Academic literature on the topic 'Autonomous drones'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Autonomous drones.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Autonomous drones"
Yulianto, Ahmad Wilda, Dhandi Yudhit Yuniar, and Yoyok Heru Prasetyo. "Navigation and Guidance for Autonomous Quadcopter Drones Using Deep Learning on Indoor Corridors." Jurnal Jartel Jurnal Jaringan Telekomunikasi 12, no. 4 (December 30, 2022): 258–64. http://dx.doi.org/10.33795/jartel.v12i4.422.
Full textSuzuki, Satoshi, and Kenzo Nonami. "Special Issue on Novel Technology of Autonomous Drone." Journal of Robotics and Mechatronics 33, no. 2 (April 20, 2021): 195. http://dx.doi.org/10.20965/jrm.2021.p0195.
Full textKang, Tae-Won, and Jin-Woo Jung. "A Drone’s 3D Localization and Load Mapping Based on QR Codes for Load Management." Drones 8, no. 4 (March 29, 2024): 130. http://dx.doi.org/10.3390/drones8040130.
Full textGupta, Arpit. "Simulation and Detection of Small Drones/Suspicious UAVs in Drone Grid." International Journal for Research in Applied Science and Engineering Technology 9, no. VI (June 30, 2021): 5452–58. http://dx.doi.org/10.22214/ijraset.2021.36144.
Full textMa, Jinyu, Puhui Chen, Xinhan Xiong, Liangcheng Zhang, Shengdong Yu, and Dongyuan Zhang. "Research on Vision-Based Servoing and Trajectory Prediction Strategy for Capturing Illegal Drones." Drones 8, no. 4 (March 28, 2024): 127. http://dx.doi.org/10.3390/drones8040127.
Full textHutchinson, William. "Deceiving Autonomous Drones." International Journal of Cyber Warfare and Terrorism 10, no. 3 (July 2020): 1–14. http://dx.doi.org/10.4018/ijcwt.2020070101.
Full textMontes-Romero, Ángel, Arturo Torres-González, Jesús Capitán, Maurizio Montagnuolo, Sabino Metta, Fulvio Negro, Alberto Messina, and Aníbal Ollero. "Director Tools for Autonomous Media Production with a Team of Drones." Applied Sciences 10, no. 4 (February 21, 2020): 1494. http://dx.doi.org/10.3390/app10041494.
Full textGugan, Gopi, and Anwar Haque. "Path Planning for Autonomous Drones: Challenges and Future Directions." Drones 7, no. 3 (February 28, 2023): 169. http://dx.doi.org/10.3390/drones7030169.
Full textPikalov, Simon, Elisha Azaria, Shaya Sonnenberg, Boaz Ben-Moshe, and Amos Azaria. "Vision-Less Sensing for Autonomous Micro-Drones." Sensors 21, no. 16 (August 5, 2021): 5293. http://dx.doi.org/10.3390/s21165293.
Full textRodriguez, Angel A., Mohammad Shekaramiz, and Mohammad A. S. Masoum. "Computer Vision-Based Path Planning with Indoor Low-Cost Autonomous Drones: An Educational Surrogate Project for Autonomous Wind Farm Navigation." Drones 8, no. 4 (April 17, 2024): 154. http://dx.doi.org/10.3390/drones8040154.
Full textDissertations / Theses on the topic "Autonomous drones"
Petkova, Mia. "Deploying drones for autonomous detection of pavement distress." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/106049.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 57-61).
Road repair expenditure comprises a significant portion of US federal and municipal budgets. Inspection and timely maintenance are crucial preventative measures against pavement distress formation that can lower the monetary burden of repairs. Yet state of the art road inspection techniques still employ technicians to perform distress measurements manually. These methods are often too costly, time-consuming, labor-intensive and require technical expertise. Meanwhile, autonomous systems are increasingly deployed in place of human operators where tasks are monotonous and where risk of exposure to hostile conditions is great. As a time-consuming but highly repetitive task, road inspection presents a promising candidate for task automation. Automating road inspection can present significant efficiency gains that can aid agencies in responding to early signs of erosion in a timely manner. In this work, I explore the capacity of drones to perform autonomous pavement inspections. I develop a system that dispatches drones to survey an area, diagnose the presence of pavement distress in real time, and record imagery and coordinates of locations requiring repair. This system presents an alternative to on-ground inspections and tools that draw on crowd-sourced mechanisms to identify potholes. It builds on other recent technological solutions that employ remote sensing to collect and interpret data on pavement health. The results from this mission will be visualized through a web platform that can not only aid cities in consolidating a fragmented and costly data collection process, but also in minimize human error in the identification and prioritization of problem areas.
by Mia Petkova.
S.M.
Jiang, Ziwen M. EngMassachusetts Institute of Technology. "An autonomous landing and charging system for drones." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/123029.
Full textThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 69-71).
A sensor-equipped consumer-grade drone can help collect data about the world. However, a drone's flight time today is measured in tens of minutes. Charging multiple drones in a network also requires manual assistance. In this thesis, we develop an integrated system with an autonomous charging pad that a drone can accurately land on. At the same time, the charging system allows the drone to land in environments with low visibility, especially during the nighttime. This research combined vision-based marker detection and flight control algorithms to create accurate landing procedures with different camera modules. Two charging platform designs of wireless and wired contact charging were built with the marker. The autonomous charging system enables a drone to land more accurately than the GPS-based navigation and gets charged without human assistance.
by Ziwen Jiang.
M. Eng.
M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Chadha, Abhimanyu. "Vision Based Localization of Drones in a GPS Denied Environment." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/99887.
Full textMaster of Science
In the recent years, technologies like Deep Learning and Machine Learning have seen many rapid developments. This has lead to the rise of fields such as autonomous drones and their application in fields such as bridge inspection, search and rescue operations, disaster management relief, agriculture, real estate etc. Since GPS is a highly unreliable sensor, we need an alternate method to be able to localize the drones in various environments in real time. In this thesis, we integrate a robust drone detection neural network with a camera which estimates the location. We then use this data to get the relative location of all the follower drones from the leader drone. We run experiments with the camera and in a simulator to show the accuracy of our results.
Theodorakopoulos, Panagiotis. "On autonomous target tracking for UAVs." Toulouse 3, 2009. http://thesesups.ups-tlse.fr/545/.
Full textMost applications of Unmanned Aerial Vehicles are related to events that occur on the ground. In particular, ground target tracking, be the target static, slowly moving or maneuvering at high speeds, is an essential task for UAVs. The overall objective of this thesis is to provide methods to endow a drone to autonomously track a moving ground target, under the following conditions: - A fixed wing UAV equipped with a monocular camera. - Presence of obstacles that hinder ground visibility. - No Fly Zones that limit the airspace. - Restrictions on the field of view of the observing sensor (a camera) - Various target dynamics and behavior: the target may be either moving on an open field or on a road network, and also has dynamic constraints (e. G. If it is a car). It can be neutral or evasive: in the latter case, it can exploit the presence of obstacles, denoted as "shadows" to avoid being tracked by the UAV, making the problem akin to a "hide and seek" game. The thesis proposes three approaches to tackle this problem: - A control based navigation method, - An adversarial predictive method, - And a discrete game theoretic approach. Results obtained in realistic simulations and with an actual UAV are presented to evaluate and compare the pros and cons of each approach. Extensions to the multi-drone case are also considered
Alvarez, Custodio Maria. "Autonomous Recharging System for Drones: Detection and Landing on the Charging Platform." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-245197.
Full textUnder de senaste åren har användningen av inomhusdrönare ökat betydligt på många olika områden. En av de största begränsningarna för dessa drönare är batteritiden. Detta beror på att batteristorleken måste begränsas eftersom drönarna har en väldigt begränsad maximal nyttolast för att kunna flyga. Därför måste de laddas ofta, vilket involverar mänskligt ingripande och därmed begränsar drönartillämpningarna. För att lösa detta problem presenterar detta examensarbete ett autonomt laddningssystem för en nanodrönare, Crazyflie 2.0. Genom att automatisera batteriladdningsprocessen behövs inget mänskligt ingrepp, och därigenom kan uppdragstiden för drönaren ökas avsevärt och bredda de möjliga tillämpningarna. Huvudmålet med denna avhandling är designen och implementationen av ett styrsystem för en inomhusdrönare, för att styra den mot en landningsplattform och landa korrekt på den. Arbetet inkluderar det faktiska laddningssystemet också, så att slutresultatet är ett fullständigt autonomt system. Innan regulatorn och systemet utformas och presenteras presenteras en genomgång av bakgrundsmaterial och analys av befintliga lösningar för problemet med autonom landning. En kamera monteras på Crazyflie 2.0 för att kunna detektera och positionera landningsstationen och styra drönaren med avseende på detta. För detektion används ArUcobibliotekets markörer vilka också gör det möjligt att räkna ut kamerans position och orientering med avseende på markören och därmed laddstationen. Slutligen utförs tester för att utvärdera systemet. Den erhållna flygtiden är 4,6 minuter och landningsprestandan (andel korrekta landningar på första försöket) är 80%.
Ait, Saadi Amylia. "Coordination of scout drones (UAVs) in smart-city to serve autonomous vehicles." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG064.
Full textThe subject of Unmanned Aerial Vehicles (UAVs) has become a promising study field in bothresearch and industry. Due to their autonomy and efficiency in flight, UAVs are considerablyused in various applications for different tasks. Actually, the autonomy of the UAVis a challenging issue that can impact both its performance and safety during the mission.During the flight, the autonomous UAVs are required to investigate the area and determineefficiently their trajectory by preserving their resources (energy related to both altitude andpath length) and satisfying some constraints (obstacles and axe rotations). This problem isdefined as the UAV path planning problem that requires efficient algorithms to be solved,often Artificial Intelligence algorithms. In this thesis, we present two novel approachesfor solving the UAV path planning problem. The first approach is an improved algorithmbased on African Vultures Optimization Algorithm (AVOA), called CCO-AVOA algorithms,which integrates the Chaotic map, Cauchy mutation, and Elite Opposition-based learningstrategies. These three strategies improve the performance of the original AVOA algorithmin terms of the diversity of solutions and the exploration/exploitation search balance. Asecond approach is a hybrid-based approach, called CAOSA, based on the hybridization ofChaotic Aquila Optimization with Simulated Annealing algorithms. The introduction of thechaotic map enhances the diversity of the Aquila Optimization (AO), while the SimulatedAnnealing (SA) algorithm is applied as a local search algorithm to improve the exploitationsearch of the traditional AO algorithm. Finally, the autonomy and efficiency of the UAVare tackled in another important application, which is the UAV placement problem. Theissue of the UAV placement relays on finding the optimal UAV placement that satisfies boththe network coverage and connectivity while considering the UAV's limitation from energyand load. In this context, we proposed an efficient hybrid called IMRFO-TS, based on thecombination of Improved Manta Ray Foraging Optimization, which integrates a tangentialcontrol strategy and Tabu Search algorithms
ADER, MARIA, and DAVID AXELSSON. "Drones in arctic environments." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-217918.
Full textDetta är ett examensarbete utfört av Maria Ader och David Axelsson, studenter på civilingenjörsprogrammet Design och Produktframtagning på KTH, med masterinriktning Teknisk Design. Arbetet är utfört åt ÅF i syfte att bidra till EU-projektet ɪɴᴛᴇʀᴀᴄᴛ. Iɴᴛᴇʀᴀᴄᴛ är EU:s satsning på klimatforskning i Arktis och syftar till att “koordinera och harmonisera forskning och miljöbevakning som bidrar till vår kunskap och förståelse av förändringar som sker i de arktiska miljöerna.” Ett av tolv delprojekt inom ɪɴᴛᴇʀᴀᴄᴛ-projektet syftar till att öka medvetenheten om drönarteknologi och sensorer bland forskare och föreståndare på forskningsstationerna inom ɪɴᴛᴇʀᴀᴄᴛ, samt att göra drönarindustrin medveten om nya potentiella användningsområden. En drönare är ett obemannat luftfartyg, d.v.s. en flygfarkost utan pilot ombord. Drönare benämns ibland som “UAS” och “UAV”. I den här rapporten används främst den engelska termen “drones”. Detta examensarbete undersöker behovet av drönare på de forskningsstationer som är delaktiga i ɪɴᴛᴇʀᴀᴄᴛ och hur det arktiska klimatet påverkar drönartekniken och ergonomin. Arbetet kartlägger även drönarmarknaden och de lagar och regler som påverkar användandet av drönare. En utförlig studie genomfördes, där forskarnas behov av drönare undersöktes. En enkät skickades ut inom ɪɴᴛᴇʀᴀᴄᴛ och utförliga intervjuer genomfördes med forskare och andra nyckelpersoner. Ett studiebesök på Tarfala forskningsstation kompletterade med fältdata. Den främsta insikten från studien var att behov, arbetsuppgifter och metoder varierar mycket mellan de olika forskarna. En annan insikt var att många ville använda drönare som sensorbärare, och på så sätt insamla data från stora områden på kort tid. Resultatet från studien låg till grund för en situationsbaserad drönarrekommendation samt ett konceptförslag för en enkel vattenprovtagningslösning.
Falomir, Bagdassarian Ema. "Calcul dynamique de chemin par des drones autonomes en essaim compact dans le cadre de missions en environnements complexes." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0450.
Full textDrones are major tools today to perform numerous tasks in a wide range of operations, both for military and civil activities. In order to reduce operators’ workload, some parts of the drones’ missions can be automated, until achieving a full autonomy of the platforms, which will reach their mission without any human intervention. Path planning is a major task to achieve autonomy. Indeed, the drones have to detect obstacles while it discovers its environment and dynamically calculate a path avoiding obstacle and allowing to fulfil their mission. In this context, our main contribution is a path planning method for an autonomous drone evolving in complex environment.Furthermore, the variety of tasks one would like to achieve increases quicker than the capacity of a single UAV, therefore one can use a swarm composed of several autonomous platforms. Usage of several drones increases the number and/or the variety of sensors, and the collaboration between them enhance the global system capabilities by supporting some form of resilience. However, swarming introduced new issues, such as communications and drone avoidance. Our path planning method considers these problematics and then, is adapted for drones forming a swarm
Le, Barz Cédric. "Navigation visuelle pour les missions autonomes des petits drones." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066424/document.
Full textIn this last decade, technology evolution has enabled the development of small and light UAV able to evolve in indoor and urban environments. In order to execute missions assigned to them, UAV must have a robust navigation system, including a precise egolocalization functionality within an absolute reference. We propose to solve this problem by mapping the latest images acquired with geo-referenced images, i.e. Google Streetview images.In a first step, assuming that it is possible for a given query image to retrieve the geo-referenced image depicting the same scene, we study a solution, based on relative pose estimation between images, to refine the location. Then, to retrieve geo-referenced images corresponding to acquired images, we studied and proposed an hybrid method exploiting both visual and odometric information by defining an appropriate Hidden Markov Model (HMM), where states are geographical locations. The quality of achieved performances depending of visual similarities, we finally proposed an original solution based on a supervised metric learning solution. The solution measures similarities between the query images and geo-referenced images close to the putative position, thanks to distances learnt during a preliminary step
Le, Barz Cédric. "Navigation visuelle pour les missions autonomes des petits drones." Electronic Thesis or Diss., Paris 6, 2015. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2015PA066424.pdf.
Full textIn this last decade, technology evolution has enabled the development of small and light UAV able to evolve in indoor and urban environments. In order to execute missions assigned to them, UAV must have a robust navigation system, including a precise egolocalization functionality within an absolute reference. We propose to solve this problem by mapping the latest images acquired with geo-referenced images, i.e. Google Streetview images.In a first step, assuming that it is possible for a given query image to retrieve the geo-referenced image depicting the same scene, we study a solution, based on relative pose estimation between images, to refine the location. Then, to retrieve geo-referenced images corresponding to acquired images, we studied and proposed an hybrid method exploiting both visual and odometric information by defining an appropriate Hidden Markov Model (HMM), where states are geographical locations. The quality of achieved performances depending of visual similarities, we finally proposed an original solution based on a supervised metric learning solution. The solution measures similarities between the query images and geo-referenced images close to the putative position, thanks to distances learnt during a preliminary step
Books on the topic "Autonomous drones"
Blubaugh, David Allen, Steven D. Harbour, Benjamin Sears, and Michael J. Findler. Intelligent Autonomous Drones with Cognitive Deep Learning. Berkeley, CA: Apress, 2022. http://dx.doi.org/10.1007/978-1-4842-6803-2.
Full textFacility, Dryden Flight Research, ed. Autonomous RPRV navigation guidance and control. Hawthorne, Calif: Systems Technology, Inc., 1989.
Find full textUnited States. National Aeronautics and Space Administration., ed. Search problems in mission planning and navigation of autonomous aircraft. West Lafayette, Ind: Purdue University, School of Aeronautics and Astronautics, 1988.
Find full textUnited States. National Aeronautics and Space Administration. Aeronautics Research Mission Directorate, ed. Crash course: Lessons learned from accidents involving remotely piloted and autonomous aircraft. Washington, DC: National Aeronautics and Space Administration, 2013.
Find full textMusial, Marek. System architecture of small autonomous UAVs: Requirements and design approaches in control, communication, and data processing. Saarbrücken: VDM Verlag Dr. Müller, 2008.
Find full textKastanas, Elias. Unité et diversité: Notions autonomes et marge d'appréciation des Etats dans la jurisprudence de la Cour européenne des droits de l'homme. Bruxelles: E. Bruylant, 1996.
Find full textSebbane, Yasmina Bestaoui. Smart Autonomous Aircraft. Taylor & Francis Group, 2020.
Find full textStatman, Daniel. Drones and Robots. Edited by Seth Lazar and Helen Frowe. Oxford University Press, 2015. http://dx.doi.org/10.1093/oxfordhb/9780199943418.013.9.
Full textSmart Autonomous Aircraft: Flight Control and Planning for UAV. Taylor & Francis Group, 2015.
Find full textBook chapters on the topic "Autonomous drones"
Schulzke, Marcus. "Evaluating Autonomous Drones." In The Morality of Drone Warfare and the Politics of Regulation, 149–71. London: Palgrave Macmillan UK, 2016. http://dx.doi.org/10.1057/978-1-137-53380-7_6.
Full textMukerji, Nikil. "Autonomous Killer Drones." In Drones and Responsibility, 197–214. Farnham, Surrey, UK England ; Burlington, VT : Ashgate, 2016. | Series: Emerging technologies, ethics and international affairs: Routledge, 2016. http://dx.doi.org/10.4324/9781315578187-12.
Full textHoek, Marga. "Autonomous Vehicles and Drones." In Tech For Good, 217–52. London: Routledge, 2023. http://dx.doi.org/10.4324/9781003392064-7.
Full textSaxon, Dan. "Autonomous Drones and Individual Criminal Responsibility." In Drones and Responsibility, 17–46. Farnham, Surrey, UK England ; Burlington, VT : Ashgate, 2016. | Series: Emerging technologies, ethics and international affairs: Routledge, 2016. http://dx.doi.org/10.4324/9781315578187-2.
Full textKumar, Kirshna, Sushil Kumar, and Rupak Kharel. "Autonomous and Connected UAVs/Drones." In Secure and Digitalized Future Mobility, 17–31. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/b22998-2.
Full textMüller, Vincent C. "Autonomous Killer Robots are Probably Good News 1." In Drones and Responsibility, 67–81. Farnham, Surrey, UK England ; Burlington, VT : Ashgate, 2016. | Series: Emerging technologies, ethics and international affairs: Routledge, 2016. http://dx.doi.org/10.4324/9781315578187-4.
Full textLópez, Luis Bausá, Niels van Manen, Erik van der Zee, and Steven Bos. "DroneAlert: Autonomous Drones for Emergency Response." In Multi-Technology Positioning, 303–21. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50427-8_15.
Full textDahlmann, Anja. "Drones and Lethal Autonomous Weapon Systems." In Armament, Arms Control and Artificial Intelligence, 159–73. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11043-6_12.
Full textSantamaria-Navarro, Angel, Rohan Thakker, David D. Fan, Benjamin Morrell, and Ali-akbar Agha-mohammadi. "Towards Resilient Autonomous Navigation of Drones." In Springer Proceedings in Advanced Robotics, 922–37. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95459-8_57.
Full textDwivedi, Kriti, Priyanka Govindarajan, Deepika Srinivasan, A. Keerthi Sanjana, Ramani Selvanambi, and Marimuthu Karuppiah. "Intelligent Autonomous Drones in Industry 4.0." In Artificial Intelligence and Cyber Security in Industry 4.0, 133–63. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2115-7_6.
Full textConference papers on the topic "Autonomous drones"
Velazquez, Eric Marin, and Sudhanshu Kumar Semwal. "Using Autonomous Drones Interactions towards Mobile Personal Spaces for Indoor Environments." In WSCG'2021 - 29. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision'2021. Západočeská univerzita, 2021. http://dx.doi.org/10.24132/csrn.2021.3002.14.
Full textBluman, James, Davonte Carter Vault, Wei Kang Soon, Ruth Talbott, Jonathan Willis, Andrew Kopeikin, and Ekaterina Prosser. "Autonomous Drone Delivery From Airdrop Systems (ADDAS): Aerially Deploying Folding-Wing Drones for Ground Reconnaissance." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24046.
Full textIob, Pietro, Luca Frau, Piero Danieli, Lorenzo Olivieri, and Carlo Bettanini. "Avalanche Rescue with Autonomous Drones." In 2020 IEEE 7th International Workshop on Metrology for AeroSpace (MetroAeroSpace). IEEE, 2020. http://dx.doi.org/10.1109/metroaerospace48742.2020.9160116.
Full textChow, Nicole, Gopi Gugan, and Anwar Haque. "RADR: Routing for Autonomous Drones." In 2019 15th International Wireless Communications and Mobile Computing Conference (IWCMC). IEEE, 2019. http://dx.doi.org/10.1109/iwcmc.2019.8766530.
Full textBregu, Endri, Nicola Casamassima, Daniel Cantoni, Luca Mottola, and Kamin Whitehouse. "Reactive Control of Autonomous Drones." In MobiSys'16: The 14th Annual International Conference on Mobile Systems, Applications, and Services. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2906388.2906410.
Full textMilhouse, Mark O. "Framework for Autonomous Delivery Drones." In the 4th Annual ACM Conference. New York, New York, USA: ACM Press, 2015. http://dx.doi.org/10.1145/2808062.2808075.
Full textWang, Qing, Chenren Xu, Supeng Leng, and Sofie Pollin. "When Autonomous Drones Meet Driverless Cars." In MobiSys '18: The 16th Annual International Conference on Mobile Systems, Applications, and Services. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3210240.3210806.
Full textMitcheson, Paul D., David Boyle, George Kkelis, David Yates, Juan Arteaga Saenz, Samer Aldhaher, and Eric Yeatman. "Energy-autonomous sensing systems using drones." In 2017 IEEE SENSORS. IEEE, 2017. http://dx.doi.org/10.1109/icsens.2017.8234092.
Full textGodio, Simone, Francesco Marino, Alessandro Minervini, Stefano Primatesta, Marcello Chiaberge, and Giorgio Guglieri. "Autonomous Drones in GNSS-Denied Environments: Results from the Leonardo Drone Contest." In 2023 IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace). IEEE, 2023. http://dx.doi.org/10.1109/metroaerospace57412.2023.10190003.
Full textHutton, Courtney. "Augmented Reality Interfaces for Semi-Autonomous Drones." In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, 2019. http://dx.doi.org/10.1109/vr.2019.8797893.
Full textReports on the topic "Autonomous drones"
Kulhandjian, Hovannes. AI-Based Bridge and Road Inspection Framework Using Drones. Mineta Transportation Institute, November 2023. http://dx.doi.org/10.31979/mti.2023.2226.
Full textAlexander, Serena, Bo Yang, Owen Hussey, and Derek Hicks. Examining the Externalities of Highway Capacity Expansions in California: An Analysis of Land Use and Land Cover (LULC) Using Remote Sensing Technology. Mineta Transportation Institute, November 2023. http://dx.doi.org/10.31979/mti.2023.2251.
Full textChristensen, Lance. PR-459-133750-R03 Fast Accurate Automated System To Find And Quantify Natural Gas Leaks. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), November 2019. http://dx.doi.org/10.55274/r0011633.
Full textMcQueen, Bob. Unsettled Issues in Advanced Air Mobility Certification. SAE International, June 2021. http://dx.doi.org/10.4271/epr2021014.
Full text