Academic literature on the topic 'Autonomous Unmanned Aerial Vehicle Systems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Autonomous Unmanned Aerial Vehicle Systems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Autonomous Unmanned Aerial Vehicle Systems"
Oktay, Tugrul, Harun Celik, and Ilke Turkmen. "Maximizing autonomous performance of fixed-wing unmanned aerial vehicle to reduce motion blur in taken images." Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 232, no. 7 (March 28, 2018): 857–68. http://dx.doi.org/10.1177/0959651818765027.
Full textПогудін, А. В., М. С. Бондарєв, and О. К. Погудіна. "ПОРІВНЯЛЬНИЙ АНАЛІЗ ТА СТВОРЕННЯ БЕЗПІЛОТНИХ ЛІТАЛЬНИХ АПАРАТІВ ДЛЯ ФОРМУВАННЯ МАКЕТА РОЙОВОЇ ВЗАЄМОДІЇ." Open Information and Computer Integrated Technologies, no. 94 (February 9, 2022): 113–21. http://dx.doi.org/10.32620/oikit.2021.94.09.
Full textKang, David S., Jamie M. Anderson, and Paul A. DeBitetto. "Draper unmanned vehicle systems." Robotica 18, no. 3 (May 2000): 263–72. http://dx.doi.org/10.1017/s0263574799002246.
Full textPokorny, Jiri, Khanh Ma, Salwa Saafi, Jakub Frolka, Jose Villa, Mikhail Gerasimenko, Yevgeni Koucheryavy, and Jiri Hosek. "Prototype Design and Experimental Evaluation of Autonomous Collaborative Communication System for Emerging Maritime Use Cases." Sensors 21, no. 11 (June 3, 2021): 3871. http://dx.doi.org/10.3390/s21113871.
Full textZOIDZE, Mamuka Ya, Givi O. SANADZE, Oleksandr V. KRAKHMALYOV, Olena I. ZINCHENKO, and Vitalii O. BRUSENTSEV. "Challenges and perspective with using a group of small combat unmanned aerial vehicles." INCAS BULLETIN 13, S (August 3, 2021): 245–55. http://dx.doi.org/10.13111/2066-8201.2021.13.s.22.
Full textUche, U. E., and S. T. Audu. "UAV for Agrochemical Application: A Review." Nigerian Journal of Technology 40, no. 5 (May 13, 2022): 795–809. http://dx.doi.org/10.4314/njt.v40i5.5.
Full textGritsenko, Volodymyr, Oleksandr Volkov, Mykola Komar, and Dmytro Voloshenyuk. "INTEGRAL ADAPTIVE AUTOPILOT FOR AN UNMANNED AERIAL VEHICLE." Aviation 22, no. 4 (December 7, 2018): 129–35. http://dx.doi.org/10.3846/aviation.2018.6413.
Full textKrátký, Vít, Pavel Petráček, Tiago Nascimento, Michaela Čadilová, Milan Škobrtal, Pavel Stoudek, and Martin Saska. "Safe Documentation of Historical Monuments by an Autonomous Unmanned Aerial Vehicle." ISPRS International Journal of Geo-Information 10, no. 11 (October 29, 2021): 738. http://dx.doi.org/10.3390/ijgi10110738.
Full textCantieri, Alvaro, Matheus Ferraz, Guido Szekir, Marco Antônio Teixeira, José Lima, André Schneider Oliveira, and Marco Aurélio Wehrmeister. "Cooperative UAV–UGV Autonomous Power Pylon Inspection: An Investigation of Cooperative Outdoor Vehicle Positioning Architecture." Sensors 20, no. 21 (November 9, 2020): 6384. http://dx.doi.org/10.3390/s20216384.
Full textÇoban, Sezer. "Autonomous performance maximization of research-based hybrid unmanned aerial vehicle." Aircraft Engineering and Aerospace Technology 92, no. 4 (April 18, 2020): 645–51. http://dx.doi.org/10.1108/aeat-08-2019-0171.
Full textDissertations / Theses on the topic "Autonomous Unmanned Aerial Vehicle Systems"
Dowd, Garrett E. "Improving Autonomous Vehicle Safety using Communicationsand Unmanned Aerial Vehicles." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1574861007798385.
Full textMcAree, Owen. "Autonomous terminal area operations for unmanned aerial systems." Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/12535.
Full textÖstman, Christian, and Anna Forsberg. "Support System for Landing with an Autonomous Unmanned Aerial Vehicle." Thesis, Linköping University, Linköping University, Linköping University, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-16278.
Full textThere are a number of ongoing projects developing autonomous vehicles, both helicopters and airplanes. The purpose of this thesis is to study a concept for calculating the height and attitude of a helicopter. The system will be active during landing. This thesis includes building an experimental setup and to develop algorithms and software.
The basic idea is to illuminate the ground with a certain pattern and in our case we used laser pointers to create this pattern. The ground is then filmed and the images are processed to extract the pattern. This provides us with information about the height and attitude of the helicopter. Furthermore, the concept implies that no equipment on the ground is needed. With further development the sensor should be able to calculate the movement of the underlying surface relative to the helicopter. This is very important when landing on a moving surface, e.g. a ship at sea.
To study the concept empirically an experimental setup was constructed. The setup provides us with the necessary information to evaluate how well the system could perform in reality. The setup is built with simple and cheap materials. In the setup an ordinary web camera and laser pointers that are avaliable for everyone have been used.
Det finns flera pågående projekt inom autonomflygande farkoster, både för helikoptrar och flygplan. Syftet med vårt examensarbetet är att undersöka ett koncept för en landningssensor för autonom landning med helikopter. Examensarbetet innebär att bygga en fysisk modell för test av konceptet samt att utveckla mjukvara.
Konceptet för sensorn består av att belysa marken med ett speciellt mönster, i vårt fall skapas mönstret av laserpekare, som därefter fotograferas och bildbehandlas. Detta mönster ger sedan information om helikopterns höjd och attityd i luften. Vidare innebär konceptet också att ingen markutrustning krävs för att sensorn ska fungera. I förlängningen ska man med detta koncept kunna beräkna hur underlaget rör sig relativt helikoptern, vilket är väldigt viktigt vid landning på objekt som rör sig, till exempel ett fartyg.
För att undersöka hur bra sensorn presterar i verkligheten så har en rigg byggts. Riggen är byggd med enkla och billiga material. I det här fallet används en webbkamera och laserpekare som går att köpa i vanliga elektronikaffärer.
OSMAN, OSMAN ABDALLA SIDAHMED. "Autonomous Navigation for Unmanned Aerial Systems - Visual Perception and Motion Planning." Doctoral thesis, Politecnico di Torino, 2022. http://hdl.handle.net/11583/2971114.
Full textPatchett, Charles H. "On the derivation and analysis of decision architectures for uninhabited air systems." Thesis, Cranfield University, 2011. http://dspace.lib.cranfield.ac.uk/handle/1826/8033.
Full textTowler, Jerry Alwynne. "Autonomous Aerial Localization of Radioactive Point Sources via Recursive Bayesian Estimation and Contour Analysis." Thesis, Virginia Tech, 2011. http://hdl.handle.net/10919/43465.
Full textPerforming this autonomous analysis comprises five major steps: ingress from a base of operations to the danger zone, initial detection of radioactive material, measurement of the strength of radioactive emissions, analysis of the data to provide position and intensity estimates, and finally egress from the area of interest back to the launch site. In all five steps, time is of critical importance: faster responses promise potentially saved lives.
A time-optimal ingress and egress path planning method solves the first and last steps. Vehicle capabilities and instrument sensitivity inform the development of an efficient search path within the area of interest. Two algorithmsâ a grid-based recursive Bayesian estimator and a novel radiation contour analysis methodâ are presented to estimate the position of radioactive sources using simple gross gamma ray event count data from a nondirectional radiation detector. The latter procedure also correctly estimates the number of sources present and their intensities.
Ultimately, a complete unsupervised mission is developed, requiring minimal initial operator interaction, that provides accurate characterization of the radiation environment of an area of interest as quickly as reasonably possible.
Master of Science
Van, Horne Chris. "Machine Vision and Autonomous Integration Into an Unmanned Aircraft System." International Foundation for Telemetering, 2013. http://hdl.handle.net/10150/579707.
Full textThe University of Arizona's Aerial Robotics Club (ARC) sponsors the development of an unmanned aerial vehicle (UAV) able to compete in the annual Association for Unmanned Vehicle Systems International (AUVSI) Seafarer Chapter Student Unmanned Aerial Systems competition. Modern programming frameworks are utilized to develop a robust distributed imagery and telemetry pipeline as a backend for a mission operator user interface. This paper discusses the design changes made for the 2013 AUVSI competition including integrating low-latency first-person view, updates to the distributed task backend, and incremental and asynchronous updates the operator's user interface for real-time data analysis.
Kang, Keeryun. "Online optimal obstacle avoidance for rotary-wing autonomous unmanned aerial vehicles." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44820.
Full textAlexander, Josh, Sam Blake, Brendan Clasby, Anshul Jatin Shah, Horne Chris Van, and Horne Justin Van. "Machine Vision and Autonomous Integration Into an Unmanned Aircraft System." International Foundation for Telemetering, 2012. http://hdl.handle.net/10150/581850.
Full textPuttige, Vishwas Ramadas Engineering & Information Technology Australian Defence Force Academy UNSW. "Neural network based adaptive control for autonomous flight of fixed wing unmanned aerial vehicles." Awarded by:University of New South Wales - Australian Defence Force Academy. Engineering & Information Technology, 2009. http://handle.unsw.edu.au/1959.4/43736.
Full textBooks on the topic "Autonomous Unmanned Aerial Vehicle Systems"
Corrigan, Craig. California autonomous unmanned aerial vehicle air pollution profiling study. Sacramento, Calif.]: [California Energy Commission], 2009.
Find full textDubanov, Aleksandr. Computer simulation in pursuit problems. ru: Publishing Center RIOR, 2022. http://dx.doi.org/10.29039/02102-6.
Full textAutonomous Flying Robots Unmanned Aerial Vehicles And Micro Aerial Vehicles. Springer, 2010.
Find full textGovernment, U. S., U. S. Military, and Department of Defense. Additive Manufacturing: Preparing for the Reality of Science Fiction, Emerging Technologies and Homeland Security Public Policy, 3D Printers and Autonomous Vehicles, Unmanned Aerial Systems, Drones. Independently Published, 2016.
Find full textKrishna, K. R. Unmanned Aerial Vehicle Systems in Crop Production. Taylor & Francis Group, 2021.
Find full textUnmanned Aerial Vehicle Systems in Crop Production: A Compendium. Taylor & Francis Group, 2019.
Find full textKrishna, K. R. Unmanned Aerial Vehicle Systems in Crop Production: A Compendium. Apple Academic Press, Incorporated, 2019.
Find full textKrishna, K. R. Unmanned Aerial Vehicle Systems in Crop Production: A Compendium. Apple Academic Press, Incorporated, 2019.
Find full textSincavage, Dr Suzanne, Dr Hans C. Mumm, Wayne Lonstein, CPT John Paul Hood, Randall Mai, Dr Mark Jackson, Mike Monnik, et al. DRONE DELIVERY OF CBNRECy – DEW WEAPONS Emerging Threats of Mini-Weapons of Mass Destruction and Disruption ( WMDD). Edited by Randall K. Nichols. New Prairie Press Open Book Publishing, 2022.
Find full textGovernment, U. S., Department of Defense, and U. S. Army. 2009 - 2034 Unmanned Systems Integrated Roadmap - Unmanned Aircraft (UAS), Unmanned Aerial Vehicle (UAV), UGV Ground Vehicles, UMS Maritime Systems, Drones, Technologies, Current and Future Programs. Independently Published, 2017.
Find full textBook chapters on the topic "Autonomous Unmanned Aerial Vehicle Systems"
Masselli, Andreas, Richard Hanten, and Andreas Zell. "Localization of Unmanned Aerial Vehicles Using Terrain Classification from Aerial Images." In Intelligent Autonomous Systems 13, 831–42. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-08338-4_60.
Full textIrani, Behnam, Weidong Chen, and Jingchuan Wang. "A Localizability Constraint-Based Path Planning Method for Unmanned Aerial Vehicle." In Intelligent Autonomous Systems 15, 917–32. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01370-7_71.
Full textHeritsch, Scott, and Linell A. J.D. Letendre. "Engineering Model for Ethical Decision-Making and Regulation in Autonomous Systems." In Handbook of Unmanned Aerial Vehicles, 1–25. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-32193-6_155-1.
Full textHeritsch, Scott, and Linell A. Letendre. "Engineering Model for Ethical Decision-Making and Regulation in Autonomous Systems." In Handbook of Unmanned Aerial Vehicles, 1–25. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-32193-6_155-2.
Full textMuresan, Bogdan, and Shabnam Sadeghi Esfahlani. "Autonomous Flight and Real-Time Tracking of Unmanned Aerial Vehicle." In Advances in Intelligent Systems and Computing, 945–56. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01174-1_73.
Full textJenie, Yazdi Ibrahim, Erik-Jan van Kampen, and Bart Remes. "Cooperative Autonomous Collision Avoidance System for Unmanned Aerial Vehicle." In Advances in Aerospace Guidance, Navigation and Control, 387–405. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38253-6_24.
Full textBucheli, Samuel, Daniel Kroening, Ruben Martins, and Ashutosh Natraj. "From AgentSpeak to C for Safety Considerations in Unmanned Aerial Vehicles." In Towards Autonomous Robotic Systems, 69–81. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22416-9_9.
Full textZahrádka, David, Robert Pěnička, and Martin Saska. "Route Planning for Teams of Unmanned Aerial Vehicles Using Dubins Vehicle Model with Budget Constraint." In Modelling and Simulation for Autonomous Systems, 365–89. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14984-0_27.
Full textMaciel-Pearson, Bruna G., Patrice Carbonneau, and Toby P. Breckon. "Extending Deep Neural Network Trail Navigation for Unmanned Aerial Vehicle Operation Within the Forest Canopy." In Towards Autonomous Robotic Systems, 147–58. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96728-8_13.
Full textGiagkos, Alexandros, Elio Tuci, Myra S. Wilson, and Philip B. Charlesworth. "Evolutionary Coordination System for Fixed-Wing Communications Unmanned Aerial Vehicles." In Advances in Autonomous Robotics Systems, 48–59. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10401-0_5.
Full textConference papers on the topic "Autonomous Unmanned Aerial Vehicle Systems"
Petrík, Nikolas Michael, and Pavol Pecho. "Design and construction of a UAV device with a fixed wing for the conditions of rescue services." In Práce a štúdie. University of Zilina, 2021. http://dx.doi.org/10.26552/pas.z.2021.2.32.
Full textDeeds, Jeff, Zach Engstrom, Caleb Gill, Zack Wood, Jing Wang, In Soo Ahn, and Yufeng Lu. "Autonomous Vision-based Target Detection Using Unmanned Aerial Vehicle." In 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, 2018. http://dx.doi.org/10.1109/mwscas.2018.8623940.
Full textZhao, Wenbi, You Duan, Ziquan Yu, Yaohong Qu, and Youmin Zhang. "Integrated Guidance and Control for Autonomous Rendezvous of Unmanned Aerial Vehicle During Aerial Refueling." In 2021 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2021. http://dx.doi.org/10.1109/icuas51884.2021.9476886.
Full textCarreon-Limones, Christian, Andrew Rashid, Phillip Chung, and Subodh Bhandari. "3-D Mapping using LIDAR and Autonomous Unmanned Aerial Vehicle." In AIAA Information Systems-AIAA Infotech @ Aerospace. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-1155.
Full textAasted, Christopher M., Sunwook Lim, and Rahmat A. Shoureshi. "Vehicle Health Inferencing Using Feature-Based Neural-Symbolic Networks." In ASME 2013 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/dscc2013-3831.
Full textDu, Jiwei, Kun Yan, Song Gao, Chaobo Chen, Dong Zhao, and Haidong Shen. "Robust Trajectory Tracking Control for Unmanned Aerial Vehicle with Actuator Faults." In 2023 6th International Symposium on Autonomous Systems (ISAS). IEEE, 2023. http://dx.doi.org/10.1109/isas59543.2023.10164521.
Full textShaw, Ryan P., and David M. Bevly. "Proportional Navigation and Model Predictive Control of an Unmanned Autonomous Vehicle for Obstacle Avoidance." In ASME 2018 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dscc2018-9080.
Full textChen, Haohan, and Haibin Duan. "Multiple unmanned aerial vehicle autonomous formation via wolf packs mechanism." In 2016 IEEE/CSAA International Conference on Aircraft Utility Systems (AUS). IEEE, 2016. http://dx.doi.org/10.1109/aus.2016.7748123.
Full textGarcia, Gonzalo A., Shawn Keshmiri, and Daksh Shukla. "Nonlinear control based on H-infinity theory for autonomous aerial vehicle." In 2017 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2017. http://dx.doi.org/10.1109/icuas.2017.7991395.
Full textStokkeland, Martin, Kristian Klausen, and Tor A. Johansen. "Autonomous visual navigation of Unmanned Aerial Vehicle for wind turbine inspection." In 2015 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2015. http://dx.doi.org/10.1109/icuas.2015.7152389.
Full textReports on the topic "Autonomous Unmanned Aerial Vehicle Systems"
Larkin, Lance, Thomas Carlson, William D’Andrea, Andrew Johnson, and Natalie Myers. Network development and autonomous vehicles : a smart transportation testbed at Fort Carson : project report summary and recommendations. Engineer Research and Development Center (U.S.), November 2022. http://dx.doi.org/10.21079/11681/45941.
Full textHorowitz, Barry, Peter Beling, Kevin Skadron, Ron D. Williams, and William Melvin. Security Engineering Project - System Aware Cyber Security for an Autonomous Surveillance System On Board an Unmanned Aerial Vehicle. Fort Belvoir, VA: Defense Technical Information Center, January 2014. http://dx.doi.org/10.21236/ada608340.
Full textParker, Michael, Alex Stott, Brian Quinn, Bruce Elder, Tate Meehan, and Sally Shoop. Joint Chilean and US mobility testing in extreme environments. Engineer Research and Development Center (U.S.), November 2021. http://dx.doi.org/10.21079/11681/42362.
Full textChen, Won-Zon, Jan M. DeLuca, Jeffrey D. Koeller, William F. O'Neil, and Ivan H. Wong. Autonomous Unmanned Aerial Vehicle (UAV) Airspace Operations Sensing Requirements. Volume 1 - Performance. Fort Belvoir, VA: Defense Technical Information Center, July 2002. http://dx.doi.org/10.21236/ada410310.
Full textRobert Paul Breckenridge. Improving Rangeland Monitoring and Assessment: Integrating Remote Sensing, GIS, and Unmanned Aerial Vehicle Systems. Office of Scientific and Technical Information (OSTI), May 2007. http://dx.doi.org/10.2172/978362.
Full textDesa, Hazry, Muhammad Azizi Azizan, Zainudin Hat, Muhammad Safwan Suhaimi, and Noor Zulaiha Ramli. ASSESSING THE ACCURACY AND RELIABILITY OF UNMANNED AERIAL VEHICLE (UAV) SURVEY DATA FOR ROAD PROFILE TESTING: A COMPARATIVE STUDY WITH LAND SURVEY. Penerbit Universiti Malaysia Perlis, 2023. http://dx.doi.org/10.58915/techrpt2023.005.
Full textBodie, Mark, Michael Parker, Alexander Stott, and Bruce Elder. Snow-covered obstacles’ effect on vehicle mobility. Engineer Research and Development Center (U.S.), November 2020. http://dx.doi.org/10.21079/11681/38839.
Full textHabib, Ayman, Darcy M. Bullock, Yi-Chun Lin, and Raja Manish. Road Ditch Line Mapping with Mobile LiDAR. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317354.
Full textChristensen, Lance. PR-459-133750-R03 Fast Accurate Automated System To Find And Quantify Natural Gas Leaks. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), November 2019. http://dx.doi.org/10.55274/r0011633.
Full textYan, Yujie, and Jerome F. Hajjar. Automated Damage Assessment and Structural Modeling of Bridges with Visual Sensing Technology. Northeastern University, May 2021. http://dx.doi.org/10.17760/d20410114.
Full text