Academic literature on the topic 'Autonomous satellite navigation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Autonomous satellite navigation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Autonomous satellite navigation"
Gao, Youtao, Tanran Zhao, Bingyu Jin, Junkang Chen, and Bo Xu. "Autonomous Orbit Determination for Lagrangian Navigation Satellite Based on Neural Network Based State Observer." International Journal of Aerospace Engineering 2017 (2017): 1–10. http://dx.doi.org/10.1155/2017/9734164.
Full textWang, Haihong, Zhonggui Chen, Jinjun Zheng, and Haibin Chu. "A New Algorithm for Onboard Autonomous Orbit Determination of Navigation Satellites." Journal of Navigation 64, S1 (October 14, 2011): S162—S179. http://dx.doi.org/10.1017/s0373463311000397.
Full textYongZhi, Wen, Zhang ZeJian, and Wu Jie. "High-Precision Navigation Approach of High-Orbit Spacecraft Based on Retransmission Communication Satellites." Journal of Navigation 65, no. 2 (March 12, 2012): 351–62. http://dx.doi.org/10.1017/s0373463311000671.
Full textHua, Bing, Zhiwen Zhang, Yunhua Wu, and Zhiming Chen. "Autonomous navigation algorithm based on AUKF filter about fusion of geomagnetic and sunlight directions." International Journal of Intelligent Computing and Cybernetics 11, no. 4 (November 12, 2018): 471–85. http://dx.doi.org/10.1108/ijicc-07-2017-0087.
Full textLiao, Shilong, Zhaoxiang Qi, and Zhenghong Tang. "A Differential Measurement Method for Solving the Ephemeris Observability Issues in Autonomous Navigation." Journal of Navigation 68, no. 6 (May 25, 2015): 1133–40. http://dx.doi.org/10.1017/s0373463315000417.
Full textBaohua, Li, Lai Wenjie, Chen Yun, and Liu Zongming. "An Autonomous Navigation Algorithm for High Orbit Satellite Using Star Sensor and Ultraviolet Earth Sensor." Scientific World Journal 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/237189.
Full textAlbukerque, J., J. L. Lair, B. Govin, G. Muller, P. Riant, D. Berton, and D.-F. Godart. "Autonomous Satellite Navigation Using Optico-Inertial Instruments." IFAC Proceedings Volumes 18, no. 4 (June 1985): 183–88. http://dx.doi.org/10.1016/s1474-6670(17)60887-5.
Full textPopov, Sergey, Vladimir Zaborovsky, Leonid Kurochkin, Maksim Sharagin, and Lei Zhang. "Method of Dynamic Selection of Satellite Navigation System in the Autonomous Mode of Positioning." SPIIRAS Proceedings 18, no. 2 (April 12, 2019): 302–25. http://dx.doi.org/10.15622/sp.18.2.302-325.
Full textGao, Youtao, Junkang Chen, Bo Xu, and Jianhua Zhou. "Research on the Effectiveness of Different Estimation Algorithm on the Autonomous Orbit Determination of Lagrangian Navigation Constellation." International Journal of Aerospace Engineering 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/8392148.
Full textZhang, Lei, and Bo Xu. "A Universe Light House — Candidate Architectures of the Libration Point Satellite Navigation System." Journal of Navigation 67, no. 5 (March 12, 2014): 737–52. http://dx.doi.org/10.1017/s0373463314000137.
Full textDissertations / Theses on the topic "Autonomous satellite navigation"
Santiago, Luis. "AUTONOMOUS CONTROLS ALGORITHMFOR FORMATION FLYING OF SATELLITES." Master's thesis, University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2641.
Full textM.S.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Aerospace Engineering
Nolet, Simon 1975. "Development of a guidance, navigation and control architecture and validation process enabling autonomous docking to a tumbling satellite." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/39697.
Full textIncludes bibliographical references (p. 307-324).
The capability to routinely perform autonomous docking is a key enabling technology for future space exploration, as well as assembly and servicing missions for spacecraft and commercial satellites. Particularly, in more challenging situations where the target spacecraft or satellite is tumbling, algorithms and strategies must be implemented to ensure the safety of both docking entities in the event of anomalies. However, difficulties encountered in past docking missions conducted with expensive satellites on orbit have indicated a lack of maturity in the technologies required for such operations. Therefore, more experimentation must be performed to improve the current autonomous docking capabilities. The main objectives of the research presented in this thesis are to develop a guidance, navigation and control (GN&C) architecture that enables the safe and fuel-efficient docking with a free tumbling target in the presence of obstacles and anomalies, and to develop the software tools and verification processes necessary in order to successfully demonstrate the GN&C architecture in a relevant environment. The GN&C architecture was developed by integrating a spectrum of GN&C algorithms including estimation, control, path planning, and failure detection, isolation and recovery algorithms.
(cont.) The algorithms were implemented in GN&C software modules for real-time experimentation using the Synchronized Position Hold Engage and Reorient Experimental Satellite (SPHERES) facility that was created by the MIT Space Systems Laboratory. Operated inside the International Space Station (ISS), SPHERES allow the incremental maturation of formation flight and autonomous docking algorithms in a risk-tolerant, microgravity environment. Multiple autonomous docking operations have been performed in the ISS to validate the GN&C architecture. These experiments led to the first autonomous docking with a tumbling target ever achieved in microgravity. Furthermore, the author also demonstrated successful docking in spite of the presence of measurement errors that were detected and rejected by an online fault detection algorithm. The results of these experiments will be discussed in this thesis. Finally, based on experiments in a laboratory environment, the author establishes two processes for the verification of GN&C software prior to on-orbit testing on the SPHERES testbed.
by Simon Nolet.
Sc.D.
Casadei, Alessandro. "An optical navigation filter simulator for a CubeSat mission to Didymos binary asteroid system." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17998/.
Full textLoizou, John. "An assessment of the autonomous integrity monitoring performance of a combined GPS/Galileo Satellite Navigation System, and its impact on the case for the development of Galileo." Thesis, Cranfield University, 2004. http://hdl.handle.net/1826/1604.
Full textBadger, Stanley. "Autonomous detection, navigation, and propulsion for satellites." Kansas State University, 2009. http://hdl.handle.net/2097/1402.
Full textDepartment of Electrical and Computer Engineering
William B. Kuhn
With the increasing number of satellites and space debris in all orbits the need for individual satellites to be able to autonomously detect and determine methods to navigate around them is increasing. Even with continued input and control from a ground station, the ability for a satellite to act to save itself from obstacles not visible from ground stations, or if communications were temporarily lost could be key to saving millions of dollars in hardware as well as improving overall performance and operational lifetimes.
Ramos, Bosch Pedro. "Improvements in autonomous GPS navigation of Low Earth Orbit satellites." Doctoral thesis, Universitat Politècnica de Catalunya, 2008. http://hdl.handle.net/10803/7019.
Full textAquesta rang d'alçades fa que els LEO siguin utilitzats per un ampli rang d'aplicacions, com a repetidors de comunicacions, sensors remots, determinació gravimètrica i magnetomètrica, altimetria oceànica, determinació atmosfèrica i en operacions de Search and Rescue (Cerca i rescat). El seu posicionament precís és de gran importància per a poder complir correctament amb els seus objectius. En aquest sentit, una gran quantitat de satèl·lits LEO tenen un receptor GPS, que permet fer mesures GPS durant tot el seu recorregut al voltant de la Terra. Aquestes mesures poden ser utilitzades per determinar la trajectòria del satèl·lit. Aquesta operació es fa normalment a terra, després que el satèl·lit hagi transmès totes les mesures que ha pres. La capacitat de fer aquest posicionament en temps real a bord del satèl·lit és una necessitat per algunes aplicacions. El posicionament autònom es molt diferent del que es pot fer a terra, ja que el processador del satèl·lit te grans limitacions en recursos computacionals, per tant els complexos models i càlculs fets en un ordinador normal a terra, son completament excessius per un ordinador espacial. A més, alguns dels models utilitzats en l'estimació de la trajectòria necessiten dades addicionals (com activitat solar, o paràmetres de rotació de la Terra) que no son disponibles en temps real, per tant s'han de fer algunes aproximacions per tal de no necessitar cap d'aquestes dades. Aquesta tesis estudiarà la navegació autònoma amb GPS de satèl·lits LEO, tendència que esta incrementant la seva importància per les aplicacions tan científiques com tecnològiques que se'n poden derivar. La tesi desenvoluparà nous algoritmes i mètodes per obtenir una posició acurada i continua per LEOs. S'han cobert diferent aspectes:
· Mitigació de multipath e interferències. Les reflexions de senyals GPS en l'estructura del satèl·lit crea una distorsió que afecta la distància mesurada. La repetibilitat d'aquests efectes en relació amb l'orientació del satèl·lit pot ser utilitzat per a mitigar el seu impacte en la solució de navegació. S'han desenvolupat tècniques de mitigació de multipath i interferències per receptors d'una i de dos freqüències.
· Models dinàmics de forces. L'alta predictibilitat de la trajectòria d'objectes orbitant la Terra pot ser utilitzat en sinergia amb el GPS per a aconseguir solucions més precises que fent servir únicament GPS. Això s'utilitza normalment en estratègies en postprocess, però te grans requeriments computacionals, i necessita paràmetres no disponibles en temps real. La simplificació d'aquests models, i la supressió de paràmetres no disponibles es necessari per poder aplicar aquesta tècnica de processat en condicions de temps real.
· Maniobres. Els cossos en òrbita al voltant de la Terra no segueixen una trajectòria perfectament predeible. Hi han petites pertorbacions que modifiquen la seva trajectòria a llarg termini, i a més, el fregament atmosfèric frena poc a poc al satèl·lit, disminuint la seva alçada. Això fa necessari una correcció periòdica de la seva trajectòria, realitzat amb petits impulsos del sistema de propulsió del satèl·lit en lo que s'anomena una maniobra. Quan un satèl·lit es troba en una maniobra, deixa de seguir els models de caiguda lliure, per tant la maniobra s'ha de tenir en conte en l'estimació del filtre.
Tots els algoritmes i mètodes dissenyats han sigut testejats amb dades reals de diferents missions: SAC-C, CHAMP, JASON-1 i GRACE. S'han fet servir diversos tests cobrint diferents opcions de parametrització per tal d'avaluar el seu comportament.
Se define un satélite de órbita baja aquel que se encuentra en una altura de hasta 2000 km sobre la superficie terrestre. Debido al rápido decaimiento de los objetos cercanos a la superficie debido al fregamiento atmosférico se acepta que la altura típica para un LEO se sitúa entre 200 y 2000 km.
Este rango de alturas hace que los LEO sean utilizados para un amplio rango de aplicaciones como repetidores de comunicaciones, sensores remotos, determinación gravimétrica y magnetométrica, altimetría oceánica, determinación atmosférica y en operaciones de Search and Rescue (Búsqueda y rescate). Su posicionamiento preciso es de gran importancia para poder cumplir correctamente con sus objetivos. En este sentido, una gran cantidad de satélites LEO disponen de un receptor GPS, que permite realizar medidas GPS durante todo su recorrido alrededor de la Tierra. Estas medidas puede ser utilizadas para determinar la trayectoria del satélite. Esta operación se suele realizar en tierra, después que el satélite haya retransmitido todas las medidas que ha tomado. La capacidad de hacer este posicionamiento en tiempo real a bordo del satélite es una necesidad para algunas aplicaciones. El posicionamiento autónomo es muy diferente al que se puede realizar en tierra, ya que los procesadores de satélites tienen limitaciones en recursos computacionales, y por tanto los complejos modelos y cálculos realizados en un ordenador normal en tierra son excesivos para un ordenador espacial. Además, algunos de los modelos utilizados en la estimación de la trayectoria necesitan datos adicionales (como actividad solar, o parámetros de rotación de la Tierra) que no están disponibles en tiempo real, por lo que hay que realizar algunas aproximaciones para no necesitar ninguno de estos datos. Esta tesis estudiará la navegación autónoma mediante GPS en satélites LEO, tendencia que esta aumentando su importancia por las aplicaciones tanto científicas como tecnológicas que se pueden derivar. La tesis desarrollara nuevos algoritmos y métodos para obtener una posición precisa y continua para LEOs. Se han cubierto diferentes aspectos:
· Mitigación de multipath e interferencias. Las reflexiones de las señales GPS en la estructura del satélite crea una distorsión que afecta la distancia medida. La repetibilidad de estos efectos en relación con la orientación del satélite puede ser utilizado para mitigar su impacto en la solución de navegación. Se han desarrollado técnicas de mitigación de multipath e interferencias para receptores de una o dos frecuencias.
· Modelos dinámicos de fuerzas. La trayectoria de objetos orbitando la Tierra es muy predecible, lo cual puede ser usado en sinergia con GPS para conseguir posiciones más precisas que usando solo GPS. Esto se utiliza normalmente en estrategias en postproceso, pero tiene grandes necesidades computacionales, y requiere de parámetros no disponibles en tiempo real. La simplificación de estos modelos, y la supresión e esos parámetros es necesario para poder aplicar esta técnica de procesado en condiciones de tiempo real.
· Maniobras. Los cuerpos en órbita alrededor de la Tierra no siguen una trayectoria perfectamente predecible. Hay pequeñas perturbaciones que modifican su trayectoria a largo plazo. Además el fregamiento atmosférico frena poco a poco el satélite, reduciendo su altura. Esto hace que sea necesaria una corrección periódica de su trayectoria, realizado en pequeños impulsos por el sistema de propulsión del satélite en lo que se llama una maniobra. Cuando un satélite realiza una maniobra deja de comportarse según los modelos de caida libre, por tanto su maniobra se ha de tener en cuenta en la estimación del filtro. Todos los algoritmos y métodos diseñados han sido testeados con datos reales de diferentes misiones: SAC-C, CHAMP, JASON-1 y GRACE. Se han realizado un amplio abanico de tests cubriendo diferentes opciones de parametrización para evaluar su comportamiento.
Satellites in low Earth orbits (LEO) are generally defined to be up to an altitude of 2000 km above Earth's surface and given the rapid decay of objects on the lower altitude range due to atmospheric drag, it is commonly accepted that a typical LEO height lies between 200 and 2000 km. This altitude range makes LEO satellites useful for a wide range of applications such as communication transponders, remote sensing, gravimetric and magnetometric sounding, ocean altimetry, atmospheric retrieval and Search and Rescue alarm operations. Its accurate positioning is of great importance in the successful accomplishment of their objectives. In this sense, most LEO satellites have a GPS receiver, which allows to collect GPS measurements in its full revolution around the Earth. These measures can be used to precisely estimate the trajectory of the spacecraft. This operation is normally done on ground, after the satellite was able to downlink all the data it collected. The capacity to do this positioning in real-time onboard the satellite is a necessity for some of the applications, and would also allow a faster science product delivery.
This autonomous positioning is very different that the one that can be done on ground, as the satellite processor has large limitations in computational resources, so the complex models and calculus done in a normal computer on ground are completely unaffordable for the onboard processor. Besides, some of the models used in the trajectory estimation need some additional data (such as solar activity, or Earth rotation parameters) that are not available in real-time, so some approximations must be done to cope with these lack of data. This thesis will deepen into the study of autonomous GPS navigation of LEO satellites, a trend that is increasing its importance for their applications in both science and technological fields. It will develop new algorithms and methods in order to provide accurate and continuous positions for the satellites. Different aspects have been covered:
· Multipath and interference mitigation. Reflections of GPS signals in the spacecraft structure cause a distress that affects the measured distance. On the other hand, some spacecraft have more than one GPS antenna on its payload. This creates a cross-talk interference that also affects the measures. The repeatability of these effects in relation to the attitude of the spacecraft can be used to mitigate its impact into the final navigation solution. Multipath mitigation techniques have been developed for both single- and dual-frequency receivers.
· Dynamic force models. The high predictability of the trajectory of Earth orbiters is used in conjunction to GPS measurements to provide a more accurate solution than GPS standalone positions. This is a widely used technique in postprocessing strategies, but has high computational requirements and needs parameters not available in real-time. The simplifications of these models, along with the suppression of the parameters not available in an onboard environment is necessary to use these kind of positioning by a satellite processing in real-time conditions.
· Maneuver handling. Earth orbiters do not follow a fully predictable orbit, some low-order perturbations modifies its trajectory on the long term, and atmospheric drag slowly brakes the satellite, decreasing its altitude. This makes necessary a periodic correction of its trajectory.
This is done by short impulses produced by the satellite propulsion systems in what is called a maneuver. When a spacecraft is in a maneuver, it no longer follows the free-flight dynamic models, so this should be taken into account in the estimation filter. All the algorithms and methods have been tested with real data from different missions: SAC-C, CHAMP, JASON-1 and GRACE. Several test cases covering a wide range of days and parametrization options have been done in order to assess its performance.
Nagarajan, N. "Autonomous Orbit Estimation For Near Earth Satellites Using Horizon Scanners." Thesis, Indian Institute of Science, 1994. http://hdl.handle.net/2005/155.
Full textSrivardhan, D. "Autonomous Navigation Using Global Positioning System." Thesis, 2004. http://hdl.handle.net/2005/1137.
Full text"Improvements in autonomous GPS navigation of Low Earth Orbit satellites." Universitat Politècnica de Catalunya, 2008. http://www.tesisenxarxa.net/TDX-0312109-123420/.
Full textBooks on the topic "Autonomous satellite navigation"
Farrell, James L. GNSS aided navigation & tracking: Inertially augmented or autonomous. Baltimore, Md: American Literary Press, 2007.
Find full textFlight Mechanics Symposium (1999 Goddard Space Flight Center). 1999 Flight Mechanics Symposium: Proceedings of a conference sponsored and held at NASA Goddard Space Flight Center, Greenbelt, Maryland, May 18-28, 1999. Washington, DC: National Aeronautics and Space Administration, 1999.
Find full textS, Border J., and Jet Propulsion Laboratory (U.S.), eds. Observation model and parameter partials for the JPL geodetic GPS modeling software "GPSOMC". Pasadena, Calif: National Aeronautics and Space Administration, Jet Propulsion Laboratory, California Institute of Technology, 1988.
Find full textJ, Priovolos George, Rhodehamel Harley, George C. Marshall Space Flight Center., and United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., eds. Autonomous integrated GPS/INS navigation experiment for OMV: Phase I feasibility study. [Huntsville, Ala.?]: George C. Marshall Space Flight Center, 1989.
Find full textAutonomous integrated GPS/INS navigation experiment for OMV: Phase I feasibility study. [Cleveland, Ohio]: George C. Marshall Space Flight Center, 1989.
Find full textP, Lynch John, and Goddard Space Flight Center, eds. 1999 Flight mechanics symposium. Greenbelt, Md: The Center, 1999.
Find full textBook chapters on the topic "Autonomous satellite navigation"
Mao, Yue, Xiaoyong Song, Xiaolin Jia, Xianbing Wu, and Yisong Gong. "Analysis on Pulsar Based Inter-Satellite Link Autonomous Navigation." In Lecture Notes in Electrical Engineering, 531–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29187-6_52.
Full textJia, Weisong, Qiuli Chen, Ying Wu, and Haihong Wang. "Design and Verification of Long-Term Reliable Autonomous Navigation System of Navigation Satellite." In Lecture Notes in Electrical Engineering, 679–90. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3707-3_63.
Full textWang, Wei, Xurong Dong, Wanke Liu, Ying Liu, Sihui Liu, and Chengeng Su. "Influence of Satellite-to-Ground Link on the Autonomous Navigation of Navigation Constellation." In Lecture Notes in Electrical Engineering, 337–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29175-3_30.
Full textLiang, Xiao-peng, Jun Li, Zhao-hui Wang, and Kong-yang Peng. "Research on Autonomous Navigation of Navigation Constellation Based on X-Ray Pulsars and Satellite-to-Satellite Link." In Proceedings of the 6th International Asia Conference on Industrial Engineering and Management Innovation, 899–910. Paris: Atlantis Press, 2015. http://dx.doi.org/10.2991/978-94-6239-148-2_89.
Full textYang, Daoning, Gang Li, Ying Liu, Jun Yang, Yinan Meng, and Xianyu Zhang. "Research on Distributed Autonomous Time Reference Maintain Method of Navigation Constellation." In China Satellite Navigation Conference (CSNC) 2017 Proceedings: Volume III, 55–63. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4594-3_6.
Full textZhao, Jun, Taogao Dai, and Chen Chen. "A New Method for Multiple Outliers Detection in Receiver Autonomous Integrity Monitoring." In China Satellite Navigation Conference (CSNC) 2016 Proceedings: Volume II, 151–64. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0937-2_13.
Full textWang, Tengfei, Zheng Yao, and Mingquan Lu. "Carrier Measurements Based Autonomous Spatial Reference Establishment for Ground-Based Positioning Systems." In China Satellite Navigation Conference (CSNC) 2020 Proceedings: Volume III, 538–49. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3715-8_48.
Full textLiu, Peng, and Xi-Yun Hou. "Combined Autonomous Orbit Determination of GEO/IGSO Satellites on the Space-Based Probe." In China Satellite Navigation Conference (CSNC) 2014 Proceedings: Volume III, 241–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54740-9_22.
Full textWang, Haiong, Qiuli Chen, Weisong Jia, and Chengpan Tang. "Research on Autonomous Orbit Determination Test Based on BDS Inter-Satellite-Link on-Orbit Data." In China Satellite Navigation Conference (CSNC) 2017 Proceedings: Volume III, 89–99. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4594-3_9.
Full textXiong, Kai, Yuan Zhang, and Yan Xing. "Measurement Selection for Autonomous Satellite Constellation Navigation Using Parallel Extended Kalman Filters." In Lecture Notes in Electrical Engineering, 628–36. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9698-5_70.
Full textConference papers on the topic "Autonomous satellite navigation"
Bowyer, Michael, Angelo Bertani, Erik Aitken, and Samir A. Rawashdeh. "Landmark Based Autonomous Snowplow Navigation." In 29th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2016). Institute of Navigation, 2016. http://dx.doi.org/10.33012/2016.14622.
Full textTesler, Mikhail, Anatoliy Shapovalov, and Nikolay Shchetkin. "Possibilities of Autonomous Spacecraft Navigation by Satellite Imagery." In 2020 27th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS). IEEE, 2020. http://dx.doi.org/10.23919/icins43215.2020.9133910.
Full textXu Bo and Bingjun Shao. "Satellite selection algorithm for combined GPS-Galileo navigation receiver." In 2009 4th International Conference on Autonomous Robots and Agents. IEEE, 2009. http://dx.doi.org/10.1109/icara.2000.4803918.
Full textCollins, John, and Robert Conger. "MANS - Autonomous navigation and orbit control for communications satellites." In 15th International Communicatons Satellite Systems Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-1127.
Full textVarriale, Enrico, Pablo Corbal�n, Timofei Istomin, and Gian Pietro Picco. "PLaNS: An Autonomous Local Navigation System." In 31st International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2018). Institute of Navigation, 2018. http://dx.doi.org/10.33012/2018.15898.
Full textYang, Huixin, Weihua Zhang, and Zhenyu Jiang. "Autonomous Navigation of Satellite Formation for Small Bodies Exploration." In AIAA Guidance, Navigation, and Control (GNC) Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-5249.
Full textPETERSEN, STEVEN. "Autonomous satellite navigation system using the Global Positioning System." In 26th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-379.
Full textMenggen, Subuda, Pingyuan Cui, and Shengying Zhu. "Networked Mars satellite system design and autonomous navigation analysis." In 2014 26th Chinese Control And Decision Conference (CCDC). IEEE, 2014. http://dx.doi.org/10.1109/ccdc.2014.6852747.
Full textLi, Taohu, Jiansheng Liu, Zhigang Huang, and Honglei Qin. "Observability of HEO Satellite Autonomous Navigation System Using GPS." In 2010 International Conference on Multimedia Technology (ICMT). IEEE, 2010. http://dx.doi.org/10.1109/icmult.2010.5631285.
Full textXue, Qing, Hongwen Yang, and Jian Wang. "An Angle Estimation to Landmarks for Autonomous Satellite Navigation." In 2016 5th International Conference on Environment, Materials, Chemistry and Power Electronics. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/emcpe-16.2016.140.
Full textReports on the topic "Autonomous satellite navigation"
White, R. L., and R. B. Gounley. Satellite Autonomous Navigation with SHAD (Stellar Horizon Atmospheric Dispersion). Fort Belvoir, VA: Defense Technical Information Center, April 1987. http://dx.doi.org/10.21236/ada184988.
Full text