Academic literature on the topic 'Autonomous Unmanned Aerial Vehicle Systems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Autonomous Unmanned Aerial Vehicle Systems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Autonomous Unmanned Aerial Vehicle Systems"

1

Oktay, Tugrul, Harun Celik, and Ilke Turkmen. "Maximizing autonomous performance of fixed-wing unmanned aerial vehicle to reduce motion blur in taken images." Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 232, no. 7 (March 28, 2018): 857–68. http://dx.doi.org/10.1177/0959651818765027.

Full text
Abstract:
In this study, reducing motion blur in images taken by our unmanned aerial vehicle is investigated. Since shakes of unmanned aerial vehicle cause motion blur in taken images, autonomous performance of our unmanned aerial vehicle is maximized to prevent it from shakes. In order to maximize autonomous performance of unmanned aerial vehicle (i.e. to reduce motion blur), initially, camera mounted unmanned aerial vehicle dynamics are obtained. Then, optimum location of unmanned aerial vehicle camera is estimated by considering unmanned aerial vehicle dynamics and autopilot parameters. After improving unmanned aerial vehicle by optimum camera location, dynamics and controller parameters, it is called as improved autonomous controlled unmanned aerial vehicle. Also, unmanned aerial vehicle with camera fixed at the closest point to center of gravity is called as standard autonomous controlled unmanned aerial vehicle. Both improved autonomous controlled and standard autonomous controlled unmanned aerial vehicles are performed in real time flights, and approximately same trajectories are tracked. In order to compare performance of improved autonomous controlled and standard autonomous controlled unmanned aerial vehicles in reducing motion blur, a motion blur kernel model which is derived using recorded roll, pitch and yaw angles of unmanned aerial vehicle is improved. Finally, taken images are simulated to examine effect of unmanned aerial vehicle shakes. In comparison with standard autonomous controlled flight, important improvements on reducing motion blur are demonstrated by improved autonomous controlled unmanned aerial vehicle.
APA, Harvard, Vancouver, ISO, and other styles
2

Погудін, А. В., М. С. Бондарєв, and О. К. Погудіна. "ПОРІВНЯЛЬНИЙ АНАЛІЗ ТА СТВОРЕННЯ БЕЗПІЛОТНИХ ЛІТАЛЬНИХ АПАРАТІВ ДЛЯ ФОРМУВАННЯ МАКЕТА РОЙОВОЇ ВЗАЄМОДІЇ." Open Information and Computer Integrated Technologies, no. 94 (February 9, 2022): 113–21. http://dx.doi.org/10.32620/oikit.2021.94.09.

Full text
Abstract:
The subject of study is the process of creating an unmanned aerial vehicle of the helicopter type, which is able to perform autonomous flight and be used in the premises to test the algorithms of swarm interaction. The aim is to reduce the cost of forming and operating the UAV swarm intelligence model, ensuring compatibility with existing hardware positioning systems and simulation software platforms. Tasks: to analyze the existing prototypes of unmanned aerial vehicles of the helicopter type, used for modeling and testing of autonomous flight modes indoors; to review the systems of positioning and exchange of information between the participants of the swarm formation and to analyze the hardware systems necessary for the implementation of these systems; to develop the architecture of hardware subsystems for unmanned aerial vehicles capable of performing tasks at the level of the considered prototypes; design a case for a sound hardware platform, check its operational parameters, implement its collection and testing; install software that allows you to check the operability of the considered platform of the unmanned aerial vehicle. The methods used are: systems analysis used to compare models of unmanned aerial vehicles within the tasks, methods of analysis and synthesis of schemes for the implementation of the hardware platform, the method of graphic modeling for the design of the unmanned aerial vehicle, methods of system programming for flight program. The following results were obtained. The choice of the hardware platform of the unmanned aerial vehicle is substantiated; the hull for the helicopter was developed and implemented, two platforms of unmanned aerial vehicles were collected and tested during autonomous flight indoors. Conclusions. The study found that there are existing and widely used platforms for compatible indoor flight. These platforms are open and closed. The analysis of open hardware platforms and synthesis of architecture of own unmanned aerial vehicle is made. The designed and implemented unmanned aerial vehicle is capable of autonomous flight, has all the necessary components to perform a compatible flight program. As part of the layout of swarm interaction, it is necessary to further adjust the positioning system.
APA, Harvard, Vancouver, ISO, and other styles
3

Kang, David S., Jamie M. Anderson, and Paul A. DeBitetto. "Draper unmanned vehicle systems." Robotica 18, no. 3 (May 2000): 263–72. http://dx.doi.org/10.1017/s0263574799002246.

Full text
Abstract:
Draper Small Autonomous Aerial Vehicle (DSAAV), MITy and SMART micro-rovers, Companion mini-rover, and Vorticity Control Unmanned Undersea Vehicle (VCUUV) are highlighted. DSAAV demonstrated autonomy with GPS/INS integration and vision processing. The micro- and mini-rovers investigated ground based autonomy with extensive mapping and planning integration. VCUUV is a flexible-hull UUV which propels and maneuvers like a tuna.
APA, Harvard, Vancouver, ISO, and other styles
4

Pokorny, Jiri, Khanh Ma, Salwa Saafi, Jakub Frolka, Jose Villa, Mikhail Gerasimenko, Yevgeni Koucheryavy, and Jiri Hosek. "Prototype Design and Experimental Evaluation of Autonomous Collaborative Communication System for Emerging Maritime Use Cases." Sensors 21, no. 11 (June 3, 2021): 3871. http://dx.doi.org/10.3390/s21113871.

Full text
Abstract:
Automated systems have been seamlessly integrated into several industries as part of their industrial automation processes. Employing automated systems, such as autonomous vehicles, allows industries to increase productivity, benefit from a wide range of technologies and capabilities, and improve workplace safety. So far, most of the existing systems consider utilizing one type of autonomous vehicle. In this work, we propose a collaboration of different types of unmanned vehicles in maritime offshore scenarios. Providing high capacity, extended coverage, and better quality of services, autonomous collaborative systems can enable emerging maritime use cases, such as remote monitoring and navigation assistance. Motivated by these potential benefits, we propose the deployment of an Unmanned Surface Vehicle (USV) and an Unmanned Aerial Vehicle (UAV) in an autonomous collaborative communication system. Specifically, we design high-speed, directional communication links between a terrestrial control station and the two unmanned vehicles. Using measurement and simulation results, we evaluate the performance of the designed links in different communication scenarios and we show the benefits of employing multiple autonomous vehicles in the proposed communication system.
APA, Harvard, Vancouver, ISO, and other styles
5

ZOIDZE, Mamuka Ya, Givi O. SANADZE, Oleksandr V. KRAKHMALYOV, Olena I. ZINCHENKO, and Vitalii O. BRUSENTSEV. "Challenges and perspective with using a group of small combat unmanned aerial vehicles." INCAS BULLETIN 13, S (August 3, 2021): 245–55. http://dx.doi.org/10.13111/2066-8201.2021.13.s.22.

Full text
Abstract:
The article discusses the features of small unmanned aerial vehicles, perspectives, directions for the development of unmanned aerial vehicles with integrated combat units. The development trends of unmanned aerial vehicles indicate the direction of the use of the unmanned aerial vehicle in the group of small unmanned aerial vehicles operating on the principle of autonomous management. The main problems are related to solving management and groupwork tasks in the group, which leads to the use of group intelligence methods. The possibilities of group use of unmanned aerial vehicles are analyzed. One of the main goals of small drone technology is to create energy sources with high energy capacity and power. The exchange of information within a group of unmanned aerial vehicles requires the use of group-based intelligent methods based on self-organized decentralized management. Such methods are based on the self-organization of movement and communication in a group of insects, fish or birds. The analysis shows that the development trends of small-scale drones are primarily driven by advances in micro and nano technology, new approaches to aerodynamics and management, the creation of high-capacity power supplies and engines, creating autonomous micro and nano systems for navigation and communication using agreed integrated concepts. The direction of new technologies for use in the group of small unmanned aerial vehicles based on the principle of autonomous control is revealed. An algorithm for organizing interaction in a group of unmanned aerial vehicles is presented and the relevant tasks are discussed.
APA, Harvard, Vancouver, ISO, and other styles
6

Uche, U. E., and S. T. Audu. "UAV for Agrochemical Application: A Review." Nigerian Journal of Technology 40, no. 5 (May 13, 2022): 795–809. http://dx.doi.org/10.4314/njt.v40i5.5.

Full text
Abstract:
Unmanned aerial vehicles (UAVs) are tools for mechanized agriculture: they are used to alleviate maladies in a variety of fields through commercial, scientific, agricultural, and infrastructure enhancement. The purpose of the paper is to illuminate knowledge on mechanized agriculture using unmanned aircraft systems for pesticides and fertilizer application in obstacle rich farm. Various journal papers were reviewed to ascertain the state-of-the-art in agricultural unmanned aerial vehicles. X-rayed are unmanned aerial vehicle agrochemicals spraying architecture and efficacy, deployment and control strategies, obstacle sensing and avoidance systems, development/studies, and the limitations of the technology. The review shows that great strides have been made to develop agricultural unmanned aerial vehicles that can autonomously identify obstacle type, realize desired avoidance actions, and carry out variable rate agrochemical application. It is however noted that studies should continue on developing protocols and standard operation procedure, more human friendly interface platform, power technology, higher payload, real time quality imagery and robust mechanical features as well as enhanced sense and avoidance technology to meet the requirement of agricultural unmanned aerial vehicle for real time autonomous actions, flight endurance, low speed and low altitude. The paper therefore addressed the lack of awareness and absence of dedicated education on precision agriculture in the farming sector that has since ensured that its adoption level as a preferred system of farming remains very low in Nigeria despite the many benefits of unmanned aircraft vehicle farming technology
APA, Harvard, Vancouver, ISO, and other styles
7

Gritsenko, Volodymyr, Oleksandr Volkov, Mykola Komar, and Dmytro Voloshenyuk. "INTEGRAL ADAPTIVE AUTOPILOT FOR AN UNMANNED AERIAL VEHICLE." Aviation 22, no. 4 (December 7, 2018): 129–35. http://dx.doi.org/10.3846/aviation.2018.6413.

Full text
Abstract:
The aim of research is to study the modern algorithms used in autopilots of unmanned aerial vehicles and formulation of the problem of development and usage of new intellectual methods for automatic control systems. The approach considered in the article is based on the theory of high-precision remote control of dynamic objects and on the complex interaction of methods of theory of invariance, adaptive control and intellectualization of processes of UAV control. One of the features of the proposed method of intellectual control for unmanned aerial vehicle autopilot is the procedure of transforming a multi-dimensional system into an aggregate of virtual autonomous processes, for each of which the control algorithm is easily generated by an autonomous subsystem. Coming up next is the procedure of coordination of actions of all the autonomous systems into single functioning complex. This provides an opportunity to improved precision and sustainability of control. Using the method described in the article allows creating integral and adaptive autopilots to perform complicated spatial maneuvering an unmanned aerial vehicle being based on usage of full non-linear models without simplifications and linearization.
APA, Harvard, Vancouver, ISO, and other styles
8

Krátký, Vít, Pavel Petráček, Tiago Nascimento, Michaela Čadilová, Milan Škobrtal, Pavel Stoudek, and Martin Saska. "Safe Documentation of Historical Monuments by an Autonomous Unmanned Aerial Vehicle." ISPRS International Journal of Geo-Information 10, no. 11 (October 29, 2021): 738. http://dx.doi.org/10.3390/ijgi10110738.

Full text
Abstract:
The use of robotic systems, especially multi-rotor aerial vehicles, in the documentation of historical buildings and cultural heritage monuments has become common in recent years. However, the teleoperated robotic systems have significant limitations encouraging the ongoing development of autonomous unmanned aerial vehicles (UAVs). The autonomous robotic platforms provide a more accurate and safe measurement in distant and difficult to access areas than their teleoperated counterpart. Through the use of autonomous aerial robotic systems, access to such places by humans and building of external infrastructures like scaffolding for documentation purposes is no longer necessary. In this work, we aim to present a novel autonomous unmanned aerial vehicle designed for the documentation of hardly attainable areas of historical buildings. The prototype of this robot was tested in several historical monuments comprising scanned objects located in dark and hardly accessible areas in the upper parts of tall naves. This manuscript presents the results from two specific places: the Church of St. Anne and St. Jacob the Great in Stará Voda, and St. Maurice Church in Olomouc, both in the Czech Republic. Finally, we also compare the three-dimensional map obtained with the measurements made by the 3D laser scanner carried onboard UAV against the ones performed by a 3D terrestrial laser scanner.
APA, Harvard, Vancouver, ISO, and other styles
9

Cantieri, Alvaro, Matheus Ferraz, Guido Szekir, Marco Antônio Teixeira, José Lima, André Schneider Oliveira, and Marco Aurélio Wehrmeister. "Cooperative UAV–UGV Autonomous Power Pylon Inspection: An Investigation of Cooperative Outdoor Vehicle Positioning Architecture." Sensors 20, no. 21 (November 9, 2020): 6384. http://dx.doi.org/10.3390/s20216384.

Full text
Abstract:
Realizing autonomous inspection, such as that of power distribution lines, through unmanned aerial vehicle (UAV) systems is a key research domain in robotics. In particular, the use of autonomous and semi-autonomous vehicles to execute the tasks of an inspection process can enhance the efficacy and safety of the operation; however, many technical problems, such as those pertaining to the precise positioning and path following of the vehicles, robust obstacle detection, and intelligent control, must be addressed. In this study, an innovative architecture involving an unmanned aircraft vehicle (UAV) and an unmanned ground vehicle (UGV) was examined for detailed inspections of power lines. In the proposed strategy, each vehicle provides its position information to the other, which ensures a safe inspection process. The results of real-world experiments indicate a satisfactory performance, thereby demonstrating the feasibility of the proposed approach.
APA, Harvard, Vancouver, ISO, and other styles
10

Çoban, Sezer. "Autonomous performance maximization of research-based hybrid unmanned aerial vehicle." Aircraft Engineering and Aerospace Technology 92, no. 4 (April 18, 2020): 645–51. http://dx.doi.org/10.1108/aeat-08-2019-0171.

Full text
Abstract:
Purpose This paper aims to investigate the autonomous performance optimization of a research-based hybrid unmanned aerial vehicle (i.e. HUAV) manufactured at Iskenderun Technical University. Design/methodology/approach To maximize the autonomous performance of this HUAV, longitudinal and lateral dynamics were initially obtained. Then, the optimum magnitudes of the autopilot system parameters were estimated by considering the vehicle’s dynamic model and autopilot parameters. Findings After determining the optimum values of the longitudinal and lateral autopilots, an improved design for the autonomously controlled (AC) HUAV was achieved in terms of real-time flight. Practical implications Simultaneous improvement of the longitudinal and lateral can be used for better HUAV operations. Originality/value In this paper, the autopilot systems (i.e. longitudinal and lateral) of an HUAV are for the first time simultaneously designed in the literature. This helps the simultaneous improvement of the longitudinal and lateral flight trajectory tracking performances.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Autonomous Unmanned Aerial Vehicle Systems"

1

Dowd, Garrett E. "Improving Autonomous Vehicle Safety using Communicationsand Unmanned Aerial Vehicles." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1574861007798385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

McAree, Owen. "Autonomous terminal area operations for unmanned aerial systems." Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/12535.

Full text
Abstract:
After many years of successful operation in military domains, Unmanned Aerial Systems (UASs) are generating significant interest amongst civilian operators in sectors such as law enforcement, search and rescue, aerial photography and mapping. To maximise the benefits brought by UASs to sectors such as these, a high level of autonomy is desirable to reduce the need for highly skilled operators. Highly autonomous UASs require a high level of situation awareness in order to make appropriate decisions. This is of particular importance to civilian UASs where transparency and equivalence of operation to current manned aircraft is a requirement, particularly in the terminal area immediately surrounding an airfield. This thesis presents an artificial situation awareness system for an autonomous UAS capable of comprehending both the current continuous and discrete states of traffic vehicles. This estimate forms the basis of the projection element of situation awareness, predicting the future states of traffic. Projection is subject to a large degree of uncertainty in both continuous state variables and in the execution of intent information by the pilot. Both of these sources of uncertainty are captured to fully quantify the future positions of traffic. Based upon the projection of future traffic positions a self separation system is designed which allows an UAS to quantify its separation to traffic vehicles up to some future time and manoeuvre appropriately to minimise the potential for conflict. A high fidelity simulation environment has been developed to test the performance of the artificial situation awareness and self separation system. The system has demonstrated good performance under all situations, with an equivalent level of safety to that of a human pilot.
APA, Harvard, Vancouver, ISO, and other styles
3

Östman, Christian, and Anna Forsberg. "Support System for Landing with an Autonomous Unmanned Aerial Vehicle." Thesis, Linköping University, Linköping University, Linköping University, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-16278.

Full text
Abstract:

There are a number of ongoing projects developing autonomous vehicles, both helicopters and airplanes. The purpose of this thesis is to study a concept for calculating the height and attitude of a helicopter. The system will be active during landing. This thesis includes building an experimental setup and to develop algorithms and software.

The basic idea is to illuminate the ground with a certain pattern and in our case we used laser pointers to create this pattern. The ground is then filmed and the images are processed to extract the pattern. This provides us with information about the height and attitude of the helicopter. Furthermore, the concept implies that no equipment on the ground is needed. With further development the sensor should be able to calculate the movement of the underlying surface relative to the helicopter. This is very important when landing on a moving surface, e.g. a ship at sea.

To study the concept empirically an experimental setup was constructed. The setup provides us with the necessary information to evaluate how well the system could perform in reality. The setup is built with simple and cheap materials. In the setup an ordinary web camera and laser pointers that are avaliable for everyone have been used.


Det finns flera pågående projekt inom autonomflygande farkoster, både för helikoptrar och flygplan. Syftet med vårt examensarbetet är att undersöka ett koncept för en landningssensor för autonom landning med helikopter. Examensarbetet innebär att bygga en fysisk modell för test av konceptet samt att utveckla mjukvara.

Konceptet för sensorn består av att belysa marken med ett speciellt mönster, i vårt fall skapas mönstret av laserpekare, som därefter fotograferas och bildbehandlas. Detta mönster ger sedan information om helikopterns höjd och attityd i luften. Vidare innebär konceptet också att ingen markutrustning krävs för att sensorn ska fungera. I förlängningen ska man med detta koncept kunna beräkna hur underlaget rör sig relativt helikoptern, vilket är väldigt viktigt vid landning på objekt som rör sig, till exempel ett fartyg.

För att undersöka hur bra sensorn presterar i verkligheten så har en rigg byggts. Riggen är byggd med enkla och billiga material. I det här fallet används en webbkamera och laserpekare som går att köpa i vanliga elektronikaffärer.

APA, Harvard, Vancouver, ISO, and other styles
4

OSMAN, OSMAN ABDALLA SIDAHMED. "Autonomous Navigation for Unmanned Aerial Systems - Visual Perception and Motion Planning." Doctoral thesis, Politecnico di Torino, 2022. http://hdl.handle.net/11583/2971114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Patchett, Charles H. "On the derivation and analysis of decision architectures for uninhabited air systems." Thesis, Cranfield University, 2011. http://dspace.lib.cranfield.ac.uk/handle/1826/8033.

Full text
Abstract:
Operation of Unmanned Air Vehicles (UAVs) has increased significantly over the past few years. However, routine operation in non-segregated airspace remains a challenge, primarily due to nature of the environment and restrictions and challenges that accompany this. Currently, tight human control is envisaged as a means to achieve the oft quoted requirements of transparency , equivalence and safety. However, the problems of high cost of human operation, potential communication losses and operator remoteness remain as obstacles. One means of overcoming these obstacles is to devolve authority, from the ground controller to an on-board system able to understand its situation and make appropriate decisions when authorised. Such an on-board system is known as an Autonomous System. The nature of the autonomous system, how it should be designed, when and how authority should be transferred and in what context can they be allowed to control the vehicle are the general motivation for this study. To do this, the system must overcome the negative aspects of differentiators that exist between UASs and manned aircraft and introduce methods to achieve required increases in the levels of versatility, cost, safety and performance. The general thesis of this work is that the role and responsibility of an airborne autonomous system are sufficiently different from those of other conventionally controlled manned and unmanned systems to require a different architectural approach. Such a different architecture will also have additional requirements placed upon it in order to demonstrate acceptable levels of Transparency, Equivalence and Safety. The architecture for the system is developed from an analysis of the basic requirements and adapted from a consideration of other, suitable candidates for effective control of the vehicle under devolved authority. The best practices for airborne systems in general are identified and amalgamated with established principles and approaches of robotics and intelligent agents. From this, a decision architecture, capable of interacting with external human agencies such as the UAS Commander and Air Traffic Controllers, is proposed in detail. This architecture has been implemented and a number of further lessons can be drawn from this. In order to understand in detail the system safety requirements, an analysis of manned and unmanned aircraft accidents is made. Particular interest is given to the type of control moding of current unmanned aircraft in order to make a comparison, and prediction, with accidents likely to be caused by autonomously controlled vehicles. The effect of pilot remoteness on the accident rate is studied and a new classification of this remoteness is identified as a major contributor to accidents A preliminary Bayesian model for unmanned aircraft accidents is developed and results and predictions are made as an output of this model. From the accident analysis and modelling, strategies to improve UAS safety are identified. Detailed implementations within these strategies are analysed and a proposal for more advanced Human-Machine Interaction made. In particular, detailed analysis is given on exemplar scenarios that a UAS may encounter. These are: Sense and Avoid , Mission Management Failure, Take Off/Landing, and Lost Link procedures and Communications Failure. These analyses identify the nature of autonomous, as opposed to automatic, operation and clearly show the benefits to safety of autonomous air vehicle operation, with an identifiable decision architecture, and its relationship with the human controller. From the strategies and detailed analysis of the exemplar scenarios, proposals are made for the improvement of unmanned vehicle safety The incorporation of these proposals into the suggested decision architecture are accompanied by analysis of the levels of benefit that may be expected. These suggest that a level approaching that of conventional manned aircraft is achievable using currently available technologies but with substantial architectural design methodologies than currently fielded.
APA, Harvard, Vancouver, ISO, and other styles
6

Towler, Jerry Alwynne. "Autonomous Aerial Localization of Radioactive Point Sources via Recursive Bayesian Estimation and Contour Analysis." Thesis, Virginia Tech, 2011. http://hdl.handle.net/10919/43465.

Full text
Abstract:
The rapid, accurate determination of the positions and strengths of sources of dangerous radioactivity takes high priority after a catastrophic event to ensure the safety of personnel, civilians, and emergency responders. This thesis presents approaches and algorithms to autonomously investigate radioactive material using an unmanned aerial vehicle.
Performing this autonomous analysis comprises five major steps: ingress from a base of operations to the danger zone, initial detection of radioactive material, measurement of the strength of radioactive emissions, analysis of the data to provide position and intensity estimates, and finally egress from the area of interest back to the launch site. In all five steps, time is of critical importance: faster responses promise potentially saved lives.
A time-optimal ingress and egress path planning method solves the first and last steps. Vehicle capabilities and instrument sensitivity inform the development of an efficient search path within the area of interest. Two algorithmsâ a grid-based recursive Bayesian estimator and a novel radiation contour analysis methodâ are presented to estimate the position of radioactive sources using simple gross gamma ray event count data from a nondirectional radiation detector. The latter procedure also correctly estimates the number of sources present and their intensities.
Ultimately, a complete unsupervised mission is developed, requiring minimal initial operator interaction, that provides accurate characterization of the radiation environment of an area of interest as quickly as reasonably possible.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
7

Van, Horne Chris. "Machine Vision and Autonomous Integration Into an Unmanned Aircraft System." International Foundation for Telemetering, 2013. http://hdl.handle.net/10150/579707.

Full text
Abstract:
ITC/USA 2013 Conference Proceedings / The Forty-Ninth Annual International Telemetering Conference and Technical Exhibition / October 21-24, 2013 / Bally's Hotel & Convention Center, Las Vegas, NV
The University of Arizona's Aerial Robotics Club (ARC) sponsors the development of an unmanned aerial vehicle (UAV) able to compete in the annual Association for Unmanned Vehicle Systems International (AUVSI) Seafarer Chapter Student Unmanned Aerial Systems competition. Modern programming frameworks are utilized to develop a robust distributed imagery and telemetry pipeline as a backend for a mission operator user interface. This paper discusses the design changes made for the 2013 AUVSI competition including integrating low-latency first-person view, updates to the distributed task backend, and incremental and asynchronous updates the operator's user interface for real-time data analysis.
APA, Harvard, Vancouver, ISO, and other styles
8

Kang, Keeryun. "Online optimal obstacle avoidance for rotary-wing autonomous unmanned aerial vehicles." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44820.

Full text
Abstract:
This thesis presents an integrated framework for online obstacle avoidance of rotary-wing unmanned aerial vehicles (UAVs), which can provide UAVs an obstacle field navigation capability in a partially or completely unknown obstacle-rich environment. The framework is composed of a LIDAR interface, a local obstacle grid generation, a receding horizon (RH) trajectory optimizer, a global shortest path search algorithm, and a climb rate limit detection logic. The key feature of the framework is the use of an optimization-based trajectory generation in which the obstacle avoidance problem is formulated as a nonlinear trajectory optimization problem with state and input constraints over the finite range of the sensor. This local trajectory optimization is combined with a global path search algorithm which provides a useful initial guess to the nonlinear optimization solver. Optimization is the natural process of finding the best trajectory that is dynamically feasible, safe within the vehicle's flight envelope, and collision-free at the same time. The optimal trajectory is continuously updated in real time by the numerical optimization solver, Nonlinear Trajectory Generation (NTG), which is a direct solver based on the spline approximation of trajectory for dynamically flat systems. In fact, the overall approach of this thesis to finding the optimal trajectory is similar to the model predictive control (MPC) or the receding horizon control (RHC), except that this thesis followed a two-layer design; thus, the optimal solution works as a guidance command to be followed by the controller of the vehicle. The framework is implemented in a real-time simulation environment, the Georgia Tech UAV Simulation Tool (GUST), and integrated in the onboard software of the rotary-wing UAV test-bed at Georgia Tech. Initially, the 2D vertical avoidance capability of real obstacles was tested in flight. Then the flight test evaluations were extended to the benchmark tests for 3D avoidance capability over the virtual obstacles, and finally it was demonstrated on real obstacles located at the McKenna MOUT site in Fort Benning, Georgia. Simulations and flight test evaluations demonstrate the feasibility of the developed framework for UAV applications involving low-altitude flight in an urban area.
APA, Harvard, Vancouver, ISO, and other styles
9

Alexander, Josh, Sam Blake, Brendan Clasby, Anshul Jatin Shah, Horne Chris Van, and Horne Justin Van. "Machine Vision and Autonomous Integration Into an Unmanned Aircraft System." International Foundation for Telemetering, 2012. http://hdl.handle.net/10150/581850.

Full text
Abstract:
The University of Arizona's Aerial Robotics Club (ARC) sponsored two senior design teams to compete in the 2011 AUVSI Student Unmanned Aerial Systems (SUAS) competition. These teams successfully design and built a UAV platform in-house that was capable of autonomous flight, capturing aerial imagery, and filtering for target recognition but required excessive computational hardware and software bugs that limited the systems capability. A new multi-discipline team of undergrads was recruited to completely redesign and optimize the system in an attempt to reach true autonomous real-time target recognition with reasonable COTS hardware.
APA, Harvard, Vancouver, ISO, and other styles
10

Puttige, Vishwas Ramadas Engineering &amp Information Technology Australian Defence Force Academy UNSW. "Neural network based adaptive control for autonomous flight of fixed wing unmanned aerial vehicles." Awarded by:University of New South Wales - Australian Defence Force Academy. Engineering & Information Technology, 2009. http://handle.unsw.edu.au/1959.4/43736.

Full text
Abstract:
This thesis presents the development of small, inexpensive unmanned aerial vehicles (UAVs) to achieve autonomous fight. Fixed wing hobby model planes are modified and instrumented to form experimental platforms. Different sensors employed to collect the flight data are discussed along with their calibrations. The time constant and delay for the servo-actuators for the platform are estimated. Two different data collection and processing units based on micro-controller and PC104 architectures are developed and discussed. These units are also used to program the identification and control algorithms. Flight control of fixed wing UAVs is a challenging task due to the coupled, time-varying, nonlinear dynamic behaviour. One of the possible alternatives for the flight control system is to use the intelligent adaptive control techniques that provide online learning capability to cope with varying dynamics and disturbances. Neural network based indirect adaptive control strategy is applied for the current work. The two main components of the adaptive control technique are the identification block and the control block. Identification provides a mathematical model for the controller to adapt to varying dynamics. Neural network based identification provides a black-box identification technique wherein a suitable network provides prediction capability based upon the past inputs and outputs. Auto-regressive neural networks are employed for this to ensure good retention capabilities for the model that uses the past outputs and inputs along with the present inputs. Online and offline identification of UAV platforms are discussed based upon the flight data. Suitable modifications to the Levenberg-Marquardt training algorithm for online training are proposed. The effect of varying the different network parameters on the performance of the network are numerically tested out. A new performance index is proposed that is shown to improve the accuracy of prediction and also reduces the training time for these networks. The identification algorithms are validated both numerically and flight tested. A hardware-in-loop simulation system has been developed to test the identification and control algorithms before flight testing to identify the problems in real time implementation on the UAVs. This is developed to keep the validation process simple and a graphical user interface is provided to visualise the UAV flight during simulations. A dual neural network controller is proposed as the adaptive controller based upon the identification models. This has two neural networks collated together. One of the neural networks is trained online to adapt to changes in the dynamics. Two feedback loops are provided as part of the overall structure that is seen to improve the accuracy. Proofs for stability analysis in the form of convergence of the identifier and controller networks based on Lyapunov's technique are presented. In this analysis suitable bounds on the rate of learning for the networks are imposed. Numerical results are presented to validate the adaptive controller for single-input single-output as well as multi-input multi-output subsystems of the UAV. Real time validation results and various flight test results confirm the feasibility of the proposed adaptive technique as a reliable tool to achieve autonomous flight. The comparison of the proposed technique with a baseline gain scheduled controller both in numerical simulations as well as test flights bring out the salient adaptive feature of the proposed technique to the time-varying, nonlinear dynamics of the UAV platforms under different flying conditions.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Autonomous Unmanned Aerial Vehicle Systems"

1

Corrigan, Craig. California autonomous unmanned aerial vehicle air pollution profiling study. Sacramento, Calif.]: [California Energy Commission], 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dubanov, Aleksandr. Computer simulation in pursuit problems. ru: Publishing Center RIOR, 2022. http://dx.doi.org/10.29039/02102-6.

Full text
Abstract:
Currently, computer simulation in virtual reality systems has a special status. In order for a computer model to meet the requirements of the tasks it models, it is necessary that the mathematical apparatus correctly describe the simulated phenomena. In this monograph, the simulation of pursuit problems is carried out. An adaptive modeling of the behavior of both pursuers and targets is carried out. An iterative calculation of the trajectories of the participants in the pursuit problem is carried out. The main attention is paid to the methods of pursuit and parallel rendezvous. These methods are taken as the basis of the study and are modified in the future. The scientific novelty of the study is the iterative calculation of the trajectories of the participants in the pursuit task when moving at a constant speed, while following the predicted trajectories. The predicted trajectories form a one-parameter network of continuous lines of the first order of smoothness. The predicted trajectories are calculated taking into account the restrictions on the curvature of the participant in the pursuit problem. The fact of restrictions on curvature can be interpreted as restrictions on the angular frequency of rotation of the object of the pursuit problem. Also, the novelty is the calculation of the iterative process of group pursuit of multiple targets, when targets are hit simultaneously or at specified intervals. The calculation of the parameters of the network of predicted trajectories is carried out with a curvature variation in order to achieve the desired temporal effect. The work also simulates the adaptive behavior of the pursuer and the target. The principle of behavior can be expressed on the example of a pursuer with a simple phrase: "You go to the left - I go to the left." This happens at each iteration step in terms of choosing the direction of rotation. For the purpose, the principle of adaptive behavior is expressed by the phrase: "You go to the left - I go to the right." The studies, algorithms and models presented in the monograph can be in demand in the design of autonomously controlled unmanned aerial vehicles with elements of artificial intelligence. The task models in the monograph are supplemented with many animated images, where you can see the research process. Also, the tasks have an implementation in a computer mathematics system and can be transferred to virtual reality systems if necessary.
APA, Harvard, Vancouver, ISO, and other styles
3

Autonomous Flying Robots Unmanned Aerial Vehicles And Micro Aerial Vehicles. Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Government, U. S., U. S. Military, and Department of Defense. Additive Manufacturing: Preparing for the Reality of Science Fiction, Emerging Technologies and Homeland Security Public Policy, 3D Printers and Autonomous Vehicles, Unmanned Aerial Systems, Drones. Independently Published, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Krishna, K. R. Unmanned Aerial Vehicle Systems in Crop Production. Taylor & Francis Group, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Unmanned Aerial Vehicle Systems in Crop Production: A Compendium. Taylor & Francis Group, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Krishna, K. R. Unmanned Aerial Vehicle Systems in Crop Production: A Compendium. Apple Academic Press, Incorporated, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Krishna, K. R. Unmanned Aerial Vehicle Systems in Crop Production: A Compendium. Apple Academic Press, Incorporated, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sincavage, Dr Suzanne, Dr Hans C. Mumm, Wayne Lonstein, CPT John Paul Hood, Randall Mai, Dr Mark Jackson, Mike Monnik, et al. DRONE DELIVERY OF CBNRECy – DEW WEAPONS Emerging Threats of Mini-Weapons of Mass Destruction and Disruption ( WMDD). Edited by Randall K. Nichols. New Prairie Press Open Book Publishing, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Government, U. S., Department of Defense, and U. S. Army. 2009 - 2034 Unmanned Systems Integrated Roadmap - Unmanned Aircraft (UAS), Unmanned Aerial Vehicle (UAV), UGV Ground Vehicles, UMS Maritime Systems, Drones, Technologies, Current and Future Programs. Independently Published, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Autonomous Unmanned Aerial Vehicle Systems"

1

Masselli, Andreas, Richard Hanten, and Andreas Zell. "Localization of Unmanned Aerial Vehicles Using Terrain Classification from Aerial Images." In Intelligent Autonomous Systems 13, 831–42. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-08338-4_60.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Irani, Behnam, Weidong Chen, and Jingchuan Wang. "A Localizability Constraint-Based Path Planning Method for Unmanned Aerial Vehicle." In Intelligent Autonomous Systems 15, 917–32. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01370-7_71.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Heritsch, Scott, and Linell A. J.D. Letendre. "Engineering Model for Ethical Decision-Making and Regulation in Autonomous Systems." In Handbook of Unmanned Aerial Vehicles, 1–25. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-32193-6_155-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Heritsch, Scott, and Linell A. Letendre. "Engineering Model for Ethical Decision-Making and Regulation in Autonomous Systems." In Handbook of Unmanned Aerial Vehicles, 1–25. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-32193-6_155-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Muresan, Bogdan, and Shabnam Sadeghi Esfahlani. "Autonomous Flight and Real-Time Tracking of Unmanned Aerial Vehicle." In Advances in Intelligent Systems and Computing, 945–56. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01174-1_73.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jenie, Yazdi Ibrahim, Erik-Jan van Kampen, and Bart Remes. "Cooperative Autonomous Collision Avoidance System for Unmanned Aerial Vehicle." In Advances in Aerospace Guidance, Navigation and Control, 387–405. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38253-6_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bucheli, Samuel, Daniel Kroening, Ruben Martins, and Ashutosh Natraj. "From AgentSpeak to C for Safety Considerations in Unmanned Aerial Vehicles." In Towards Autonomous Robotic Systems, 69–81. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22416-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zahrádka, David, Robert Pěnička, and Martin Saska. "Route Planning for Teams of Unmanned Aerial Vehicles Using Dubins Vehicle Model with Budget Constraint." In Modelling and Simulation for Autonomous Systems, 365–89. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14984-0_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Maciel-Pearson, Bruna G., Patrice Carbonneau, and Toby P. Breckon. "Extending Deep Neural Network Trail Navigation for Unmanned Aerial Vehicle Operation Within the Forest Canopy." In Towards Autonomous Robotic Systems, 147–58. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96728-8_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Giagkos, Alexandros, Elio Tuci, Myra S. Wilson, and Philip B. Charlesworth. "Evolutionary Coordination System for Fixed-Wing Communications Unmanned Aerial Vehicles." In Advances in Autonomous Robotics Systems, 48–59. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10401-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Autonomous Unmanned Aerial Vehicle Systems"

1

Petrík, Nikolas Michael, and Pavol Pecho. "Design and construction of a UAV device with a fixed wing for the conditions of rescue services." In Práce a štúdie. University of Zilina, 2021. http://dx.doi.org/10.26552/pas.z.2021.2.32.

Full text
Abstract:
The paper is focused on comprehensive design of an unmanned aerial vehicle with fixed wing, which would add efficiency to specific activities performed by rescue services. The current rapid development of unmanned aerial vehicles is slowly becoming part of many industries around the world. The aim of this paper is to design an unmanned aerial vehicle that could provide safe, reliable, and efficient operation. The overall design, construction, and installation of the proposed unmanned aerial vehicle should integrate several modern technologies. To make an ideal design of unmanned aerial vehicle it is required to possess the knowledge of current construction methods of additive manufacturing, understanding of legislation in operating conditions and, in addition to general knowledge of unmanned vehicles, also comprehensive skills in programming and configuration of autonomous control elements of autonomous unmanned systems. After the production of the unmanned aerial vehicle with fixed wing, very good technical properties were demonstrated during experimental ground tests. Achieved technical properties are comparable to those owned by the unmanned aerial vehicles that are currently on the market. The final design configuration using an infrared-sensitive optical device could perform activities such as: searching for missing persons in hard-to-reach and vast terrain or searching for forest fires.
APA, Harvard, Vancouver, ISO, and other styles
2

Deeds, Jeff, Zach Engstrom, Caleb Gill, Zack Wood, Jing Wang, In Soo Ahn, and Yufeng Lu. "Autonomous Vision-based Target Detection Using Unmanned Aerial Vehicle." In 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, 2018. http://dx.doi.org/10.1109/mwscas.2018.8623940.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhao, Wenbi, You Duan, Ziquan Yu, Yaohong Qu, and Youmin Zhang. "Integrated Guidance and Control for Autonomous Rendezvous of Unmanned Aerial Vehicle During Aerial Refueling." In 2021 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2021. http://dx.doi.org/10.1109/icuas51884.2021.9476886.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Carreon-Limones, Christian, Andrew Rashid, Phillip Chung, and Subodh Bhandari. "3-D Mapping using LIDAR and Autonomous Unmanned Aerial Vehicle." In AIAA Information Systems-AIAA Infotech @ Aerospace. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-1155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Aasted, Christopher M., Sunwook Lim, and Rahmat A. Shoureshi. "Vehicle Health Inferencing Using Feature-Based Neural-Symbolic Networks." In ASME 2013 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/dscc2013-3831.

Full text
Abstract:
In order to optimize the use of fault tolerant controllers for unmanned or autonomous aerial vehicles, a health diagnostics system is being developed. To autonomously determine the effect of damage on global vehicle health, a feature-based neural-symbolic network is utilized to infer vehicle health using historical data. Our current system is able to accurately characterize the extent of vehicle damage with 99.2% accuracy when tested on prior incident data. Based on the results of this work, neural-symbolic networks appear to be a useful tool for diagnosis of global vehicle health based on features of subsystem diagnostic information.
APA, Harvard, Vancouver, ISO, and other styles
6

Du, Jiwei, Kun Yan, Song Gao, Chaobo Chen, Dong Zhao, and Haidong Shen. "Robust Trajectory Tracking Control for Unmanned Aerial Vehicle with Actuator Faults." In 2023 6th International Symposium on Autonomous Systems (ISAS). IEEE, 2023. http://dx.doi.org/10.1109/isas59543.2023.10164521.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shaw, Ryan P., and David M. Bevly. "Proportional Navigation and Model Predictive Control of an Unmanned Autonomous Vehicle for Obstacle Avoidance." In ASME 2018 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dscc2018-9080.

Full text
Abstract:
This paper presents a new approach for the guidance and control of a UGV (Unmanned Ground Vehicle). An obstacle avoidance algorithm was developed using an integrated system involving proportional navigation (PN) and a nonlinear model predictive controller (NMPC). An obstacle avoidance variant of the classical proportional navigation law generates command lateral accelerations to avoid obstacles, while the NMPC is used to track the reference trajectory given by the PN. The NMPC utilizes a lateral vehicle dynamic model. Obstacle avoidance has become a popular area of research for both unmanned aerial vehicles and unmanned ground vehicles. In this application an obstacle avoidance algorithm can take over the control of a vehicle until the obstacle is no longer a threat. The performance of the obstacle avoidance algorithm is evaluated through simulation. Simulation results show a promising approach to conditionally implemented obstacle avoidance.
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Haohan, and Haibin Duan. "Multiple unmanned aerial vehicle autonomous formation via wolf packs mechanism." In 2016 IEEE/CSAA International Conference on Aircraft Utility Systems (AUS). IEEE, 2016. http://dx.doi.org/10.1109/aus.2016.7748123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Garcia, Gonzalo A., Shawn Keshmiri, and Daksh Shukla. "Nonlinear control based on H-infinity theory for autonomous aerial vehicle." In 2017 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2017. http://dx.doi.org/10.1109/icuas.2017.7991395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Stokkeland, Martin, Kristian Klausen, and Tor A. Johansen. "Autonomous visual navigation of Unmanned Aerial Vehicle for wind turbine inspection." In 2015 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2015. http://dx.doi.org/10.1109/icuas.2015.7152389.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Autonomous Unmanned Aerial Vehicle Systems"

1

Larkin, Lance, Thomas Carlson, William D’Andrea, Andrew Johnson, and Natalie Myers. Network development and autonomous vehicles : a smart transportation testbed at Fort Carson : project report summary and recommendations. Engineer Research and Development Center (U.S.), November 2022. http://dx.doi.org/10.21079/11681/45941.

Full text
Abstract:
In this work, a smart transportation testbed was utilized at Fort Carson to demonstrate three use cases for the primary purpose to plan, develop, demonstrate, and employ autonomous vehicle technologies at military installations and within the surrounding communities to evaluate commercially available Connected and Automated Vehicles and the potential to reduce base operating costs, improve safety and quality of life for military service members and their families, and deliver services more efficiently and effectively. To meet this purpose, an automated vehicle shuttle, an unmanned aerial system, and a wireless network were used and tested during the project. Results for the automated shuttle indicated that despite the quantity of data generated by operations, the contractors may not be ready to share information in a readily usable format. Additionally, successful use by the public is predicated on both knowing their mobility pat-terns and staff members promoting trust in the technology to prospective riders. Results for the unmanned aerial system showed successful identification of foreign object debris and runway cracks at the airfield. The wireless network is now operational and is used for additional work which utilizes the installed traffic cameras.
APA, Harvard, Vancouver, ISO, and other styles
2

Horowitz, Barry, Peter Beling, Kevin Skadron, Ron D. Williams, and William Melvin. Security Engineering Project - System Aware Cyber Security for an Autonomous Surveillance System On Board an Unmanned Aerial Vehicle. Fort Belvoir, VA: Defense Technical Information Center, January 2014. http://dx.doi.org/10.21236/ada608340.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Parker, Michael, Alex Stott, Brian Quinn, Bruce Elder, Tate Meehan, and Sally Shoop. Joint Chilean and US mobility testing in extreme environments. Engineer Research and Development Center (U.S.), November 2021. http://dx.doi.org/10.21079/11681/42362.

Full text
Abstract:
Vehicle mobility in cold and challenging terrains is of interest to both the US and Chilean Armies. Mobility in winter conditions is highly vehicle dependent with autonomous vehicles experiencing additional challenges over manned vehicles. They lack the ability to make informed decisions based on what they are “seeing” and instead need to rely on input from sensors on the vehicle, or from Unmanned Aerial Systems (UAS) or satellite data collections. This work focuses on onboard vehicle Controller Area Network (CAN) Bus sensors, driver input sensors, and some externally mounted sensors to assist with terrain identification and overall vehicle mobility. Analysis of winter vehicle/sensor data collected in collaboration with the Chilean Army in Lonquimay, Chile during July and August 2019 will be discussed in this report.
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Won-Zon, Jan M. DeLuca, Jeffrey D. Koeller, William F. O'Neil, and Ivan H. Wong. Autonomous Unmanned Aerial Vehicle (UAV) Airspace Operations Sensing Requirements. Volume 1 - Performance. Fort Belvoir, VA: Defense Technical Information Center, July 2002. http://dx.doi.org/10.21236/ada410310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Robert Paul Breckenridge. Improving Rangeland Monitoring and Assessment: Integrating Remote Sensing, GIS, and Unmanned Aerial Vehicle Systems. Office of Scientific and Technical Information (OSTI), May 2007. http://dx.doi.org/10.2172/978362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Desa, Hazry, Muhammad Azizi Azizan, Zainudin Hat, Muhammad Safwan Suhaimi, and Noor Zulaiha Ramli. ASSESSING THE ACCURACY AND RELIABILITY OF UNMANNED AERIAL VEHICLE (UAV) SURVEY DATA FOR ROAD PROFILE TESTING: A COMPARATIVE STUDY WITH LAND SURVEY. Penerbit Universiti Malaysia Perlis, 2023. http://dx.doi.org/10.58915/techrpt2023.005.

Full text
Abstract:
This feasibility study report outlines the research findings and recommendations for implementing the use of Unmanned Aerial Systems (UAS) for route surveying. The study was conducted with the support of IP Fokus Sdn. Bhd. research grant to determine the feasibility of UAS as an alternative solution for the route surveying process. The primary objective of this study is to evaluate the potential of UAS in improving the efficiency and accuracy of route surveying tasks. To achieve this objective, we conducted a comprehensive literature review on the current practices and technologies used in route surveying. The report provides an overview of the research methodology, data analysis, and findings. The recommendations presented in this report are based on a thorough evaluation of the data collected and analysis conducted. The findings of this study provide valuable insights into the potential benefits of using UAVs in route surveying and highlight some of the challenges and limitations that need to be addressed.
APA, Harvard, Vancouver, ISO, and other styles
7

Bodie, Mark, Michael Parker, Alexander Stott, and Bruce Elder. Snow-covered obstacles’ effect on vehicle mobility. Engineer Research and Development Center (U.S.), November 2020. http://dx.doi.org/10.21079/11681/38839.

Full text
Abstract:
The Mobility in Complex Environments project used unmanned aerial systems (UAS) to identify obstacles and to provide path planning in forward operational locations. The UAS were equipped with remote-sensing devices, such as photogrammetry and lidar, to identify obstacles. The path-planning algorithms incorporated the detected obstacles to then identify the fastest and safest vehicle routes. Future algorithms should incorporate vehicle characteristics as each type of vehicle will perform differently over a given obstacle, resulting in distinctive optimal paths. This study explored the effect of snow-covered obstacles on dynamic vehicle response. Vehicle tests used an instrumented HMMWV (high mobility multipurpose wheeled vehicle) driven over obstacles with and without snow cover. Tests showed a 45% reduction in normal force variation and a 43% reduction in body acceleration associated with a 14.5 cm snow cover. To predict vehicle body acceleration and normal force response, we developed two quarter-car models: rigid terrain and deformable snow terrain quarter-car models. The simple quarter models provided reasonable agreement with the vehicle test data. We also used the models to analyze the effects of vehicle parameters, such as ground pressure, to understand the effect of snow cover on vehicle response.
APA, Harvard, Vancouver, ISO, and other styles
8

Habib, Ayman, Darcy M. Bullock, Yi-Chun Lin, and Raja Manish. Road Ditch Line Mapping with Mobile LiDAR. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317354.

Full text
Abstract:
Maintenance of roadside ditches is important to avoid localized flooding and premature failure of pavements. Scheduling effective preventative maintenance requires mapping of the ditch profile to identify areas requiring excavation of long-term sediment accumulation. High-resolution, high-quality point clouds collected by mobile LiDAR mapping systems (MLMS) provide an opportunity for effective monitoring of roadside ditches and performing hydrological analyses. This study evaluated the applicability of mobile LiDAR for mapping roadside ditches for slope and drainage analyses. The performance of alternative MLMS units was performed. These MLMS included an unmanned ground vehicle, an unmanned aerial vehicle, a portable backpack system along with its vehicle-mounted version, a medium-grade wheel-based system, and a high-grade wheel-based system. Point cloud from all the MLMS units were in agreement in the vertical direction within the ±3 cm range for solid surfaces, such as paved roads, and ±7 cm range for surfaces with vegetation. The portable backpack system that could be carried by a surveyor or mounted on a vehicle and was the most flexible MLMS. The report concludes that due to flexibility and cost effectiveness of the portable backpack system, it is the preferred platform for mapping roadside ditches, followed by the medium-grade wheel-based system. Furthermore, a framework for ditch line characterization is proposed and tested using datasets acquired by the medium-grade wheel-based and vehicle-mounted portable systems over a state highway. An existing ground filtering approach is modified to handle variations in point density of mobile LiDAR data. Hydrological analyses, including flow direction and flow accumulation, are applied to extract the drainage network from the digital terrain model (DTM). Cross-sectional/longitudinal profiles of the ditch are automatically extracted from LiDAR data and visualized in 3D point clouds and 2D images. The slope derived from the LiDAR data was found to be very close to highway cross slope design standards of 2% on driving lanes, 4% on shoulders, as well as 6-by-1 slope for ditch lines. Potential flooded regions are identified by detecting areas with no LiDAR return and a recall score of 54% and 92% was achieved by the medium-grade wheel-based and vehicle-mounted portable systems, respectively. Furthermore, a framework for ditch line characterization is proposed and tested using datasets acquired by the medium-grade wheel-based and vehicle-mounted portable systems over a state highway. An existing ground filtering approach is modified to handle variations in point density of mobile LiDAR data. Hydrological analyses, including flow direction and flow accumulation, are applied to extract the drainage network from the digital terrain model (DTM). Cross-sectional/longitudinal profiles of the ditch are automatically extracted from LiDAR data, and visualized in 3D point clouds and 2D images. The slope derived from the LiDAR data was found to be very close to highway cross slope design standards of 2% on driving lanes, 4% on shoulder, as well as 6-by-1 slope for ditch lines. Potential flooded regions are identified by detecting areas with no LiDAR return and a recall score of 54% and 92% was achieved by the medium-grade wheel-based and vehicle-mounted portable systems, respectively.
APA, Harvard, Vancouver, ISO, and other styles
9

Christensen, Lance. PR-459-133750-R03 Fast Accurate Automated System To Find And Quantify Natural Gas Leaks. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), November 2019. http://dx.doi.org/10.55274/r0011633.

Full text
Abstract:
Miniature natural gas sensors weighing a few hundred grams with 10 ppb s-1 sensitivity towards methane and ppb s-1 sensitivity towards methane and ethane present the energy industry with cost effective ways to improve safety, comply with State and Federal regulations, decrease natural gas emissions, and attribute natural gas indications to thermogenic or biogenic sources. One particularly promising implementation is on small unmanned aerial systems (sUASs) flown by service providers or in-house personnel or even more ambitiously as part of larger network conducting autonomous, continual monitoring. This report describes refinement of the OPLS measurement system to include all ancillary instruments needed to put OPLS methane and ethane measurements into context for leak surveillance, localization, and quantification. Flights were conducted on a variety of VTOLs and fixed wing drones as described below to ensure that the overall system development resulted in a system that was platform agnostic. This report describes: - The complete agnostic OPLS measurement system.The individual components are described and their performance investigated.Technical issues that arose during testing and field deployment are described. - Field experiments of the refined OPLS measurement system at a real-world oil and gas production site.These experiments exercise the OPLS system's ability to do leak surveillance, localization, and quantification. - Laboratory development of the OPLS instrument to improve its performance in terms of signal-to-noise and accuracy. - Field experiments demonstrating the successful application of OPLS on a fixed-wing hybrid flown at altitudes higher than 50 m. - Field experiments demonstrating the utility of source attribution using the ethane measurement capability. There is a related webinar.
APA, Harvard, Vancouver, ISO, and other styles
10

Yan, Yujie, and Jerome F. Hajjar. Automated Damage Assessment and Structural Modeling of Bridges with Visual Sensing Technology. Northeastern University, May 2021. http://dx.doi.org/10.17760/d20410114.

Full text
Abstract:
Recent advances in visual sensing technology have gained much attention in the field of bridge inspection and management. Coupled with advanced robotic systems, state-of-the-art visual sensors can be used to obtain accurate documentation of bridges without the need for any special equipment or traffic closure. The captured visual sensor data can be post-processed to gather meaningful information for the bridge structures and hence to support bridge inspection and management. However, state-of-the-practice data postprocessing approaches require substantial manual operations, which can be time-consuming and expensive. The main objective of this study is to develop methods and algorithms to automate the post-processing of the visual sensor data towards the extraction of three main categories of information: 1) object information such as object identity, shapes, and spatial relationships - a novel heuristic-based method is proposed to automate the detection and recognition of main structural elements of steel girder bridges in both terrestrial and unmanned aerial vehicle (UAV)-based laser scanning data. Domain knowledge on the geometric and topological constraints of the structural elements is modeled and utilized as heuristics to guide the search as well as to reject erroneous detection results. 2) structural damage information, such as damage locations and quantities - to support the assessment of damage associated with small deformations, an advanced crack assessment method is proposed to enable automated detection and quantification of concrete cracks in critical structural elements based on UAV-based visual sensor data. In terms of damage associated with large deformations, based on the surface normal-based method proposed in Guldur et al. (2014), a new algorithm is developed to enhance the robustness of damage assessment for structural elements with curved surfaces. 3) three-dimensional volumetric models - the object information extracted from the laser scanning data is exploited to create a complete geometric representation for each structural element. In addition, mesh generation algorithms are developed to automatically convert the geometric representations into conformal all-hexahedron finite element meshes, which can be finally assembled to create a finite element model of the entire bridge. To validate the effectiveness of the developed methods and algorithms, several field data collections have been conducted to collect both the visual sensor data and the physical measurements from experimental specimens and in-service bridges. The data were collected using both terrestrial laser scanners combined with images, and laser scanners and cameras mounted to unmanned aerial vehicles.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography