Journal articles on the topic 'Autoencoders'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Autoencoders.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Alfayez, Sarah, Ouiem Bchir, and Mohamed Maher Ben Ismail. "Dynamic Depth Learning in Stacked AutoEncoders." Applied Sciences 13, no. 19 (2023): 10994. http://dx.doi.org/10.3390/app131910994.
Full textSreeteish, M. "Image De-Noising Using Convolutional Variational Autoencoders." International Journal for Research in Applied Science and Engineering Technology 10, no. 6 (2022): 4002–9. http://dx.doi.org/10.22214/ijraset.2022.44826.
Full textJin, Weihua, Bo Sun, Zhidong Li, Shijie Zhang, and Zhonggui Chen. "Detecting Anomalies of Satellite Power Subsystem via Stage-Training Denoising Autoencoders." Sensors 19, no. 14 (2019): 3216. http://dx.doi.org/10.3390/s19143216.
Full textShevchenko, Dmytro, Mykhaylo Ugryumov, and Sergii Artiukh. "MONITORING DATA AGGREGATION OF DYNAMIC SYSTEMS USING INFORMATION TECHNOLOGIES." Innovative Technologies and Scientific Solutions for Industries, no. 1 (23) (April 20, 2023): 123–31. http://dx.doi.org/10.30837/itssi.2023.23.123.
Full textShin, Seung Yeop, and Han-joon Kim. "Extended Autoencoder for Novelty Detection with Reconstruction along Projection Pathway." Applied Sciences 10, no. 13 (2020): 4497. http://dx.doi.org/10.3390/app10134497.
Full textSong, Youngrok, Sangwon Hyun, and Yun-Gyung Cheong. "Analysis of Autoencoders for Network Intrusion Detection." Sensors 21, no. 13 (2021): 4294. http://dx.doi.org/10.3390/s21134294.
Full textGhafar, Abdul, and Usman Sattar. "Convolutional Autoencoder for Image Denoising." UMT Artificial Intelligence Review 1, no. 2 (2021): 1–11. http://dx.doi.org/10.32350/air.0102.01.
Full textLiu, Junhong. "Review of variational autoencoders model." Applied and Computational Engineering 4, no. 1 (2023): 588–96. http://dx.doi.org/10.54254/2755-2721/4/2023328.
Full textLin, Yen-Kuang, Chen-Yin Lee, and Chen-Yueh Chen. "Robustness of autoencoders for establishing psychometric properties based on small sample sizes: results from a Monte Carlo simulation study and a sports fan curiosity study." PeerJ Computer Science 8 (February 9, 2022): e782. http://dx.doi.org/10.7717/peerj-cs.782.
Full textAlam, Fardina Fathmiul, Taseef Rahman, and Amarda Shehu. "Evaluating Autoencoder-Based Featurization and Supervised Learning for Protein Decoy Selection." Molecules 25, no. 5 (2020): 1146. http://dx.doi.org/10.3390/molecules25051146.
Full textProvan, Gregory. "Toward Explainable AutoEncoder-Based Diagnosis of Dynamical Systems." Algorithms 16, no. 4 (2023): 178. http://dx.doi.org/10.3390/a16040178.
Full textWu, Hanwei, and Markus Flierl. "Vector Quantization-Based Regularization for Autoencoders." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (2020): 6380–87. http://dx.doi.org/10.1609/aaai.v34i04.6108.
Full textAbdullayeva, Fargana J. "Cloud Computing Virtual Machine Workload Prediction Method Based on Variational Autoencoder." International Journal of Systems and Software Security and Protection 12, no. 2 (2021): 33–45. http://dx.doi.org/10.4018/ijsssp.2021070103.
Full textZeng, Mengjie, Shunming Li, Ranran Li, et al. "A Hierarchical Sparse Discriminant Autoencoder for Bearing Fault Diagnosis." Applied Sciences 12, no. 2 (2022): 818. http://dx.doi.org/10.3390/app12020818.
Full textSrinivasa Rao Kandula, Et al. "Performance Evaluation of Deep Learning Autoencoder in Single and Multi-Carrier Systems." International Journal on Recent and Innovation Trends in Computing and Communication 11, no. 9 (2023): 3083–93. http://dx.doi.org/10.17762/ijritcc.v11i9.9448.
Full textWalbech, Julie Sparholt, Savvas Kinalis, Ole Winther, Finn Cilius Nielsen, and Frederik Otzen Bagger. "Interpretable Autoencoders Trained on Single Cell Sequencing Data Can Transfer Directly to Data from Unseen Tissues." Cells 11, no. 1 (2021): 85. http://dx.doi.org/10.3390/cells11010085.
Full textMarchi, Erik, Fabio Vesperini, Stefano Squartini, and Björn Schuller. "Deep Recurrent Neural Network-Based Autoencoders for Acoustic Novelty Detection." Computational Intelligence and Neuroscience 2017 (2017): 1–14. http://dx.doi.org/10.1155/2017/4694860.
Full textLee, Rich C., and Ing-Yi Chen. "A Deep Dive of Autoencoder Models on Low-Contrast Aquatic Images." Sensors 21, no. 15 (2021): 4966. http://dx.doi.org/10.3390/s21154966.
Full textLi, Yanjun, and Yongquan Yan. "Training Autoencoders Using Relative Entropy Constraints." Applied Sciences 13, no. 1 (2022): 287. http://dx.doi.org/10.3390/app13010287.
Full textKristian, Yosi, Natanael Simogiarto, Mahendra Tri Arif Sampurna, and Elizeus Hanindito. "Ensemble of multimodal deep learning autoencoder for infant cry and pain detection." F1000Research 11 (March 28, 2022): 359. http://dx.doi.org/10.12688/f1000research.73108.1.
Full textKristian, Yosi, Natanael Simogiarto, Mahendra Tri Arif Sampurna, Elizeus Hanindito, and Visuddho Visuddho. "Ensemble of multimodal deep learning autoencoder for infant cry and pain detection." F1000Research 11 (January 30, 2023): 359. http://dx.doi.org/10.12688/f1000research.73108.2.
Full textAl Machot, Fadi, Mohib Ullah, and Habib Ullah. "HFM: A Hybrid Feature Model Based on Conditional Auto Encoders for Zero-Shot Learning." Journal of Imaging 8, no. 6 (2022): 171. http://dx.doi.org/10.3390/jimaging8060171.
Full textVincent, Pascal. "A Connection Between Score Matching and Denoising Autoencoders." Neural Computation 23, no. 7 (2011): 1661–74. http://dx.doi.org/10.1162/neco_a_00142.
Full textMujkic, Esma, Mark P. Philipsen, Thomas B. Moeslund, Martin P. Christiansen, and Ole Ravn. "Anomaly Detection for Agricultural Vehicles Using Autoencoders." Sensors 22, no. 10 (2022): 3608. http://dx.doi.org/10.3390/s22103608.
Full textKerner, Hannah R., Danika F. Wellington, Kiri L. Wagstaff, James F. Bell, Chiman Kwan, and Heni Ben Amor. "Novelty Detection for Multispectral Images with Application to Planetary Exploration." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 9484–91. http://dx.doi.org/10.1609/aaai.v33i01.33019484.
Full textБОДЯНСЬКИЙ, Є. В., О. А. ВИНОКУРОВА, Д. Д. ПЕЛЕШКО, and Ю. М. РАШКЕВИЧ. "ON-LINE NEO-PHASE AUTOENKODER FOR SYSTEMS WITH DEEP LEARNING ON THE BASE OF THE KOLMOGOROV’S NEURO-PHASE NETWORK." Transport development, no. 1(1) (September 27, 2017): 60–67. http://dx.doi.org/10.33082/td.2017.1-1.06.
Full textPeng, Ching-Tung, Yung-Kuan Chan, and Shyr-Shen Yu. "Data Imbalance Immunity Bone Age Assessment System Using Independent Autoencoders." Applied Sciences 12, no. 16 (2022): 7974. http://dx.doi.org/10.3390/app12167974.
Full textLiu, Zixiang. "Autoencoders and their application in removing masks." Theoretical and Natural Science 18, no. 1 (2023): 110–17. http://dx.doi.org/10.54254/2753-8818/18/20230352.
Full textTian, Ruiqi, Santiago Gomez-Rosero, and Miriam A. M. Capretz. "Health Prognostics Classification with Autoencoders for Predictive Maintenance of HVAC Systems." Energies 16, no. 20 (2023): 7094. http://dx.doi.org/10.3390/en16207094.
Full textCardoso Pereira, Ricardo, Miriam Seoane Santos, Pedro Pereira Rodrigues, and Pedro Henriques Abreu. "Reviewing Autoencoders for Missing Data Imputation: Technical Trends, Applications and Outcomes." Journal of Artificial Intelligence Research 69 (December 14, 2020): 1255–85. http://dx.doi.org/10.1613/jair.1.12312.
Full textSchreiber, Jens, and Bernhard Sick. "Multi-Task Autoencoders and Transfer Learning for Day-Ahead Wind and Photovoltaic Power Forecasts." Energies 15, no. 21 (2022): 8062. http://dx.doi.org/10.3390/en15218062.
Full textVerma, Sonu Kumar, Purushotam Soudagar, Pankaj Kunekar, et al. "Noise Reduction in Images Using Autoencoders." International Journal for Research in Applied Science and Engineering Technology 10, no. 12 (2022): 1732–36. http://dx.doi.org/10.22214/ijraset.2022.48306.
Full textSoydaner, Derya. "Hyper Autoencoders." Neural Processing Letters 52, no. 2 (2020): 1395–413. http://dx.doi.org/10.1007/s11063-020-10310-y.
Full textOdunga, Nelson Ochieng, Ronald Waweru Mwangi, and Ismail Ateya Lukandu. "Reducing Generalization Error Using Autoencoders for The Detection of Computer Worms." Computer Engineering and Applications Journal 9, no. 3 (2020): 175–82. http://dx.doi.org/10.18495/comengapp.v9i3.348.
Full textAkkari, Nissrine, Fabien Casenave, Elie Hachem, and David Ryckelynck. "A Bayesian Nonlinear Reduced Order Modeling Using Variational AutoEncoders." Fluids 7, no. 10 (2022): 334. http://dx.doi.org/10.3390/fluids7100334.
Full textAlves de Oliveira, Vinicius, Marie Chabert, Thomas Oberlin, et al. "Reduced-Complexity End-to-End Variational Autoencoder for on Board Satellite Image Compression." Remote Sensing 13, no. 3 (2021): 447. http://dx.doi.org/10.3390/rs13030447.
Full textLin, Haicai, Ruixia Liu, and Zhaoyang Liu. "ECG Signal Denoising Method Based on Disentangled Autoencoder." Electronics 12, no. 7 (2023): 1606. http://dx.doi.org/10.3390/electronics12071606.
Full textHaga, Takeshi, Hiroshi Kera, and Kazuhiko Kawamoto. "Sequential Variational Autoencoder with Adversarial Classifier for Video Disentanglement." Sensors 23, no. 5 (2023): 2515. http://dx.doi.org/10.3390/s23052515.
Full textHlihor, Petru, Riccardo Volpi, and Luigi Malagò. "Evaluating the Robustness of Defense Mechanisms based on AutoEncoder Reconstructions against Carlini-Wagner Adversarial Attacks." Proceedings of the Northern Lights Deep Learning Workshop 1 (February 6, 2020): 6. http://dx.doi.org/10.7557/18.5173.
Full textHavrylovych, Mariia, and Valeriy Danylov. "Research on hybrid transformer-based autoencoders for user biometric verification." System research and information technologies, no. 3 (September 29, 2023): 42–53. http://dx.doi.org/10.20535/srit.2308-8893.2023.3.03.
Full textRefinetti, Maria, and Sebastian Goldt. "The dynamics of representation learning in shallow, non-linear autoencoders *." Journal of Statistical Mechanics: Theory and Experiment 2023, no. 11 (2023): 114010. http://dx.doi.org/10.1088/1742-5468/ad01af.
Full textGuo, Tianyu, Jianxin Liu, and Zhenwei Guo. "Compression and Reconstruction of Magnetotelluric Data Based on Convolutional Neural Network." Journal of Physics: Conference Series 2651, no. 1 (2023): 012122. http://dx.doi.org/10.1088/1742-6596/2651/1/012122.
Full textZhang, Lisa, Pouria Fewzee, and Charbel Feghali. "AI education matters." AI Matters 7, no. 3 (2021): 18–20. http://dx.doi.org/10.1145/3511322.3511327.
Full textTan HP, Nguyen, Bang Le Thanh, Thanh-Nha To, et al. "Performance Evaluation of Single-Carrier and Orthogonal Frequency Divison Multiplexing-Based Autoencoders in Comparison with Low-Density Parity-Check Encoder." Electronics 12, no. 18 (2023): 3945. http://dx.doi.org/10.3390/electronics12183945.
Full textTorti, Emanuele, Alessandro Fontanella, Antonio Plaza, Javier Plaza, and Francesco Leporati. "Hyperspectral Image Classification Using Parallel Autoencoding Diabolo Networks on Multi-Core and Many-Core Architectures." Electronics 7, no. 12 (2018): 411. http://dx.doi.org/10.3390/electronics7120411.
Full textWu, Lihao, and Jiahui Liang. "Anomaly detection based on temporal convolution Autoencoders." Journal of Physics: Conference Series 2366, no. 1 (2022): 012041. http://dx.doi.org/10.1088/1742-6596/2366/1/012041.
Full textNieto-Mora, Daniel Alexis, Maria Cristina Ferreira de Oliveira, Camilo Sanchez-Giraldo, Leonardo Duque-Muñoz, Claudia Isaza-Narváez, and Juan David Martínez-Vargas. "Soundscape Characterization Using Autoencoders and Unsupervised Learning." Sensors 24, no. 8 (2024): 2597. http://dx.doi.org/10.3390/s24082597.
Full textKanász, Róbert, Peter Gnip, Martin Zoričák, and Peter Drotár. "Bankruptcy prediction using ensemble of autoencoders optimized by genetic algorithm." PeerJ Computer Science 9 (June 8, 2023): e1257. http://dx.doi.org/10.7717/peerj-cs.1257.
Full textSerradilla, Oscar, Ekhi Zugasti, Julian Ramirez de Okariz, Jon Rodriguez, and Urko Zurutuza. "Adaptable and Explainable Predictive Maintenance: Semi-Supervised Deep Learning for Anomaly Detection and Diagnosis in Press Machine Data." Applied Sciences 11, no. 16 (2021): 7376. http://dx.doi.org/10.3390/app11167376.
Full textYu, Xinran. "Autoencoder combined with the multilayer perceptron for Alzheimers disease classification." Applied and Computational Engineering 19, no. 1 (2023): 139–45. http://dx.doi.org/10.54254/2755-2721/19/20231022.
Full text