Academic literature on the topic 'Autogenous welding'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Autogenous welding.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Autogenous welding"
Ahn, Young Nam, and Cheol Hee Kim. "Evaluation of Crack Sensitivity and Gap Bridging Ability during Laser Butt Welding of Aluminum 5J32 and 6K21 Alloys." Materials Science Forum 695 (July 2011): 247–50. http://dx.doi.org/10.4028/www.scientific.net/msf.695.247.
Full textZhang, Shiwei, Junhao Sun, Minhao Zhu, Lin Zhang, Pulin Nie, and Zhuguo Li. "Fiber laser welding of HSLA steel by autogenous laser welding and autogenous laser welding with cold wire methods." Journal of Materials Processing Technology 275 (January 2020): 116353. http://dx.doi.org/10.1016/j.jmatprotec.2019.116353.
Full textLisiecki, A. "Welding of Thermomechanically Rolled Steel by Yb:YAG Disk Laser / Spawanie Stali Walcowanej Termomechanicznie Laserem Dyskowym Yb:YAG." Archives of Metallurgy and Materials 60, no. 4 (December 1, 2015): 2851–60. http://dx.doi.org/10.1515/amm-2015-0456.
Full textAllen, C. M., G. Verhaeghe, P. A. Hilton, Chris P. Heason, and Philip B. Prangnell. "Laser and Hybrid Laser-MIG Welding of 6.35 and 12.7mm Thick Aluminium Aerospace Alloy." Materials Science Forum 519-521 (July 2006): 1139–44. http://dx.doi.org/10.4028/www.scientific.net/msf.519-521.1139.
Full textAdamiec, Janusz, and Robert Kocurek. "Effect of Autogenous Laser Weld on Microstructure and Mechanical Properties of Inconel 617 Nickel Alloy." Solid State Phenomena 226 (January 2015): 43–46. http://dx.doi.org/10.4028/www.scientific.net/ssp.226.43.
Full textD'amato, Clayton, Maurizio Fenech, Stephen Abela, John C. Betts, and Joseph Buhagiar. "Autogenous Laser Keyhole Welding of AISI 316LTi." Materials and Manufacturing Processes 25, no. 11 (December 3, 2010): 1269–77. http://dx.doi.org/10.1080/10426914.2010.490862.
Full textCaiazzo, Fabrizia, Vittorio Alfieri, and Vincenzo Sergi. "Investigation on Mechanical Properties of Disk Laser Welded Aerospace Alloys." Advanced Materials Research 702 (May 2013): 128–34. http://dx.doi.org/10.4028/www.scientific.net/amr.702.128.
Full textAbdolvand, Hamidreza, Mike Keavey, H. Dai, Alison Mark, N. O’Meara, Joanna Walsh, S. Bate, B. Pellereau, John A. Francis, and Philip J. Withers. "On the Stress Development in SA508 Autogenous Weld." Materials Science Forum 783-786 (May 2014): 2123–28. http://dx.doi.org/10.4028/www.scientific.net/msf.783-786.2123.
Full textBetini, Evandro Giuseppe, Maurilio Pereira Gomes, Cristiano Stefano Mucsi, Temístocles de Souza Luz, Marcos Tadeu D'azeredo Orlando, and Jesualdo Luiz Rossi. "Study of the Thermal Diffusivity Variation in Thin Duplex Steel Plates Welded by GTAW Process." Materials Science Forum 930 (September 2018): 460–65. http://dx.doi.org/10.4028/www.scientific.net/msf.930.460.
Full textHu, B., and I. M. Richardson. "Autogenous laser keyhole welding of aluminum alloy 2024." Journal of Laser Applications 17, no. 2 (May 2005): 70–80. http://dx.doi.org/10.2351/1.1896964.
Full textDissertations / Theses on the topic "Autogenous welding"
Sedy, Eugene B. "Validation of a computational model for autogenous arc welding." Thesis, Monterey, California. Naval Postgraduate School, 1990.
Find full textA three dimensional transient computational model of heat transfer are welding is generalized, and then validated by comparison to Rosenthal's solution for moving point sources of heat. The current version of the code allows much greater flexibility in the specification of the thermal input from the arc. The resulting surface temperature profiles and fusion zone shapes are compared to those measured experimentally for several input power levels ofr autogenous gas tungsten arc welding. Arc efficiency is experimentally determined using change of phase of a liquid fluorocarbon. The model is shown to be useful for modeling autogenous welding of thick plates. Weld seam misalignment and surface flaw detection are shown to be possible ahead of hte arch with accurate surface temperature detection methods. The potential of the model are creating a database of fusion and heat zone sizes, temperature profiles, and coding rates for various materials, processes, and power levels is indicated.
Ule, Robert L. "A study of the thermal profits during autogenous arc welding." Thesis, Monterey, California. Naval Postgraduate School, 1989. http://hdl.handle.net/10945/26277.
Full textPrins, Heinrich Johann. "The effect of autogenous gas tungsten arc welding parameters on the solidification structure of two ferritic stainless steels." Diss., University of Pretoria, 2019. http://hdl.handle.net/2263/79303.
Full textDissertation (MEng)--University of Pretoria, 2019.
Metallurgical Engineering
MEng
Unrestricted
GOMES, ANA PAULA SILVA. "EFFECT OF N2 ADDITION ON THE GAS PROTECTION FOR AUTOGENOUS AND NI-CONTAINING WELD METAL WELDING OF DUPLEX STAINLESS STEELS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2018. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=35991@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO
PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTITUIÇÕES COMUNITÁRIAS DE ENSINO PARTICULARES
Os aços inoxidáveis duplex (AID) são uma classe de aços que combinam a alta resistência mecânica da ferrita e a ductilidade da austenita possuindo alto limite de escoamento e resistência à corrosão, sendo empregados em meios corrosivos com solicitações mecânicas elevadas. As boas propriedades mecânicas e de resistência à corrosão se devem a microestrutura duplex (ferrita e austenita), com proporções volumétricas similares, e cujo balanço é controlado por meio da composição química e tratamentos térmicos durante a fabricação. No entanto, durante processos de fabricação e manutenção, como a soldagem por fusão, em função do processo utilizado e dos ciclos térmicos impostos, assim como pela presença de gases de proteção que induzem determinada atmosfera, as propriedades do metal de solda e da zona termicamente afetada (ZTA), podem ser alteradas. Deste modo, a composição química, a distribuição dos elementos de liga e balanço das fases destas regiões serão suscetíveis a transformações de fases como ferritização, precipitação de fases indesejáveis e perda de elementos de liga, como níquel e nitrogênio, resultando em redução da resistência à corrosão. A presença de nitrogênio nos aços duplex, tanto em conjunto ou como substituto para o níquel, influencia na formação da austenita e também no controle da cinética de transformação de fases durante o resfriamento. O presente trabalho teve como objetivo estudar os efeitos do nitrogênio e do níquel na transformação de fases de dois aços inoxidáveis duplex (SAF 2304 e 2507) durante dois processos de soldagem: autógena e com metal de adição contendo Ni. Ambas as soldagens foram realizadas com aporte térmico fixo e com um e dois passes, utilizando a técnica de cordão sobre chapa para a soldagem com metal de adição. Foram utilizados dois gases de proteção, Ar e Ar + N2. Foram avaliadas a dureza e a resistência à corrosão por cloreto. A microestrutura da ZTA e composição química final do metal de solda alteraram significativamente, comparados ao metal de base. A fração volumétrica da fase austenítica na ZTA reduziu em todas as situações avaliadas. A presença de nitrogênio no gás de proteção manteve o teor deste elemento constante ou mais elevado no metal de solda. Cada conjunto de condições de soldagem aplicada apresentou diferentes características de dureza e resistência à corrosão por pites, sendo que na soldagem autógena do SAF 2507 foram encontradas durezas mais altas e menores perdas de massa após ensaio de corrosão. Com a adição de N2 no gás de proteção o teor de nitrogênio final aumentou em relação ao teor de nitrogênio no metal base, porém a fração volumétrica de austenita não se elevou da mesma forma.
Duplex stainless steels (DSS) combines high yield stress from ferrite and ductility from austenite, good mechanical and corrosion resistance. It has been used in corrosive environments associated with severe mechanical stress. The good mechanical strength and corrosive resistance properties are due to the duplex microstructure (ferrite and austenite), with the same volumetric fraction, whose balance is controlled by chemical composition and heat treatment during steel manufacturing. However, when welded by process such as fusion welding the high thermal cycles and the presence of shielding gases inducing a certain atmosphere, the properties of the weld metal (WM) and the heat affected zone (HAZ) can be significantly changed. Therefore, the chemical composition, element partioning and the phase balance in these regions (WM and HAZ) will be susceptible to phase transformations such as ferritization, precipitation of secondary phases and alloy element losses, such as nitrogen and nickel, resulting in the decrease of the corrosion resistance. The presence of nitrogen in the duplex steels, either together or as a substitute for nickel, influences the austenite formation and controls phase transformation kinetics during cooling as well. The objective of this work was to study the effect of nitrogen and nickel on the phase transformation of two duplex stainless steels (SAF 2304 and 2507) during two welding processes: autogenous and with Ni-containing filler metal, considering a fixed thermal input and welds with one and two passes, using the technique of bead on plate for the weld with filler metal. Two shielding gases were used, Ar and Ar + N2. Hardness and corrosion resistance in chloride environment were evaluated for each studied condition. Both HAZ microstructure and final chemical composition of the weld metal modified significantly, when compared to the base metal. The HAZ volume fraction of austenite was reduced, and the presence of nitrogen in the shielding gas helped to keep the nitrogen content the same or increased in the weld metal. Each set of weld parameters applied presented different characteristics of hardness and pitting resistance corrosion. The autogenous welding of the SAF 2507 presented higher hardness and low weight losses. In a general way, the addition of N2 in the shielding gas increased the nitrogen content of the weld metal for all conditions of lean duplex material, compared to the base metal, but the austenite volumetric phase did not increased in the HAZ.
Barros, Isabel Ferreira de. "Dissimilar welding of ferritic stainless steel AISI 444 and AISI 316L austenitic stainless steel through the autogenous TIG process using pulsed current." Universidade Federal do CearÃ, 2014. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14072.
Full textThe use of stainless steels has intensified with the industrial demand growing, which extends its application for various sectors such as the oil and gas, desalination equipment in industry, sugar industry, among others. In that context, the use of ferritic stainless steels has grown in recent years on account of its excellent relationship between corrosion resistance and cost, and a great option in substitution of austenitic stainless steels. Intending to study the connection of dissimilar stainless steels by means of a welding process, this paper will lay the submit the ferritic stainless steel AISI 444 and AISI 316L austenitic stainless steel with TIG welding autogenous (without filler metal) with pulsed current. That union seeks to get a fused zone with better mechanical properties together with the correction of possible related to welding those steels problems, such as grain growth in ferritic steels, to which its refinement is possible through the use of pulsed current during the procedure. The choice of these two materials was based on the characteristics of each one separately for they possess closest properties, despite having different classifications, allowing the combined use of both, and thus ferritic act in order to partially replace the austenitic stainless steel in situations where the combination of high corrosion resistance and mechanical strength are not relevant. That action combined, and does not affect the characteristics of the set of negative way is to use lower cost benefit, because the presence of nickel austenitic stainless steels by more expensive finishes them. Thus, it is expected to provide, through this work, further deepening the respect of dissimilar welding between stainless steel AISI 444 ferritic and austenitic stainless steel AISI 316L, evaluating operational parameters such as the pulse of current and heat input on obtained microstructure and mechanical properties.
A utilizaÃÃo dos aÃos inoxidÃveis tem se intensificado juntamente com a crescente demanda industrial, em que sua aplicaÃÃo se estende pelos mais variados setores, como por exemplo, na indÃstria de petrÃleo e gÃs, em equipamentos de dessalinizaÃÃo, na indÃstria sucroalcooleira, entre outros. Neste contexto, o uso de aÃos inoxidÃveis ferrÃticos tem crescido nos Ãltimos anos devido a sua excelente relaÃÃo entre resistÃncia à corrosÃo e custo, sendo uma Ãtima opÃÃo em substituiÃÃo aos aÃos inoxidÃveis austenÃticos. Objetivando estudar a uniÃo de aÃos inoxidÃveis dissimilares por meio de um processo de soldagem, o presente trabalho submeterà o aÃo inoxidÃvel ferrÃtico AISI 444 e o aÃo inoxidÃvel austenÃtico AISI 316L à soldagem TIG autÃgeno (sem metal de adiÃÃo) com corrente pulsada. Essa uniÃo visa obter uma zona fundida com melhores propriedades mecÃnicas juntamente com a correÃÃo dos possÃveis problemas relacionado à soldagem desses aÃos, como por exemplo, o crescimento de grÃo nos aÃos inoxidÃveis ferrÃticos, em que seu refinamento se torna possÃvel atravÃs da utilizaÃÃo de corrente pulsada durante o procedimento. A escolha desses dois materiais baseou-se nas caracterÃsticas inerentes a cada um separadamente e tambÃm por possuÃrem propriedades muito prÃximas, apesar de possuÃrem classificaÃÃes diferentes, permitindo a utilizaÃÃo combinada de ambos e dessa forma o aÃo inoxidÃvel ferrÃtico atuarà de forma a substituir parcialmente o aÃo inoxidÃvel austenÃtico nas situaÃÃes em que a combinaÃÃo de elevada resistÃncia à corrosÃo e resistÃncia mecÃnica nÃo sÃo tÃo relevantes. Essa utilizaÃÃo combinada, alÃm de nÃo afetar as caracterÃsticas do conjunto de maneira negativa tem como benefÃcio reduzir custos, visto que a presenÃa de nÃquel nos aÃos inoxidÃveis austenÃticos acaba por encarecÃ-los. Dessa forma, espera-se fornecer atravÃs deste trabalho um maior aprofundamento a respeito da soldagem dissimilar entre o aÃo inoxidÃvel ferrÃtico AISI 444 e o aÃo inoxidÃvel austenÃtico AISI 316L, avaliando os parÃmetros operacionais, como a pulsaÃÃo da corrente e a energia de soldagem sobre a microestrutura obtida, bem como as propriedades mecÃnicas.
Sprengard, Benjamin A. "Effect of Nitrogen Concentration in Shielding Gas on Microstructure and Mechanical Properties of ATI 2003® Lean Duplex Stainless Steel Autogenous Plasma Arc Welding." University of Cincinnati / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1313773905.
Full textHosseini, Vahid. "Influence of multiple welding cycles on microstructure and corrosion resistance of a super duplex stainless steel." Licentiate thesis, Högskolan Väst, Avdelningen för svetsteknologi (SV), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-10151.
Full textNeto, Samuel Amora Alves. "Caracterização metalúrgica de juntas de aço inoxidável superduplex soldadas por processo TIG autógeno." Universidade do Estado do Rio de Janeiro, 2011. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=2758.
Full textThe duplex stainless steels are of great importance in industry, mainly in oil and natural gas due to their high mechanical strength and excellent corrosion resistance. They are characterized by having biphasic structure, consisting of nearly equal proportions of ferrite and austenite. The present work characterized welded joints by autogenous TIG process of duplex stainless UNS S32760. Four groups of samples were prepared, from the variation of welding current and consequently of heat input (20A and 40A - heat input: 0.12KJ/mm and 0.19KJ/mm) and the composition of shielding gas (pure argon or argon containing 2.5% nitrogen). Techniques of characterization by colored metallography, analysis and digital image processing and Vickers microhardness tests techniques were used. To evaluate the corrosion resistance, tests were performed at open circuit potential with a solution of ferric chloride (FeCl3) and reference electrode of saturated calomel. The quantitative analysis of ferrite and austenite phases present in the welded joints showed that the addition of nitrogen in shielding gas favored the formation of austenite phase, ranging from 11% (without nitrogen) to 26% (with nitrogen) the amount of this phase In a qualitative analysis the variation of heat input (0.12KJ/mm and 0.19KJ/mm) resulted in an increase of the ferrite phases grain size.
Du, Toit Madeleine. "The behaviour of nitrogen during the autogenous ARC welding of stainless steel." Diss., 2001. http://hdl.handle.net/2263/27913.
Full textDissertation (PHD)--University of Pretoria, 2004.
Materials Science and Metallurgical Engineering
unrestricted
Books on the topic "Autogenous welding"
Ule, Robert L. A study of the thermal profits during autogenous arc welding. Monterey, Calif: Naval Postgraduate School, 1989.
Find full textBook chapters on the topic "Autogenous welding"
Tandel, Keyurkumar D., and Jyoti V. Menghani. "Autogenous TIG Welding of Al-5083-H111 Butt Joint." In Lecture Notes in Mechanical Engineering, 205–19. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9117-4_16.
Full textKane, S. F., and A. L. Farland. "Techniques for Automatic Autogenous Welding of Low Sulfur 316LN Beam Tube." In Advances in Cryogenic Engineering Materials, 105–12. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-9056-6_14.
Full textJayanthi, A., K. Venkataramanan, and K. Suresh Kumar. "Physical Characteristics of Keyhole in 316L Stainless Steel Joint During an Autogenous Pulsed Laser Beam Welding." In Springer Proceedings in Materials, 519–31. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6267-9_59.
Full textConference papers on the topic "Autogenous welding"
Gopinathan, Santosh, Jayant Murthy, T. Dwayne McCay, Mary Helen McCay, and Lyle Spiegel. "The autogenous laser welding of Al2219 to Al6061." In ICALEO® ‘93: Proceedings of the Laser Materials Processing Conference. Laser Institute of America, 1993. http://dx.doi.org/10.2351/1.5058645.
Full textSekhar, N. C., J. D. Russell, and N. A. McPherson. "Autogenous Nd:YAG laser welding of 6mm thick dissimilar steels." In ICALEO® 2001: Proceedings of the Laser Materials Processing Conference and Laser Microfabrication Conference. Laser Institute of America, 2001. http://dx.doi.org/10.2351/1.5059887.
Full textMeinert, K. C., E. W. Reutzel, R. P. Martukanitz, and J. F. Tressler. "Design of weld joints for non-autogenous laser welding of thick sections." In ICALEO® 2000: Proceedings of the Laser Materials Processing Conference. Laser Institute of America, 2000. http://dx.doi.org/10.2351/1.5059426.
Full textRocha, Tarcila, Douglas Silva Marques Serrati, Douglas Araujo, and Louriel Vilarinho. "Residual Stresses During and After Welding Autogenous Processes and With Material Deposition." In 25th International Congress of Mechanical Engineering. ABCM, 2019. http://dx.doi.org/10.26678/abcm.cobem2019.cob2019-1353.
Full textFrancis, J. A., M. Turski, and P. J. Withers. "Residual Stress Measurements in Autogenous SA508 Steel Welds." In ASME 2008 Pressure Vessels and Piping Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/pvp2008-61469.
Full textSalminen, Antti, Elin Westin, Esa Lappalainen, and Anna Unt. "Effect of gas shielding and heat input on autogenous welding of duplex stainless steel." In ICALEO® 2012: 31st International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing. Laser Institute of America, 2012. http://dx.doi.org/10.2351/1.5062503.
Full textHamelin, Cory J., Ondrej Mura´nsky, Vladimir Luzin, Philip Bendeich, and Lyndon Edwards. "Accounting for Phase Transformations During Welding of Ferritic Steels." In ASME 2011 Pressure Vessels and Piping Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/pvp2011-57426.
Full textWildash, Clint, and Steve Webster. "Dual Process Welding of Steel Plate." In ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/omae2002-28587.
Full textO’Donnell, Dave, Nicole Karlen, and Carl Kettermann. "Performance Implications of High Energy Density Welding of Corrosion Resistant Alloy Heat Exchanger Tubing." In ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/pvp2010-25165.
Full textPe´rez-Guerrero, Faustino, and Stephen Liu. "Explaining Porosity Formation in Underwater Wet Welds." In ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2007. http://dx.doi.org/10.1115/omae2007-29696.
Full text