 °C ja 0.1–1000 s pitoajoilla. Saatuja mikrorakenteita tutkittiin eri tutkimuslaitteistoilla ja -menetelmillä. 700 °C hehkutuksessa leikkautumalla ja diffuusion välityksellä tapahtuva reversio oli nopea myös niobi-seostetuilla teräksillä, mutta rekristallisaatiota ei tapahtunut. 800 °C hehkutuksessa muokkauksessa teräksiin jäänyt austeniitti rekristallisoitui, mutta raerakenne muodostui epätasaiseksi koostuen reversion tuottamasta ultrahienoista rakeista ja jäännösausteniitin rekristallisaation tuottamista karkeammista rakeista. Sitä vastoin hehkutus 900 °C:ssa tuotti tasainen 2 μm austeniitin raekoon. Pitkissä hehkutuksissa korkeammissa lämpötiloissa 1000–1100 °C niobi-seostamattomissa teräksissä tapahtui hienojen rakeiden normaalia rakeenkasvua. Kuitenkin 0.28p-% niobi-seostuksen havaittiin oleva riittävä estämään rakeenkasvu. Reversion ja osittaisen rekristallisaation tuottamilla raerakenteilla saatiin erinomaiset myötölujuus-tasavenymäyhdistelmät. Vetokokeissa martensiitin ydintymispaikat ja -nopeus vaihtelivat monimutkaisella tavalla raekoosta riippuen
Čech, Jan. "Zotavení a rekrystalizace austenitické oceli 08Cr18Ni10T." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-400423.
Full textBooks on the topic "Austenitic stainless steel. Grain boundaries"
Kurban, Michael. Intergranular boron segregation and grain boundary character in Alloy 304 austenitic stainless steel. Ottawa: National Library of Canada, 2001.
Find full textBook chapters on the topic "Austenitic stainless steel. Grain boundaries"
Simonen, E. P., D. J. Edwards, and S. M. Bruemmer. "Local Evolution of Microstructure and Microchemistry Near Grain Boundaries in Irradiated Austenitic Stainless Steels." In Ninth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, 1107–13. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118787618.ch116.
Full textKokawa, Hiroyuki, W. Z. Jin, Zhan Jie Wang, M. Michiuchi, Yutaka S. Sato, Wei Dong, and Yasuyuki Katada. "Grain Boundary Engineering of High-Nitrogen Austenitic Stainless Steel." In THERMEC 2006, 4962–67. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-428-6.4962.
Full textSamajdar, I., P. Ahmedavadi, D. N. Wasnik, V. Kain, Bert Verlinden, and P. K. Dey. "Grain Boundary Nature and Localized Corrosion in 304 Austenitic Stainless Steel." In Materials Science Forum, 453–58. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-975-x.453.
Full textKokawa, Hiroyuki, Takashi Koyanagawa, Masayuki Shimada, Yutaka S. Sato, and Takeshi Kuwana. "Dependence of Carbide Precipitation on Grain Boundary Structure in Sensitized Austenitic Stainless Steel." In Properties of Complex Inorganic Solids 2, 17–26. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-1205-9_2.
Full textHermant, Alexandre, Alexandre Hermant, Eric Suzon, Jacques Bellus, Philippe Petit, Franfois Cortial, and Anne-Françoise Gourgues. "Hot Deformation Behaviour and Recrystallization Mechanisms in a Niobium Stabilized Austenitic Stainless Steel." In Proceedings of the 6th International Conference on Recrystallization and Grain Growth (ReX&GG 2016), 209–14. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119328827.ch31.
Full textHermant, Alexandre, Eric Suzon, Jacques Bellus, Philippe Petit, François Cortial, and Anne-Françoise Gourgues. "Hot Deformation Behaviour and Recrystallization Mechanisms in a Niobium Stabilized Austenitic Stainless Steel." In Proceedings of the 6th International Conference on Recrystallization and Grain Growth (ReX&GG 2016), 209–14. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48770-0_31.
Full textIza-Mendia, A., I. Gutierrez, R. Rodríguez, and A. López. "Recrystallization of Cold Pilgered Heat Resistant Austenitic Stainless Steel Seamless Tubes Under Anisothermal Annealing Conditions." In Proceedings of the 6th International Conference on Recrystallization and Grain Growth (ReX&GG 2016), 203–8. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119328827.ch30.
Full textIza-Mendia, A., I. Gutierrez, R. Rodríguez, and A. López. "Recrystallization of Cold Pilgered Heat Resistant Austenitic Stainless Steel Seamless Tubes Under Anisothermal Annealing Conditions." In Proceedings of the 6th International Conference on Recrystallization and Grain Growth (ReX&GG 2016), 203–8. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48770-0_30.
Full textMiura, Hiromi, Haruka Hamaji, Taku Sakai, Nobuhiro Fujita, and Naoki Yoshinaga. "Effect of Second Phase Particles on Ultra-Fine Grain Evolution during Multi-Directional Forging of Austenitic Stainless Steel." In Materials Science Forum, 293–98. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-985-7.293.
Full textHan, S. Y., R. L. Higginson, and E. J. Palmiere. "The Effect of Grain Size and Rolling Reduction on the Texture Development of a Metastable Austenitic Stainless Steel." In Materials Science Forum, 195–200. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-443-x.195.
Full textConference papers on the topic "Austenitic stainless steel. Grain boundaries"
Wasnik, D. N., V. Kain, and I. Samajdar. "Role of Grain Boundaries in Intergranular Corrosion in Austenitic Stainless Steels." In 2002 4th International Pipeline Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/ipc2002-27010.
Full textMcNamara, J. D., A. J. Duncan, M. J. Morgan, and P. S. Korinko. "Imaging Hydrogen in Stainless Steel Alloys by Kelvin Probe Force Microscopy." In ASME 2018 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/pvp2018-84755.
Full textIoka, Ikuo, Chiaki Kato, Kiyoshi Kiuchi, and Junpei Nakayama. "Susceptibility of Intergranular Corrosion for Extra High Purity Austenitic Stainless Steel in Nitric Acid." In 16th International Conference on Nuclear Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/icone16-48776.
Full textIoka, Ikuo, Jun Suzuki, Takafumi Motoka, Kiyoshi Kiuchi, and Junpei Nakayama. "Influence of Impurities on Intergranular Corrosion of Extra High Purity Austenitic Stainless Steels." In 17th International Conference on Nuclear Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/icone17-75531.
Full textSablik, Martin J., Boleslaw Augustyniak, Marek Augustyniak, and M. Chmielewski. "Eddy Current Techniques to Detect Incipient Creep Damage of Stainless Steel Boiler Tubes." In ASME 2007 Pressure Vessels and Piping Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/creep2007-26431.
Full textOkita, Taira, Junji Etoh, Mitsuyuki Sagisaka, Takashi Matsunaga, and Yoshihiro Isobe. "Effects of Carbide Precipitate Formation on the Change in Ultrasonic Velocity in Austenitic Stainless Steels." In 2014 22nd International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icone22-30859.
Full textSato, Masatoshi, Masanori Kanno, Kiyotomo Nakata, Hidenori Takahashi, and Hiroshi Sakamoto. "The Study on the Applicability of Laser Surface Modification Technology to Irradiated Stainless Steel." In 16th International Conference on Nuclear Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/icone16-48312.
Full textPalkó, S., F. Scenini, and R. A. Ainsworth. "Factors Affecting the Oxidation and Carburisation Behaviour of an Austenitic Stainless Steel Used in the UK Advanced Gas-Cooled Reactors." In ASME 2018 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/pvp2018-84279.
Full textSingh, Rupinder, and Sehijpal Singh. "Experimental Investigations for Reducing Effect of Sensitization in Tungsten Inert Gas Welding." In ASME 2008 Pressure Vessels and Piping Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/pvp2008-61078.
Full textNasser, Mustafa, Catrin M. Davies, and Kamran Nikbin. "The Influence of AGR Gas Carburisation on the Creep and Fracture Properties of Type 316H Stainless Steel." In ASME 2016 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/pvp2016-63076.
Full textReports on the topic "Austenitic stainless steel. Grain boundaries"
Ramuhalli, Pradeep, Morris S. Good, Aaron A. Diaz, Michael T. Anderson, Bruce E. Watson, Timothy J. Peters, Mukul Dixit, and Leonard J. Bond. Ultrasonic Characterization of Cast Austenitic Stainless Steel Microstructure: Discrimination between Equiaxed- and Columnar-Grain Material ? An Interim Study. Office of Scientific and Technical Information (OSTI), October 2009. http://dx.doi.org/10.2172/967235.
Full text