Journal articles on the topic 'Automotive Shock Absorber'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Automotive Shock Absorber.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Jastrzębski, Łukasz, and Bogdan Sapiński. "Experimental Investigation of an Automotive Magnetorheological Shock Absorber." Acta Mechanica et Automatica 11, no. 4 (2017): 253–59. http://dx.doi.org/10.1515/ama-2017-0039.
Full textSurace, C., K. Worden, and G. R. Tomlinson. "On the Non-Linear Characteristics of Automotive Shock Absorbers." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 206, no. 1 (1992): 3–16. http://dx.doi.org/10.1243/pime_proc_1992_206_156_02.
Full textRepin, Sergei, Roman Litvin, Victor Kuzmichev, and Ivan Vorontsov. "AUTOMOTIVE SHOCK ABSORBERS’ APPLICABILITY FOR DAMPING RESONANT OSCILLATIONS IN CONSTRUCTION MACHINES." Architecture and Engineering 6, no. 1 (2021): 81–87. http://dx.doi.org/10.23968/2500-0055-2021-6-1-81-87.
Full textHernandez-Alcantara, Diana, Ruben Morales-Menendez, and Luis Amezquita-Brooks. "Fault Detection for Automotive Shock Absorber." Journal of Physics: Conference Series 659 (November 19, 2015): 012037. http://dx.doi.org/10.1088/1742-6596/659/1/012037.
Full textWang, Tian Li, Xiao Bang Sun, and Yang Yu. "Research on Synchronous Testing Technique of the Shock Absorber Performance in Automotive Coaxial Suspension." Advanced Materials Research 299-300 (July 2011): 1324–29. http://dx.doi.org/10.4028/www.scientific.net/amr.299-300.1324.
Full textHalama, Jakub, Milan Klapka, and Ivan Mazůrek. "Experimental Methodology for Acoustic Diagnostics of Shock Absorbers." Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 66, no. 5 (2018): 1119–25. http://dx.doi.org/10.11118/actaun201866051119.
Full textLee, Yi Ming, and Shyue Bin Chang. "Design and Implementation of Automotive Shock Absorber Performance Test." Applied Mechanics and Materials 311 (February 2013): 281–85. http://dx.doi.org/10.4028/www.scientific.net/amm.311.281.
Full textKowalski, D., M. D. Rao, J. Blough, and S. Gruenberg. "Dynamic testing of shock absorbers under non-sinusoidal conditions." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 216, no. 5 (2002): 373–84. http://dx.doi.org/10.1243/0954407021529183.
Full textKonieczny, Łukasz, and Rafał Burdzik. "The use of a continuous wavelet transform in the diagnostics of technical condition of a shock absorber built in automotive vehicle." WUT Journal of Transportation Engineering 121 (June 1, 2018): 171–79. http://dx.doi.org/10.5604/01.3001.0014.4592.
Full textGiacomin, Joseph. "Neural network simulation of an automotive shock absorber." Engineering Applications of Artificial Intelligence 4, no. 1 (1991): 59–64. http://dx.doi.org/10.1016/0952-1976(91)90069-i.
Full textRen, W., J. Zhang, and G. Jin. "The virtual tuning of an automatic shock absorber." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 223, no. 11 (2009): 2655–62. http://dx.doi.org/10.1243/09544062jmes1542.
Full textKim, Tae Dong, and Jin Ho Kim. "Shock-Absorber Rotary Generator for Automotive Vibration Energy Harvesting." Applied Sciences 10, no. 18 (2020): 6599. http://dx.doi.org/10.3390/app10186599.
Full textTalele, Sonal K., and Rachayya R. Arakerimath. "Shape optimization of striker cap of automotive shock absorber." International Journal of Mechanical Engineering 4, no. 9 (2017): 14–20. http://dx.doi.org/10.14445/23488360/ijme-v4i9p104.
Full textHojjati-Talemi, Reza, Ali Zahedi, and Patrick De Baets. "Fretting fatigue failure mechanism of automotive shock absorber valve." International Journal of Fatigue 73 (April 2015): 58–65. http://dx.doi.org/10.1016/j.ijfatigue.2014.11.010.
Full textFaraj, Rami, Cezary Graczykowski, and Jan Holnicki-Szulc. "Adaptable pneumatic shock absorber." Journal of Vibration and Control 25, no. 3 (2018): 711–21. http://dx.doi.org/10.1177/1077546318795532.
Full textJastrzębski, Łukasz, Bogdan Sapiński, and Arkadiusz Kozieł. "Automotive MR Shock Absorber Behaviour Considering Temperature Changes: Experimental Testing and Analysis." Acta Mechanica et Automatica 14, no. 1 (2020): 22–28. http://dx.doi.org/10.2478/ama-2020-0004.
Full textSkrickij, Viktor, Dzmitry Savitski, Valentin Ivanov, and Paulius Skačkauskas. "Investigation of Cavitation Process in Monotube Shock Absorber." International Journal of Automotive Technology 19, no. 5 (2018): 801–10. http://dx.doi.org/10.1007/s12239-018-0077-1.
Full textArdi, Syahril, and Laurentia Tricilya Cascarine. "Design control system of auto air remaining machine based on programmable logic controller in the automotive manufacturing industry." MATEC Web of Conferences 197 (2018): 14013. http://dx.doi.org/10.1051/matecconf/201819714013.
Full textKakandikar, Ganesh, and Vilas Nandedkar. "Springback optimization in automotive Shock Absorber Cup with Genetic Algorithm." Manufacturing Review 5 (2018): 1. http://dx.doi.org/10.1051/mfreview/2017013.
Full textMilecki, Andrzej, Dariusz Sedziak, Jaroslaw Ortmann, and Mikolaj Hauke. "Controllability of MR shock absorber for vehicles." International Journal of Vehicle Design 38, no. 2/3 (2005): 222. http://dx.doi.org/10.1504/ijvd.2005.007294.
Full textMing, Yang. "Design of Automobile Shock Absorber Based on Throttle Type Adjustable Damping." Advanced Materials Research 1079-1080 (December 2014): 954–57. http://dx.doi.org/10.4028/www.scientific.net/amr.1079-1080.954.
Full textAhmed, M. R., A. R. Yusoff, and F. R. M. Romlay. "Adjustable Valve Semi-Active Suspension System for Passenger Car." International Journal of Automotive and Mechanical Engineering 16, no. 2 (2019): 6470–81. http://dx.doi.org/10.15282/ijame.16.2.2019.2.0489.
Full textCalvo, J. A., V. Díaz, J. L. San Román, and D. García-Pozuelo. "Influence of shock absorber wearing on vehicle brake performance." International Journal of Automotive Technology 9, no. 4 (2008): 467–72. http://dx.doi.org/10.1007/s12239-008-0056-z.
Full textSikora, Marian. "Study of Flow-Induced Vibration Phenomena in Automotive Shock Absorbers." Solid State Phenomena 248 (March 2016): 204–10. http://dx.doi.org/10.4028/www.scientific.net/ssp.248.204.
Full textKang, Byung-Hyuk, Jai-Hyuk Hwang, and Seung-Bok Choi. "A New Design Model of an MR Shock Absorber for Aircraft Landing Gear Systems Considering Major and Minor Pressure Losses: Experimental Validation." Applied Sciences 11, no. 17 (2021): 7895. http://dx.doi.org/10.3390/app11177895.
Full textMoon, Byung Young, Chun Tae Lee, and Beom Soo Kang. "Dynamic Characteristics Analysis of Automotive Shock Absorber by Considering Damping Force." Key Engineering Materials 274-276 (October 2004): 943–48. http://dx.doi.org/10.4028/www.scientific.net/kem.274-276.943.
Full textHadj Kacem, N., N. Haddar, and R. Elleuch. "Failure analysis of an automotive shock absorber cup during manufacturing process." Mechanics & Industry 17, no. 6 (2016): 604. http://dx.doi.org/10.1051/meca/2016005.
Full textMann, V., C. Dechwayukul, W. Thongruang, et al. "Design and Fabrication a Lightweight Spring Made of Natural Rubber for a Motorcycle’s Shock Absorber." International Journal of Automotive and Mechanical Engineering 17, no. 1 (2020): 7758–70. http://dx.doi.org/10.15282/ijame.17.1.2020.22.0577.
Full textBongfa, Binfa, S. Syahrullail, M. K. Abdul Hamid, and P. M. Samin. "Suitable additives for vegetable oil-based automotive shock absorber fluids: an overview." Lubrication Science 28, no. 6 (2016): 381–404. http://dx.doi.org/10.1002/ls.1337.
Full textLee, Choon-Tae, and Byung-Young Moon. "Study of the simulation model of a displacement-sensitive shock absorber of a vehicle by considering the fluid force." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 219, no. 8 (2005): 965–75. http://dx.doi.org/10.1243/095440705x34685.
Full textKonieczny, Łukasz. "Analysis of Simplifications Applied in Vibration Damping Modelling for a Passive Car Shock Absorber." Shock and Vibration 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/6182847.
Full textWszołek, Grzegorz, Piotr Czop, Dawid Jakubowski, and Damian Slawik. "Optimization of a Shock Absorber Design Using Model-Based Approach." Advanced Materials Research 452-453 (January 2012): 1351–55. http://dx.doi.org/10.4028/www.scientific.net/amr.452-453.1351.
Full textEricksen, Everet O., and Faramarz Gordaninejad. "A magneto-rheological fluid shock absorber for an off-road motorcycle." International Journal of Vehicle Design 33, no. 1/2/3 (2003): 139. http://dx.doi.org/10.1504/ijvd.2003.003574.
Full textEvkin, A. "Asymptotic investigation of vehicle shock absorber with reversing shell of revolution." International Journal of Vehicle Design 34, no. 4 (2004): 399. http://dx.doi.org/10.1504/ijvd.2004.004065.
Full textSikora, Marian. "Modeling and Operational Analysis of an Automotive Shock Absorber with a Tuned Mass Damper." Acta Mechanica et Automatica 12, no. 3 (2018): 243–51. http://dx.doi.org/10.2478/ama-2018-0038.
Full textWeigel, M., W. Mack, and A. Riepl. "Nonparametric Shock Absorber Modelling Based on Standard Test Data." Vehicle System Dynamics 38, no. 6 (2002): 415–32. http://dx.doi.org/10.1076/vesd.38.6.415.8346.
Full textSacramento, German, and Jorge Biera. "Simulation tool for shock absorber noise prediction in time and frequency domains." International Journal of Vehicle Noise and Vibration 3, no. 3 (2007): 217. http://dx.doi.org/10.1504/ijvnv.2007.015174.
Full textLeitman, Marshall J., and Piero Villaggio. "The Dynamics of a Membrane Shock-Absorber." Mechanics Based Design of Structures and Machines 34, no. 3 (2006): 277–92. http://dx.doi.org/10.1080/15397730600860895.
Full textNing, Xiao Bin, Ji Sheng Shen, Bin Meng, and Jian Ruan. "Digital Control Damp Valve in Semi-Active Suspension." Advanced Materials Research 433-440 (January 2012): 2534–40. http://dx.doi.org/10.4028/www.scientific.net/amr.433-440.2534.
Full textZhou, Changcheng, Chuanbo Ren, Xueyi Zhang, and Jie Meng. "Math model for throttle slice thickness analytical design of telescopic shock absorber." International Journal of Vehicle Systems Modelling and Testing 4, no. 3 (2009): 133. http://dx.doi.org/10.1504/ijvsmt.2009.029386.
Full textBasso, Roberto. "Design of a single-tube shock absorber with a pre-established characteristic diagram." International Journal of Heavy Vehicle Systems 17, no. 2 (2010): 179. http://dx.doi.org/10.1504/ijhvs.2010.033181.
Full textZhang, Li Jun, Hong Liang Liu, and Yue Zhong Li. "A New Analytical Method for Influences of Shock Absorber Rubber Mount on Automotive Ride Comfort." Advanced Materials Research 299-300 (July 2011): 1221–26. http://dx.doi.org/10.4028/www.scientific.net/amr.299-300.1221.
Full textBarethiye, V. M., G. Pohit, and A. Mitra. "Analysis of a quarter car suspension system based on nonlinear shock absorber damping models." INTERNATIONAL JOURNAL OF AUTOMOTIVE AND MECHANICAL ENGINEERING 14, no. 3 (2017): 4401–18. http://dx.doi.org/10.15282/ijame.14.3.2017.2.0349.
Full textHerzog, Ludwig, and Klaus Augsburg. "Study on Friction in Automotive Shock Absorbers Part 1: Friction Simulation Using a Dynamic Friction Model in the Contact Zone of an FEM Model." Vehicles 3, no. 2 (2021): 212–32. http://dx.doi.org/10.3390/vehicles3020014.
Full textKasteel, Richard Van, Wang Cheng-Guo, Qian Lixin, Liu Jin-Zhao, and Ye Guo-Hong. "A new shock absorber model for use in vehicle dynamics studies." Vehicle System Dynamics 43, no. 9 (2005): 613–31. http://dx.doi.org/10.1080/0042311042000266720.
Full textDuym, Stefaan W. R. "Simulation Tools, Modelling and Identification, for an Automotive Shock Absorber in the Context of Vehicle Dynamics." Vehicle System Dynamics 33, no. 4 (2000): 261–85. http://dx.doi.org/10.1076/0042-3114(200004)33:4;1-u;ft261.
Full textZador, István, Ádám Török, István Vajda, and László Palkovics. "OSCILLATION CONTROL OVER LIGHT DUTY CARS USING MAGNETIC SEMI-ACTIVE SHOCK ABSORBERS." TRANSPORT 26, no. 3 (2011): 284–89. http://dx.doi.org/10.3846/16484142.2011.622357.
Full textLozia, Zbigniew, and Piotr Zdanowicz. "Simulation assessment of the half-power bandwidth method in testing shock absorbers." Open Engineering 11, no. 1 (2020): 120–29. http://dx.doi.org/10.1515/eng-2021-0011.
Full textZach, Christoph, Werner Mack, Gabriele Fruhmann, and Werner Tieber. "On the performance of rheological shock absorber models in full vehicle simulation." Vehicle System Dynamics 45, no. 11 (2007): 981–99. http://dx.doi.org/10.1080/00423110601151968.
Full textPracny, V., M. Meywerk, and A. Lion. "Full vehicle simulation using thermomechanically coupled hybrid neural network shock absorber model." Vehicle System Dynamics 46, no. 3 (2008): 229–38. http://dx.doi.org/10.1080/00423110701271864.
Full text