Dissertations / Theses on the topic 'Autonomous mobile robot indoor navigation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Autonomous mobile robot indoor navigation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Dag, Antymos. "Autonomous Indoor Navigation System for Mobile Robots." Thesis, Linköpings universitet, Programvara och system, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-129419.
Full textAlthaus, Philipp. "Indoor Navigation for Mobile Robots : Control and Representations." Doctoral thesis, KTH, Numerical Analysis and Computer Science, NADA, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3644.
Full textThis thesis deals with various aspects of indoor navigationfor mobile robots. For a system that moves around in ahousehold or office environment,two major problems must betackled. First, an appropriate control scheme has to bedesigned in order to navigate the platform. Second, the form ofrepresentations of the environment must be chosen.
Behaviour based approaches have become the dominantmethodologies for designing control schemes for robotnavigation. One of them is the dynamical systems approach,which is based on the mathematical theory of nonlineardynamics. It provides a sound theoretical framework for bothbehaviour design and behaviour coordination. In the workpresented in this thesis, the approach has been used for thefirst time to construct a navigation system for realistic tasksin large-scale real-world environments. In particular, thecoordination scheme was exploited in order to combinecontinuous sensory signals and discrete events for decisionmaking processes. In addition, this coordination frameworkassures a continuous control signal at all times and permitsthe robot to deal with unexpected events.
In order to act in the real world, the control system makesuse of representations of the environment. On the one hand,local geometrical representations parameterise the behaviours.On the other hand, context information and a predefined worldmodel enable the coordination scheme to switchbetweensubtasks. These representations constitute symbols, on thebasis of which the system makes decisions. These symbols mustbe anchored in the real world, requiring the capability ofrelating to sensory data. A general framework for theseanchoring processes in hybrid deliberative architectures isproposed. A distinction of anchoring on two different levels ofabstraction reduces the complexity of the problemsignificantly.
A topological map was chosen as a world model. Through theadvanced behaviour coordination system and a proper choice ofrepresentations,the complexity of this map can be kept at aminimum. This allows the development of simple algorithms forautomatic map acquisition. When the robot is guided through theenvironment, it creates such a map of the area online. Theresulting map is precise enough for subsequent use innavigation.
In addition, initial studies on navigation in human-robotinteraction tasks are presented. These kinds of tasks posedifferent constraints on a robotic system than, for example,delivery missions. It is shown that the methods developed inthis thesis can easily be applied to interactive navigation.Results show a personal robot maintaining formations with agroup of persons during social interaction.
Keywords:mobile robots, robot navigation, indoornavigation, behaviour based robotics, hybrid deliberativesystems, dynamical systems approach, topological maps, symbolanchoring, autonomous mapping, human-robot interaction
Hennig, Matthias, Henri Kirmse, and Klaus Janschek. "Global Localization of an Indoor Mobile Robot with a single Base Station." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-83687.
Full textRojas, Castro Dalia Marcela. "The RHIZOME architecture : a hybrid neurobehavioral control architecture for autonomous vision-based indoor robot navigation." Thesis, La Rochelle, 2017. http://www.theses.fr/2017LAROS001/document.
Full textThe work described in this dissertation is a contribution to the problem of autonomous indoor vision-based mobile robot navigation, which is still a vast ongoing research topic. It addresses it by trying to conciliate all differences found among the state-of-the-art control architecture paradigms and navigation strategies. Hence, the author proposes the RHIZOME architecture (Robotic Hybrid Indoor-Zone Operational ModulE) : a unique robotic control architecture capable of creating a synergy of different approaches by merging them into a neural system. The interactions of the robot with its environment and the multiple neural connections allow the whole system to adapt to navigation conditions. The RHIZOME architecture preserves all the advantages of behavior-based architectures such as rapid responses to unforeseen problems in dynamic environments while combining it with the a priori knowledge of the world used indeliberative architectures. However, this knowledge is used to only corroborate the dynamic visual perception information and embedded knowledge, instead of directly controlling the actions of the robot as most hybrid architectures do. The information is represented by a sequence of artificial navigation signs leading to the final destination that are expected to be found in the navigation path. Such sequence is provided to the robot either by means of a program command or by enabling it to extract itself the sequence from a floor plan. This latter implies the execution of a floor plan analysis process. Consequently, in order to take the right decision during navigation, the robot processes both set of information, compares them in real time and reacts accordingly. When navigation signs are not present in the navigation environment as expected, the RHIZOME architecture builds new reference places from landmark constellations, which are extracted from these places and learns them. Thus, during navigation, the robot can use this new information to achieve its final destination by overcoming unforeseen situations.The overall architecture has been implemented on the NAO humanoid robot. Real-time experimental results during indoor navigation under both, deterministic and stochastic scenarios show the feasibility and robustness of the proposed unified approach
McConnell, Michael, Daniel Chionuma, Jordan Wright, Jordan Brandt, and Liu Zhe. "Design of an Autonomous Robot for Indoor Navigation." International Foundation for Telemetering, 2013. http://hdl.handle.net/10150/579708.
Full textThis paper describes the design and implementation of an autonomous robot to navigate indoors to a specified target using an inexpensive commercial off the shelf USB camera and processor running an imbedded Linux system. The robot identifies waypoints to aid in navigation, which in our case consists of a series of quick response (QR) codes. Using a 1080p USB camera, the robot could successfully identify waypoints at a distance of over 4 meters, and navigate at a rate of 50 cm/sec.
Keepence, B. S. "Navigation of autonomous mobile robots." Thesis, Cardiff University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304921.
Full textMiah, Md Suruz. "Autonomous mobile robot navigation using RFID technology." Thesis, University of Ottawa (Canada), 2007. http://hdl.handle.net/10393/27891.
Full textCampion, Joseph (Joseph F. ). "Autonomous navigation with mobile robot using ultrasonic rangefinders." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/98957.
Full textCataloged from PDF version of thesis.
In this thesis, I designed and implemented an autonomous navigation system for a four-wheeled mobile robot with ultrasonic sonar sensors and a National Instruments myRIO real-time controller. LabVIEW code was developed to control the motors with PWM signals based on sensor feedback. A low-pass filter was used to improve the signal to noise ratio since the signals from the ultrasonic sonar sensors were quite noisy. Finally, I developed two basic algorithms to maneuver the mobile robot: the first algorithm uses proportional control to maintain a specific distance from a target in front of the mobile robot; the second also uses proportional control to keep the robot at a specified distance away from a wall to its side as it travels forward.
by Joseph Campion.
S.B.
Tennety, Srinivas. "Mobile robot navigation in hilly terrains." University of Cincinnati / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1313757135.
Full textPerko, Eric Michael. "Precision Navigation for Indoor Mobile Robots." Case Western Reserve University School of Graduate Studies / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=case1345513785.
Full textRamamurthy, Mahesh. "INDOOR GEO-LOCATION AND TRACKING OF MOBILE AUTONOMOUS ROBOT." Master's thesis, University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3270.
Full textM.S.Cp.E.
Department of Electrical and Computer Engineering
Engineering and Computer Science
Computer Engineering
Prusakiewicz, Lukas, and Simon Tönnes. "Comparison of autonomous waypoint navigation methods for an indoor blimp robot." Thesis, KTH, Mekatronik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-284458.
Full textDen obemannade luftfarkosten (UAV) har under de senaste åren blivit en teknik vars användning blivit allt vanligare i flera sektorer av det moderna samhället. Olika sorters UAV robotar associeras idag med en omfattande serie användningsområden, från katastrofhjälp till övervakning. Ett nyligen påbörjat initiativ från svenska sjöräddningssällskapet (SSRS) syftar till att implementera drönare i deras utryckningar. Genom att snabbt sända drönare till platsen i fråga, kan en bedömning göras innan personal kommer dit, vilket sparar tid och ökar sannolikheten för en framgångsrik räddningsaktion. En farkost som denna, som kommer att resa långa sträckor, måste förlita sig på ett navigationssystem som inte kräver att en operatör kontinuerligt ser farkosten. För att resa till sitt mål, eller söka av ett område, bör operatören kunna definiera en resväg som drönaren följer genom att ge den en serie vägpunkter. Som ett inledande steg mot den typen av system har denna uppsats utvecklat och testat begreppet vägpunktsnavigering på ett litet och långsamt luftskepp/blimp, i en simulerad inomhusmiljö. Huvudsakligen testades och jämfördes två vanligt förekommande navigationsalgoritmer. En inspirerad av en underkategori till maskininlärning: förstärkningsinlärning (RL), och den andra baserad på rapidly exploring random tree (RRT) algoritmen. Fyra experiment utfördes för jämföra båda metoderna med avseende på färdsträcka, medelhastighet, energieffektivitet samt robusthet gentemot ändringar i färdpunktskonfigurationerna. Resultaten visar att när blimpen kontrollerades av den bästa RL-baserade versionen åkte den generellt en mer avståndsmässigt optimal väg än när den RRT-baserade metoden användes. I de flesta fallen visade sig även RL-metoden vara mer robust mot förändringar i testbanorna, och presterade mer konsekvent över olika vägpunktskonfigurationer. RRT-metoden resulterade dock vanligtvis i en högre medelhastighet och energieffektivitet. RL-algoritmen hade också problem med att navigera banor där den behövde ta sig runt ett hinder. Sammanfattningsvis beror valet av algoritm på vilka parametrar som prioriteras av blimpoperatören för en viss bana. Om en hög hastighet och energieffektivitet är önskvärd rekommenderas den RRT-baserade metoden. Men om det är viktigt att blimpen reser så kort avstånd som möjligt mellan färdpunkterna, och har en jämnare prestanda, bör RL-metoden användas. För att ta nästa steg, mot en framtida implementering av båda metoder i räddningsoperationer, vore det rimligt att analysera deras prestanda under mer realistiska förhållanden. Detta skulle kunna göras inomhus med ett riktigt luftskepp. Författarna rekommenderar att undersöka om hårdvara som inte överstiger blimpens maxlast kan utföra båda metodernas beräkningar och hur blimpen bestämmer sin position och orientering. Det skulle också vara intressant att se hur olika belöningsfunktioner påverkar blimpens prestanda.
Alsaab, Ahmad. "Behavioural strategy for indoor mobile robot navigation in dynamic environments." Thesis, University of Newcastle upon Tyne, 2015. http://hdl.handle.net/10443/2880.
Full textBui, Don T. "ORB : object recognition for real-time autonomous mobile robot navigation." Thesis, McGill University, 1997. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=20795.
Full textORB is able to perform its tasks in a fast and efficient manner by using simple models to represent the structural and movable objects in its database. ORB's recognition procedures only require sparse sets of range scans to identify the aforementioned objects. The structural object models are built from prior knowledge of the office environment. For example, the doorway model would consist of the known doorway widths found on the experimental office floor. ORB has been tested extensively in the CIM environment, but it can also be applied to any office space provided the structural dimensions are known a priori. ORB's models for the movable objects are idealized descriptions with the object's surfaces represented by planes. The physical dimensions of the movable object models are defined by Architectural Standards, as office furniture are built to conform to these standards.
1A system for O&barbelow;bject R&barbelow;ecognition and map B&barbelow;uilding using the QUADRIS sensor platform on a mobile robot. 2Official trademark of the National Research Council of Canada.
Paul, André. "Design of an autonomous navigation system for a mobile robot." Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=99565.
Full textAn artificial landmark localization algorithm was also developed to continuously record the positions of the robot whilst it was moving. The algorithm was tested on a grid layout of 6 m x 6 m. The performance of the artificial landmark localization technique was compared with odometric and inertial measurements obtained using a dead-reckoning method and a gyroscope-corrected dead-reckoning method. The artificial landmark localization method resulted in much smaller root mean square error (0.033 m) of position estimates compared to the other two methods (0.175 m and 0.135 m respectively).
Bui, Don T. "ORB, object recognition for real-time autonomous mobile robot navigation." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0001/MQ43999.pdf.
Full textEzequiel, Carlos Favis. "Real-Time Map Manipulation for Mobile Robot Navigation." Scholar Commons, 2013. http://scholarcommons.usf.edu/etd/4481.
Full textKhalil, Azher Othamn K. "Fuzzy logic control and navigation of mobile vehicles." Thesis, University of Newcastle Upon Tyne, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323486.
Full textRobinson, Stephen David. "The design and intelligent control of an autonomous mobile robot." Thesis, Durham University, 1996. http://etheses.dur.ac.uk/5341/.
Full textWilliams, Stefan Bernard. "Efficient Solutions to Autonomous Mapping and Navigation Problems." University of Sydney. Aerospace, Mechanical and Mechatronic Engineering, 2002. http://hdl.handle.net/2123/809.
Full textMayran, de Chamisso Fabrice. "Lifelong Exploratory Navigation : integrating planning, navigation and SLAM for autonomous mobile robots with finite resources." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS413/document.
Full textOne of the yet unresolved canonical problems of robotics is to have robots move completely autonomously in order to accomplish any mission they are charged with, with time and resource constraints and without prior knowledge of the environment. Reaching a goal requires the robot to perform at least four tasks: maintaining an abstract representation of the environment (map), being able to localize itself within this representation, using the representation to plan paths and navigating on the planned paths while handling dynamics of the environment and avoiding obstacles. Each of these problems has been studied extensively by the robotics community. However, the four components are usually studied separately, and as a result are mostly incompatible with each other. Additionally, since humans as well as robots have to operate with finite memory and computing resources, long running planning, navigation and SLAM algorithms may have to operate on incomplete or compressed data while guaranteeing that the goal(s) can still be reached. In this thesis, planning, navigation and SLAM in arbitrarily large environments with finite computing resources and memory are considered as one single problem, for a new bio-inspired paradigm which we call Lifelong Exploratory Navigation
Ferreira, Caetano Filipe Costa de Noronha. "Autonomous navigation and multi-sensorial real-time mocalization for a mobile robot." Doctoral thesis, Universidade de Aveiro, 2008. http://hdl.handle.net/10773/2468.
Full textO principio por detrás da proposta desta tese é a navegação de ambientes utilizando uma sequência de instruções condicionadas nas observações feitas pelo robô. Esta sequência é denominada como uma 'missão de navegação'. A interacção com um robô através de missões permitirá uma interface mais eficaz com humanos e a navegação de ambientes de maior escala e duma forma mais simplificada. No entanto, esta abordagem abre problemas novos no que diz respeito à forma como os dados sensoriais devem ser representados e utilizados. Neste trabalho representações binárias foram introduzidas para facilitar a integração dos dados multi-sensoriais, a dimensionalidade da qual foi reduzida através da utilização de Misturas de Distribuições de tipo Bernoulli. Foi também aplicada a técnica de cadeias de Markov ocultas (Hidden Markov Models), que contou com o desenvolvimento e a utilização dum modelo de cadeia de Markov original, esta que consegue explorar a informação contextual da sequência da missão. Uma aplicação que surgiu da aplicação do método de localização foi a criação de representações topologicas do ambiente sem ter que previamente recorrer à criação de mapas geométricos. Outras contribuições incluem a aplicação de métodos para a extracção de propriedades locais em imagens e o desenvolvimento de propriedades extraídas a partir de varrimentos dum medidor de distancia laser.
This thesis evaluates the requisites for the specification of mobile robot 'Missions' for navigation within environments that are typically used by human beings. The principal idea behind the proposal of this thesis was to allow localization and navigation by providing a sequence of instructions, the execution of each instruction being conditional on the expected sensor data. This approach to navigation is expected to lead to new applications which will include the autonomous navigation of environments of very large scale. It is also expected to lead to a more intuitive interaction between mobile robots and humans. However, the concept of the navigation Mission opens up new problems namely in the way in which the sequence of instructions and the expected observations are to be represented. To solve this problem, binary features were used to integrate observations from multiple sensors, the dimensionality of which was reduced by modelling the binary data as a Finite Mixture Model comprised of Bernoulli distributions. Another original contribution was the modification of the Markov Chains used in Hidden Markov Models to enable the use of the sequential context in which the expected observations are specified in the navigation Mission. The localization method that was developed enabled the direct creation of a topological representation of an environment without recourse to an intermediate geometric map. Other contributions include developments that were made in the characterisation of images through the application of local features and of laser range scans through the creation of original features based on the scan contour and free-area properties.
Muhammad, Naveed. "Contributions to the use of 3D lidars for autonomous navigation : calibration and qualitative localization." Thesis, Toulouse, INSA, 2012. http://www.theses.fr/2012ISAT0001/document.
Full textIn order to autonomously navigate in an environment, a robot has to perceive its environment correctly. Rich perception information from the environment enables the robot to perform tasks like avoiding obstacles, building terrain maps, and localizing itself. Classically, outdoor robots have perceived their environment using vision or 2D lidar sensors. The introduction of novel 3D lidar sensors such as the Velodyne device has enabled the robots to rapidly acquire rich 3D data about their surroundings. These novel sensors call for the development of techniques that efficiently exploit their capabilities for autonomous navigation.The first part of this thesis presents a technique for the calibration of 3D lidar devices. The calibration technique is based on the comparison of acquired 3D lidar data to a ground truth model in order to estimate the optimal values of the calibration parameters. The second part of the thesis presents a technique for qualitative localization and loop closure detection for autonomous mobile robots, by extracting and indexing small-sized signatures from 3D lidar data. The signatures are based on histograms of local surface normal information that is efficiently extracted from the lidar data. Experimental results illustrate the developments throughout the manuscript
Schworer, Ian Josef. "Navigation and Control of an Autonomous Vehicle." Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/32634.
Full textMaster of Science
Hughes, Bradley Evan. "A Navigation Subsystem for an Autonomous Robot Lawn Mower." Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1312391797.
Full textCorominas, Murtra Andreu. "Map-based localization for urban service mobile robotics." Doctoral thesis, Universitat Politècnica de Catalunya, 2011. http://hdl.handle.net/10803/41555.
Full textActualment, la recerca en robòtica mòbil té un interés creixent en exportar els resultats de navegació autònoma aconseguits en entorns interiors cap a d'altres tipus d'entorns més exigents, com, per exemple, les àrees urbanes peatonals. Desenvolupar capacitats de navegació autònoma en aquests entorns urbans és un requisit bàsic per poder proporcionar un conjunt de serveis de més alt nivell a una comunitat d'usuaris. Malgrat tot, exportar les tècniques d'interiors cap a entorns exteriors peatonals no és evident, a causa de la major dimensió de l'entorn, del dinamisme de l'escena provocada pels peatons i per altres obstacles en moviment, de la resposta de certs sensors a la il.luminació natural, i de la constant presència d'elements tridimensionals tals com rampes, escales, voreres o forats. D'altra banda, la localització de robots mòbils basada en GPS ha demostrat uns resultats insuficients de cara a una navegació robusta i de llarga durada en entorns urbans. Una de les peces clau en la navegació autònoma és la localització. En el cas que la localització consideri un mapa conegut a priori, encara que no sigui un model complet de l'entorn, parlem d'una localització basada en un mapa. Aquesta assumpció és realista ja que la tendència actual de les administracions locals és de construir mapes precisos de les ciutats, especialment dels llocs d'interés tals com les zones més cèntriques. El fet de tenir els robots localitzats en un mapa permet una planificació i una monitorització d'alt nivell, i així els robots poden arribar a destinacions indicades sobre el mapa, tot seguint de forma deliberativa una ruta prèviament planificada. Aquesta tesi tracta el tema de la localització de robots mòbils, basada en un mapa i per entorns urbans peatonals. La proposta de la tesi utilitza el filtre de partícules, un mètode probabilístic i recursiu, ben conegut i àmpliament utilitzat per la fusió de dades i l'estimació d'estats. Les principals contribucions de la tesi queden dividides en quatre aspectes: (1) experimentació de llarga durada del seguiment de la posició, tant en 2D com en 3D, d'un robot mòbil en entorns urbans reals, en el context de la navegació autònoma, (2) desenvolupament d'una tècnica ràpida i precisa per calcular en temps d'execució els models d'observació de distàncies en entorns 3D, un requisit bàsic pel rendiment del filtre de partícules a temps real, (3) formulació d'un filtre de partícules que integra conjunts de dades asíncrones i (4) proposta teòrica per solucionar la localització global d'una manera activa i cooperativa, entenent la cooperació com el fet de compartir informació, o bé com el de planificar accions conjuntes per solucionar un objectiu comú.
Gonullu, Muhammet Kasim. "Development Of A Mobile Robot Platform To Be Used In Mobile Robot Research." Master's thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615654/index.pdf.
Full textBauman, Cheryl Lynn. "Autonomous Navigation of a Ground Vehicle to Optimize Communication Link Quality." Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/36302.
Full textMaster of Science
Da, Silva Filho José Grimaldo. "Towards natural human-robot collaboration during collision avoidance." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALM003.
Full textClassical approaches for robot navigation among people have focused on guaranteed collision-free motion with the assumption that people are either static or moving obstacles. However, people are not ordinary obstacles. People react to the presence and the motion of a robot. In this context, a robot that behaves in human-like manner has been shown to reduce overall cognitive effort for nearby people as they do not have to actively think about a robot's intentions while moving on its proximity.Our work is focused on replicating a characteristic of human-human interaction during collision avoidance that is the mutual sharing of effort to avoid a collision. Based on hundreds of situations where two people have crossing trajectories, we determined how total effort is shared between agents depending on several factors of the interaction such as crossing angle and time to collision. As a proof of concept our generated model is integrated into gls{rvo}. For validation, the trajectories generated by our approach are compared to the standard gls{rvo} and to our dataset of people with crossing trajectories.Collaboration during collision avoidance is not without its potential negative consequences. For effective collaboration both agents have to pass each other on the same side. However, whenever the decision of which side collision should be avoided from is not consistent for people, the robot should also account for the risk that both agents will attempt to incorrectly cross each other on different sides. Our work first determines the uncertainty around this decision for people. Based on this, a collision avoidance approach is proposed so that, even if agents initially choose to incorrectly attempt to cross each other on different sides, the robot and the person would be able to perceive the side from which collision should be avoided in their following collision avoidance action. To validate our approach, several distinct scenarios where the crossing side decision is ambiguous are presented alongside collision avoidance trajectories generated by our approach in such scenarios
Sarti, Lorenzo. "Deep Reinforcement Learning for Robot Navigation in Unstructured Environments." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Find full textMudgal, Apurva. "Worst-case robot navigation in deterministic environments." Diss., Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/33924.
Full textCarbajal, Jhony, Grimaldo Quispe, Heyul Chavez-Arias, Carlos Raymundo-Ibanez, and Francisco Dominguez. "Mobile Robot for the Spraying of Corn Crops with autonomous navigation camera for the Plains of the Andes." Institute of Electrical and Electronics Engineers Inc, 2019. http://hdl.handle.net/10757/656305.
Full textThe incidence of the disease in horticultural crops is one of the important problems that affect the production of fruits, vegetables and flowers. Regular monitoring of crops for early diagnosis and treatment with pesticides or removal of the affected crop is part of the solution to minimize crop loss. The monitoring of crops by human labor is expensive, time consuming, prone to errors due to insufficient knowledge of the disease and highly repetitive at different stages of crop growth. These needs have motivated to design the mobile robot with vision sensors for navigation through the field. The robot has been designed in the Autodesk Inventor software. Programming for navigation is done in the Arduino Mega 2560 tool. Image capture has been performed using the RGB camera. Image processing for the identification of the disease and its representation in a graphical user interface has been performed using an algorithm in MATLAB R2018B that interacts with the Arduino tool through a communication bus. The system developed consists of the design of a prototype that uses simple and cost effective equipment such as Raspberry Pi, RGB camera, two motors and sensors that allow the autonomous fumigation of corn crops.
Revisión por pares
Lesueur-Grand, Caroline. "Le Robot mobile compagnon : De l'apprentissage interactif vers un modèle d'IHM intuitive." Thesis, Cergy-Pontoise, 2017. http://www.theses.fr/2017CERG0901/document.
Full textIn this thesis, we address the issues related to autonomous learning of different sensory-motor tasks using interaction and imitation. From a theoretical point of view and considering Human Machine Interaction (HMI), we will question the concepts linked to rhythmic entrainment, interpersonal coordination, and also intentional and unintentional synchronisations and their contribution to improve social interactions. Particularly, these mechanisms facilitate human-human interactions. Consequently, we defend the idea that taking them into account is essential to build more intuitive HMI. In near future applications, we would like to make the robot able to use these signals to improve its understanding the human partner intentions.Using a complex task is, then, necessary to confront the robot to failures that will introduce behavioral changes for both the human and the robot agents. These situations will introduce interaction rhythm modifications during learning phases. In this aim, the robot should be able to self assess its behavior regarding both the current task to learn and its interaction with its partner.We propose to work on a 'mobile companion robot' able to learn interactively (with its partner) to navigate. Using interaction games and imitation as a medium of learning and above all of communication, allows to consider new principles of HMI (Human Machine Interface) where the interaction is no longer considered as a 'load', it becomes rather pleasant
Chmelař, Jakub. "Mobilní robot s GNSS navigací." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2018. http://www.nusl.cz/ntk/nusl-376999.
Full textKrysl, Jakub. "Návrh a realizace řídících systému pro mobilní robot." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-254397.
Full textHuang, Henry. "Bearing-only SLAM : a vision-based navigation system for autonomous robots." Queensland University of Technology, 2008. http://eprints.qut.edu.au/28599/.
Full textVodrážka, Jakub. "Návrh konstrukce mobilního autonomního robotu." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-229186.
Full textRůžička, Michal. "Návrh a realizace navigačního systému pro autonomní mobilní robot." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-230240.
Full textVávra, Patrik. "Využití nástroje ROS pro řízení autonomního mobilního robotu." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-402584.
Full textBen, Said Hela. "Navigation autonome et commande référencée capteurs de robots d'assistance à la personne." Thesis, Limoges, 2018. http://www.theses.fr/2018LIMO0016/document.
Full textThe autonomy of a mobile agent is defined by its ability to navigate in an environment without human intervention. This task is very required for personal assistance robots. That’s why our contribution has been particularly focused on instrumentation and increasing the autonomy of a wheelchair for reduced mobility peaple. The objective of this work is to design control laws that allow a robot to navigate in real time and independently in an unknown environment. A unified virtual perception framework is introduced and allows to project the navigable space obtained by possibly multiple observations. First we designed an autonomous and safe navigation approach in environment whose structure can be assimilated to a corridor (lines on the ground, walls, delimitation of grasses, roads ...). We have solved this problem by using the formalism of visual servoing. The visual characteristics used in the control law were constructed from the virtual representation (ie the position of the vanishing point and the orientation of the center line of the corridor). To ensure safe and smooth navigation, even when these parameters can not be extracted, we have designed a finite-time state observer to estimate the visual characteristics in order to maintain the robot’s control efficient. This approach let a mobile robot navigate in a corridor even in in the case of sensory failure (unreliable data) and/or loss of measurement. We have extended the first contribution of this work with dealing with any type of static or dynamic environment. This was done using the Voronoi diagram. The Generalized Voronoi Diagram (GVD), also named skeleton, is a powerful environment representation, since, among other reasons, it defines a set of paths at maximal distance from the obstacles. In this work, a real time skeleton based visual servoing approach is proposed for a safe autonomous navigation of mobile robots. The control is based on an approximation of the local GVD using the Delta Medial Axis, a fast and robust skeletonization algorithm. The latter produces a filtered skeleton of the free space surrounding the robot using a pruning parameter that takes into account the robot size. This approach can cope with measurement noises at the perception and control with the wheel slip. This is why we have designed a visual servoing approach on a prediction of a GVD linearization. A complete analysis was performed to show the stability of the proposed control laws. Simulations and experimental tests validate the proposed approach
Pessin, Gustavo. "Estratégias inteligentes aplicadas em robôs móveis autônomos e em coordenação de grupos de robôs." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-25062013-160156/.
Full textThe constant increasing of the complexity in the control of robotic systems, as well as the application of groups of robots assisting or replacing human beings in critical activities has generated a significant demand for more robust, flexible and efficient solutions. The conventional development of specialized algorithms consisted of rule-based systems and automatas, used to coordinate these physical sets in a dynamic environment is an extremely complex challenge. Although several models of development of robotic issues are currently in use, many challenges in the area remain open. This thesis is related to the search for intelligent strategies to be applied in autonomous mobile robots in order to allow practical operations in dynamic environments. We seek, with the investigation of intelligent strategies by means of the use of machine learning in the robots, to propose original solutions to allow contributions in three challenges of the robotic research area: localization, navigation and coordination of groups of robots. The investigations about localization and groups of robots show novel and original proposals, where we sought to extend the state of the art. The navigation part has as its major objective to be a link between the subjects of localization and navigation, being its aim to help the deployment of a autonomous vehicle implying in greater technical advances. Related to the robotic group coordination, we have made the choice to work on an application modeled as a wildfire combat operation. We have developed a simulation environment in which we have evaluated four techniques to obtain strategies for the group formation: genetic algorithms, particle swarm optimization, hill climbing and simulated annealing. The v results showed that we can have very different accuracy with different techniques and sets of parameters. Furthermore, we show how a heuristic based on the use of past populations can assist in fault tolerant operation. Related to the autonomous navigation task, we present the development of a large autonomous vehicle capable of operating in outdoor environments. We sought to optimize an architecture for autonomous navigation based on monocular vision and with the ability to follow scattered points of GPS.We show how the use of simulation and small robots could assist in the development of large vehicle. Furthermore, we show how neural networks can be applied as a controller to autonomous navigation systems. In the investigation about localization, we presented a method using wireless networks to provide information about localization to mobile robots. The information gathered by the wireless network is used as input in an artificial neural network which learns the position of the robot. Several evaluations were carried out in order to understand the behavior of the proposed system, as using different topologies, different numbers of access points and the use of filters. Results showed that the proposed system, using wireless networks and neural networks, may be a useful and easy to use solution for localization of mobile robots. This thesis has addressed original and relevant topics related to the proposed objectives, showing methods to allow degrees of autonomy in robotic operations. The search for higher degrees of efficiency in tasks solving in dynamic environments is still a field that lacks solutions. Therefore, this study sought to add several scientific contributions in the autonomous mobile robots research area and coordination of groups, by means of the application of intelligent strategies
Hernandez, Beleño Ruben Dario 1986. "Proposta de uma plataforma de testes para o desenvolvimento de veículos autônomos." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/264960.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-20T14:52:32Z (GMT). No. of bitstreams: 1 HernandezBeleno_RubenDario_M.pdf: 6591392 bytes, checksum: fd4c66b4e3769739bb1a4283c418d2d8 (MD5) Previous issue date: 2012
Resumo: Com o avanço da tecnologia refletida nos sistemas eletrônicos e de computação, os métodos do controle de trajetória no sistema de navegação se tornaram importantes nas diversas aplicações de veículos autônomos, como na geração de mapas, desvio de obstáculos e tarefas de posicionamento. Além disso, o controle pode proporcionar um ganho significativo na confiabilidade, versatilidade e precisão das tarefas robóticas, questões cruciais na maioria das aplicações reais. O presente trabalho tem como objetivo principal apresentar a criação de um veículo autônomo em escala. Para tanto foi desenvolvido um sistema de função sensorial que provê informações sobre a posição e orientação do carro a partir de quatro sistemas sensoriais como GPS, acelerômetro, giroscópio e a bussola (IMU), para que o veículo autônomo possa realizar a rota corretamente, de forma eficiente e segura. Neste projeto foi desenvolvido um software que integra os sistemas de controle e de sensoriamento. Além disso, foi projetado um módulo que controla a posição e orientação do veículo. O robô antes de realizar a manobra calcula a distância mínima relacionada ao próximo ponto da coordenada planejada para trocar sua referência de trajetória satisfazendo a orientação do caminho e do veículo. Para fins de avaliação, foram realizados experimentos em ambientes reais onde o carro percorre um conjunto determinado de coordenadas geográficas sem nenhuma intervenção humana, apresentando resultados do seguimento de trajetórias proposto e validando os sistemas sensoriais, além do algoritmo de controle projetado
Abstract: As electronic and computational systems technology advances, the use of path control methods in navigation systems become very important for different autonomous vehicles applications such as generating maps, avoiding obstacles and carrying out positioning tasks. In addition, controls can help increase the reliability, versatility and precision level of programmed tasks, which is exceedingly significant regarding real applications. The first aim of this work is to present the creation of an autonomous scale vehicle. We have developed a sensor system that provides information about the vehicle's position and orientation through four sensor systems such as gps, accelerometer, gyroscope and compass so that it can effectively and safely cover the right route. This project developed a software, which integrates the control and sensors systems. In addition, a control module was projected for the positioning and orientation of the vehicle. Before the robot turns to any direction, it calculates the minimal distance to the next step of the programmed coordinate, in order to change its own referenced trajectory, satisfying the orientation of the trajectory and the vehicle. For the task validation were done experiments in real life scenarios, where the vehicle follows a determined group of geo-coordinates without any human intervention, presenting results of the purposed following trajectories, validating the sensors systems and the control algorithm
Mestrado
Mecanica dos Sólidos e Projeto Mecanico
Mestre em Engenharia Mecânica
Braga, Arthur Plínio de Souza. "Um agente autônomo baseado em aprendizagem por reforço direcionado à meta." Universidade de São Paulo, 1998. http://www.teses.usp.br/teses/disponiveis/18/18133/tde-31102017-111839/.
Full textOne of the current goals of research in Artificial Intelligence is the proposition of intelligent entities that are able to reach a particular target in a dynamic and complex environment without help of a tutor. This objective has been becoming reality through the propositions of the autonomous agents. Thus, the main motivation of this work is to propose and implement an autonomous agent that can match the mentioned goals. This agent, a mobile robot, has to navigate in environments which are initially unknown and may have different structures. The agent learns through one of the main reinforcement learning strategies: temporal difference. The proposed autonomous employs a simple learning mechanisms with the following features: learns incrementally from tabula rasa, executes deliberative and reactive planning, improves its performance through interactions with the environment, and manages multiple objectives. The agent presented promising results when moving in a dynamic environment. However, there are situations in which the agent do not follow this last property.
Herman, David. "Lokální navigace autonomního mobilního robota." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2010. http://www.nusl.cz/ntk/nusl-237248.
Full textReverendo, Nelson Almeida. "Indoor autonomous navigation for service robots using beacons." Master's thesis, 2018. http://hdl.handle.net/10773/25892.
Full textHoje em dia, os robôs estão cada vez mais presentes no nosso quotidiano, fornecendo uma variedade de serviços e realizando as mais diversas tarefas, algumas delas de forma completamente autónoma. Para que o robô execute tarefas autónomas deve estar ciente do ambiente que o rodeia e conhecer a sua posição no mesmo. Para atingir esse objetivo, existem três problemas principais a serem resolvidos: mapeamento, localização e navegação. Durante este trabalho desenvolvemos um robô autónomo de boas-vindas para o Instituto de Engenharia Eletrónica e Informática de Aveiro com a capacidade de receber ordens de um visitante e guiá-lo até ao destino solicitado. No final desta tarefa, o robô retorna autonomamente ao seu local de partida, onde retoma a tarefa de carregamento. Para atingir este objetivo estudámos algoritmos relacionados com os três problemas referidos. Como exemplo, o algoritmo GMapping baseado em laser scans é usado para o processo de Mapeamento e Localização Simultânea, a abordagem adaptativa de localização de Monte Carlo é usada para que o robô que se mova no espaço e o algoritmo A* é aplicado para planeamento de um caminho. Foram feitas diversas melhorias em relação ao uso desses algoritmos, incluindo no ambiente um sistema de localização ativa baseado no uso de beacons ultra-som. O resultado final é um agente autónomo capaz de mapear o edifício, localizarse no mapa resultante e mover-se da posição atual para um destino especificado. Também é capaz de recalcular o caminho e evitar colisões mínimas em tempo real durante a navegação.
Mestrado em Engenharia de Computadores e Telemática
Wei, Po-An, and 韋柏安. "3D SLAM and Autonomous Navigation of an Indoor Omnidirectional Mobile Robot for Unknown Structured Environments." Thesis, 2019. http://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/login?o=dnclcdr&s=id=%22107NCHU5441048%22.&searchmode=basic.
Full text國立中興大學
電機工程學系所
107
This thesis proposes techniques for 3D simultaneous localization and mapping (SLAM) and autonomous navigation of an indoor Mecanum-wheeled omnidirectional mobile Robot (MWOR) in unknown structured environments. Such an experimental mobile robot is equipped with one Linux-based TX2 computing board, one RealSense RGB-D camera, one LiDAR and an Open-CR control board and ROS software, where the LiDAR is used to achieve obstacle avoidance. For 3D SLAM, this thesis presents an improved complete-coverage exploration algorithm, an improved RRT algorithm, and an existing RGB-D SLAM algorithm to builds its 3D environment map, which will be transmitted to a host computer through topic in ROS via a wireless network. The autonomous navigation control architecture is composed of one adaptive Monte-Carlo localization SLAM module, one global path planning module using Dijstra algorithm, one obstacle avoidance module by fusing the outputs of the existing DWA method and SegNet, and one motion control module for the MWOR. Serval simulations and experimental results are performed to illustrate the effectiveness, usefulness and practicability of the proposed techniques.
"Indoor mobile robot navigation with continuous localization." 1999. http://library.cuhk.edu.hk/record=b5890009.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 1999.
Includes bibliographical references (leaves 60-64).
Abstracts in English and Chinese.
Acknowledgments --- p.ii
List of Figures --- p.v
List of Tables --- p.vii
Abstract --- p.viii
Chapter 1 --- Introduction --- p.1
Chapter 2 --- Algorithm Outline --- p.7
Chapter 2.1 --- Assumptions --- p.7
Chapter 2.2 --- Robot Localization --- p.8
Chapter 2.3 --- Algorithm Outline --- p.11
Chapter 3 --- Global and Local Maps --- p.15
Chapter 3.1 --- Feature Selection --- p.17
Chapter 3.2 --- Line Correspondence --- p.18
Chapter 3.3 --- Map Representation --- p.20
Chapter 3.3.1 --- Global Map --- p.21
Chapter 3.3.2 --- Local Map --- p.22
Chapter 3.4 --- Integration of Multiple Local 2D Maps --- p.24
Chapter 4 --- Localization Algorithm --- p.27
Chapter 4.1 --- Robot Orientation --- p.28
Chapter 4.2 --- Robot Position --- p.29
Chapter 4.2.1 --- Match Function --- p.30
Chapter 4.2.2 --- Search Algorithm --- p.31
Chapter 4.3 --- Continuous Localization with Retroactive Pose Update --- p.32
Chapter 5. --- Implementation and Experiments --- p.35
Chapter 5.1 --- Computing Robot Orientation --- p.36
Chapter 5.2 --- Robot Position by Map Registration --- p.42
Chapter 5.2.1 --- Error Analysis --- p.47
Chapter 5.3 --- Discussions --- p.49
Chapter 6. --- Conclusion --- p.52
Appendix --- p.54
Chapter A.l --- Intrinsic and Extrinsic Parameters --- p.54
Chapter A.2 --- Relation Between Cameras (Stereo Camera Calibration) --- p.55
Chapter A.3 --- Wheel-Eyes Calibration --- p.56
Chapter A.4 --- Epipolar Geometry --- p.58
Chapter A.5 --- The Tele-operate Interface --- p.59
References --- p.60
Chen, Yuon-Hao, and 陳勇豪. "Indoor Navigation System Design of a Mobile Robot." Thesis, 1998. http://ndltd.ncl.edu.tw/handle/19382513986441272618.
Full text國立交通大學
電機與控制工程學系
86
An indoor navigation system of a mobile robot has been developed. In this system we can make a simple path-planning based-on the natural landmark──lamps on the ceiling . A fuzzy controller has been designed to perform the lamp-tracking task in order to make the mobile robot to follow the pre-defined path. The mobile robot will make fast local path-planning using a hueristic clustering network to prevent from collision when unexpected obstacles are presented on its pre-defined path. A fuzzy fusion agency
張原華. "Mobile Robot Navigation with Fuzzy Rules in Indoor Environment." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/72656157694073310874.
Full text國立臺灣師範大學
應用電子科技學系
98
Now mobile robot be used in all kinds of field. For upgrade the quality of life,more and more mobile robots are developed to help people life. In this paper, the navigation is based on fuzzy rules, laser range finder be used to avoid the obstacles, and obtains the direction by compass. There are horizontal obstacle avoidance and ground obstacle avoidance of the mobile robot. The horizontal obstacle avoidance can avoid most of the obstacles. Using ground obstacle avoidance with horizontal mode could raise the safety and accuracy of the navigation task in unknown indoor environment. In the research, the simulations of general environment are in laboratory.The environments are single horizontal obstacle, horizontal obstacle and ground obstacle side by side, horizontal obstacle and can be traversed obstacle and so forth. The effects of angle of start coordinate and goal coordinate, and the length of navigation distance are be discussed to improve the accuracy of the navigation experiment.
Lin, Chi-Shian, and 林啟賢. "Study on Map-Based Indoor Mobile Robot Vision Navigation." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/41495171926544827476.
Full text國立成功大學
電機工程學系碩博士班
97
This thesis focuses on the implementation of an autonomous mobile robot moving along the corridors in a building by map-based vision navigation, where a camera is the only sensor in the navigation system to gather environment information. Generally speaking, map-based navigation consists of three steps: Map-building, localization, and path planning. In our system, the map and path planning are highly related to the ceiling images, and those are defined by user. This thesis constructs a topological map to represent the environment in advance. The constructed map is used to help the autonomous mobile robot to move along the corridor like as a patrol robot. A webcam mounted on the mobile robot is used to capture the ceiling images to analyze the features such as distinctive line, ceiling light and corner features. According to the obtained feature and the pre-constructed topological map, the mobile robot can perform localization. A proper moving strategy is designed to guide the mobile robot to successfully move along the corridor. Since the ceiling image is sensitive to the fluctuation in illumination, therefore variation in illumination may result in localization failure. In order to cope with this problem, an adaptive threshold technique is employed to adjust parameter values used in the navigation system. Experimental results show that our autonomous mobile robot successfully moves along the desired path.