Contents
Academic literature on the topic 'Autonomous and highly oscillatory differential equations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Autonomous and highly oscillatory differential equations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Autonomous and highly oscillatory differential equations"
DAVIDSON, B. D., and D. E. STEWART. "A NUMERICAL HOMOTOPY METHOD AND INVESTIGATIONS OF A SPRING-MASS SYSTEM." Mathematical Models and Methods in Applied Sciences 03, no. 03 (1993): 395–416. http://dx.doi.org/10.1142/s0218202593000217.
Full textPhilos, Ch G., I. K. Purnaras, and Y. G. Sficas. "ON THE BEHAVIOUR OF THE OSCILLATORY SOLUTIONS OF SECOND-ORDER LINEAR UNSTABLE TYPE DELAY DIFFERENTIAL EQUATIONS." Proceedings of the Edinburgh Mathematical Society 48, no. 2 (2005): 485–98. http://dx.doi.org/10.1017/s0013091503000993.
Full textOgorodnikova, S., and F. Sadyrbaev. "MULTIPLE SOLUTIONS OF NONLINEAR BOUNDARY VALUE PROBLEMS WITH OSCILLATORY SOLUTIONS." Mathematical Modelling and Analysis 11, no. 4 (2006): 413–26. http://dx.doi.org/10.3846/13926292.2006.9637328.
Full textCondon, Marissa, Alfredo Deaño, and Arieh Iserles. "On second-order differential equations with highly oscillatory forcing terms." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466, no. 2118 (2010): 1809–28. http://dx.doi.org/10.1098/rspa.2009.0481.
Full textSanz-Serna, J. M. "Mollified Impulse Methods for Highly Oscillatory Differential Equations." SIAM Journal on Numerical Analysis 46, no. 2 (2008): 1040–59. http://dx.doi.org/10.1137/070681636.
Full textPetzold, Linda R., Laurent O. Jay, and Jeng Yen. "Numerical solution of highly oscillatory ordinary differential equations." Acta Numerica 6 (January 1997): 437–83. http://dx.doi.org/10.1017/s0962492900002750.
Full textCohen, David, Ernst Hairer, and Christian Lubich. "Modulated Fourier Expansions of Highly Oscillatory Differential Equations." Foundations of Computational Mathematics 3, no. 4 (2003): 327–45. http://dx.doi.org/10.1007/s10208-002-0062-x.
Full textCondon, M., A. Iserles, and S. P. Nørsett. "Differential equations with general highly oscillatory forcing terms." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, no. 2161 (2014): 20130490. http://dx.doi.org/10.1098/rspa.2013.0490.
Full textHerrmann, L. "Oscillatory Solutions of Some Autonomous Partial Differential Equations with a Parameter." Journal of Mathematical Sciences 236, no. 3 (2018): 367–75. http://dx.doi.org/10.1007/s10958-018-4117-1.
Full textChartier, Philippe, Joseba Makazaga, Ander Murua, and Gilles Vilmart. "Multi-revolution composition methods for highly oscillatory differential equations." Numerische Mathematik 128, no. 1 (2014): 167–92. http://dx.doi.org/10.1007/s00211-013-0602-0.
Full text