Contents
Academic literature on the topic 'Auto-incompatibilité'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Auto-incompatibilité.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Auto-incompatibilité"
Goubet, Pauline. "Apports des approches de génomique ciblée dans l'étude des patrons d'évolution moléculaire du locus d'auto-incompatibilité dans le genre Arabidopsis." Thesis, Lille 1, 2011. http://www.theses.fr/2011LIL10117/document.
Full textSelf-incompatibility is a common genetic system limiting inbreeding depression by preventing selfing and mating between relatives in hermaphroditic plants. This system is considered in evolutionary biology as one of the models of frequency-dependant selection, a particular type of natural selection. In the Brassicaceae family, the self-incompatibility system is controlled by a genomic region called the S-locus and comprising two tightly linked genes. The first gene encodes a ligand deposited on the pollen surface and the second its transmembrane receptor. Molecular recognition between these two proteins leads to a cascade of reactions resulting in the reject of self-pollen. If the self-incompatibility genes are becoming well understood, the diversity and dynamics of their genomic region remains poorly described. In this context, twelve genomic sequences of the region comprising the S-locus were obtained in the genus Arabidopsis through sequencing of BAC clones. These sequences highlight the relevance of genomic data in the analysis of regions under such selective constraints. First, the annotation of twelve functional sequences in A. lyrata and A. halleri allows to study the patterns of evolution of the S-locus and its flanking regions. Second, the loss of the system was investigated in A. thaliana, in particular through the occurrence of rearrangements or recombination events in non-functional sequences. Finally, a preliminary analysis of coevolution between pollen and pistil proteins was achieved
Roux, Camille. "Effets de la sélection naturelle et de l'histoire démographique sur les patrons de polymorphisme nucléaire : comparaisons interspécifiques chez Arabidopsis halleri et A. lyrata entre le fond génomique et deux régions cibles de la sélection." Thesis, Lille 1, 2010. http://www.theses.fr/2010LIL10157/document.
Full textThe dichotomous view of life has long been availed to represent the diversity observed in nature. The recent expansion of sequence data have identified large discrepancies between the phylogenies of genes and species, forming the so-called "mosaic structure" of genomes. This complex pattern is the result of different neutral and adaptive evolutionary processes shaping the diversity of life. These processes explain the shared polymorphism observed between two different species. The trans-specific polymorphism (TSP) is generated by neutral retention of ancestral polymorphism, introgression and genetic homoplasy. Functional TSP is the result of the same processes and of the effects of natural selection. Whether local adaptation of a species contributes to the reduction of TSP, natural selection may increase the TSP in the case of balancing selection.Using the pair of closely related plant species Arabidopsis halleri and A. lyrata, we compared the patterns of polymorphism observed in genomic backgrounds to those observed in the neighborhood of the target regions of balancing selection, in order to measure the relative importance of selection and demography.Demographic analysis by ABC from genomic backgrounds leads to the rejection of the hypothesis of recent migration between these two species, and support the importance of the evolution of tolerance to heavy metals in the process of speciation of A. halleri.Finally, by measuring the patterns of polymorphism around the S-locus, we showed that balancing selection affects very localy the neutral linked polymorphism
Ouhab, Djamila. "Auto-assemblage dirigé de copolymères à blocs de forte incompatibilité comprenant un bloc carbohydrate pour des applications de nano-Lithographie." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAV006/document.
Full textCombining the Cermav expertise in the thin films design with very high resolution obtained by self-assembly of glycopolymers biobased and the know-how of LETI on innovative lithography processes, the objective of this thesis is to evaluate these new bio-based copolymers, combining-oligosaccharides as an alternative for nano lithography tomorrow. Indeed, in recent years the team of "Physical Chemistry of glycopolymers" of Cermav directed by R. Borsali has developed a new class of glycopolymers (PS-maltoheptaose, PCL-maltoheptaose, Xyloglycan-PSSI) can self-organize with a resolution of 5 nm, far surpassing the resolution reached today only by block copolymers from Oil PS-PMMA (20 nm). In parallel, during the last two years, Cea / Leti has validated the potential methods based on self-assembly of block copolymers PS-b-PMMA (20 nm resolution) as an alternative to the current lithography techniques. These results position the Cea / Leti in the international state of the art and provide a good basis for integration in the field of nano-electronics, new systems with higher resolution (<10 nm) as those developed by the Cermav. The proposed thesis work will take place in three stages: - First time candidate address the synthesis and characterization of new copolymers blocks combining hybrid oligosaccharides. - Then he's going to be interested in the development of nano-glycofilms organized as well as to identify important factors playing on the nano-organization. - And finally the control of the organization at the nanoscale by grapho-epitaxy for lithographic applications will be addressed. Two applications are described: the contact line (cylindrical and lamellar phases). Compatibility constraints trial microelectronics will also be detailed
Llaurens, Violaine. "Mise en évidence des forces évolutives agissant au locus d'auto-incompatibilité chez Arabidopsis halleri." Lille 1, 2007. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/2007/50376-2007-165.pdf.
Full textSchnabel, Jonathan. "Regulation of Self-Incompatibility by Endocytic Trafficking." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2013. http://tel.archives-ouvertes.fr/tel-01059797.
Full textO'Brien, Martin. "Événements de signalisation impliqués dans la production des gamètes, la pollinisation et l'embryogenèse chez Solanum chacoense Bitt." Thèse, 2005. http://hdl.handle.net/1866/15564.
Full textQin, Xike. "Molecular analysis of the S-RNase in self-incompatible Solanum chacoense." Thèse, 2006. http://hdl.handle.net/1866/17061.
Full textSoulard, Jonathan. "Destins des S-RNases et interactions moléculaires dans le tube pollinique dans le cadre de l’auto-incompatibilité gamétophytique chez Solanum chacoense." Thèse, 2014. http://hdl.handle.net/1866/11296.
Full textSelf-incompatibility (SI) is a prezygotic reproductive barrier that allows the pistil of a flower to specifically reject their own (self-) pollen. SI systems can help prevent self-fertilization and avoid inbreeding. In gametophytic SI (GSI), the genotype of the pollen determines its breeding behaviour and in this system both female and male specificity determinants of SI are under the control of a multigenic and multiallelic locus called the S-locus. In Solanaceae, the female determinant of SI is a highly polymorphic stylar-expressed extracellular glycoprotein with RNase activity called the S-RNase. S-RNases show a distinct pattern of two hypervariable (HVa and HVb) regions, responsible for their allelic specificity, and five highly conserved regions (C1 to C5) thought to be involved in either the catalytic activity or the structural stabilization of the protein. In this work, we analyzed and characterized several conserved features of the S-RNases and also identified a potential novel S-RNase interactant in Solanum chacoense. The aim of our first study was to investigate the role of the C4 region of S-RNases. To test the hypothesis that the C4 region may be involved in S-RNase folding or stability, we examined a mutant in which the four charged residues in the C4 region were replaced with glycine. This mutant did not accumulate to detectable levels in styles, supporting a structural role for C4. To test the possibility that C4 might be involved in binding another protein, we prepared an R115G mutant, in which a charged amino acid was eliminated to reduce any potential binding to this region. This mutant had no effect on the pollen rejection phenotype of the protein, and thus C4 is likely not involved in either ligand binding or S-RNase entry inside pollen tubes. Finally, a K113R mutant, in which the only conserved lysine residue in all the S-RNases was replaced with arginine, was generated to test if this residue was an S-RNase ubiquitination site. However, S-RNase degradation was not disrupted in this mutant. Taken together, these results indicate that the C4 region likely plays a structural role. In a second study, we analyzed the role of S-RNase glycosylation. All S-RNases share a conserved glycosylation site in the C2 region. To test the possibility that the sugar residues might be a target for ubiquitination, a transgenic S11-RNase lacking its single glycosylation site was examined. This construct behaved similarly to a wild type S11-RNase, demonstrating that the lack of glycosylation does not confer constitutive pollen rejection. To determine if the introduction of an N-linked glycan in the HVa region would affect pollen rejection, a construct containing a second N-glycosylation site inside the HVa region of the S11-RNase and a construct containing only that N-glycosylation site inside the HVa region were prepared. The first construct rejected S11 pollen normally, but surprisingly, plants expressing the construct lacking the C2 glycosylation site rejected both S11 and S13 pollen. We propose that the non-glycosylated form is a dual specific allele, similar to a previously described dual-specific allele that also had amino acid replacements in the HV regions. Interestingly, this phenotype is not observed in the mutant containing two glycosylation sites, which suggests that the sugar residues are not removed during S-RNase entry into the pollen. In the final study, S-RNase-binding assays were performed with pollen extracts to detect potential interacting proteins. We found that concanavalin A-immobilized S11-RNase bound eEF1A, a component of the eukaryotic translational machinery. This interaction was validated by pull-down experiments using a GST-tagged S. chacoense eEF1A. We also found that a previously documented actin binding to eEF1A was markedly increased in the presence of S-RNases, although S-RNases alone do not bind actin. Lastly, we observed that actin in incompatible pollen tubes has an unusual aggregated form which also co-labels with S-RNases. This suggests that binding between S-RNases and eEF1A could provide a potential functional link between the S-RNase and the alteration of the actin cytoskeleton that occurs during the SI reaction. Furthermore, if eEF1A binding to S-RNases acted to titrate the amount of free S-RNase in the pollen tube, this binding may help explain the threshold phenomenon, where a minimum quantity of S-RNase in the style is required to trigger the SI reaction.
Boivin, Nicolas. "Destinée des S-RNases dans les tubes polliniques lors des croisements compatibles et incompatibles." Thèse, 2013. http://hdl.handle.net/1866/10739.
Full textSelf-incompatibility (SI) is a widespread genetic device used by flowering plants to reject their own pollen, and thus to avoid inbreeding. This cell-cell recognition mechanism is mediated by molecular interactions between gene products expressed in the pollen and those expressed in specialized cells of the pistil. The genetic determinants of the system are produced from a highly complex multigenic S-locus with multiple S-haplotypes, although other genes outside the S-locus also contribute to the phenomenon in a non-allele specific manner. SI discriminates between self and non-self pollen, as the former will be rejected (incompatible cross), whereas the latter will be allowed to accomplish fertilization (compatible cross). In the Solanaceae (to which Solanum chacoense belongs) the pistillar determinant to SI is an extremely polymorphic stylar extracellular S-RNase, whereas the pollen determinant involves the collaborative action of several members of the F-box family (SLF or S-locus F-box). This has led to the hypothesis that during compatible crosses, ubiquitin-mediated degradation of non-self S-RNases takes place (degradation model). However, it has also been found that non-self S-RNases appear to be sequestered in the vacuole during compatible crosses (sequestration model). The objective of our study was to discriminate between these two models by using immunolocalization techniques and transmission electron microscopy. We have found that the concentration of S-RNases is significantly higher in incompatible pollen tubes than in compatible ones.