To see the other types of publications on this topic, follow the link: Avalanche photodiodes. Photodiodes.

Journal articles on the topic 'Avalanche photodiodes. Photodiodes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Avalanche photodiodes. Photodiodes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Rockwell, Ann-Katheryn, Yuan Yuan, Andrew H. Jones, Stephen D. March, Seth R. Bank, and Joe C. Campbell. "Al0.8In0.2As0.23Sb0.77 Avalanche Photodiodes." IEEE Photonics Technology Letters 30, no. 11 (2018): 1048–51. http://dx.doi.org/10.1109/lpt.2018.2826999.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Carrano, J. C., D. J. H. Lambert, C. J. Eiting, et al. "GaN avalanche photodiodes." Applied Physics Letters 76, no. 7 (2000): 924–26. http://dx.doi.org/10.1063/1.125631.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tsuji, Masayoshi, Isao Watanabe, Kikuo Makita, and Kenko Taguchi. "InAlGaAs Staircase Avalanche Photodiodes." Japanese Journal of Applied Physics 33, Part 2, No. 1A (1994): L32—L34. http://dx.doi.org/10.1143/jjap.33.l32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Choa, F. S., and P. L. Liu. "Cascaded homojunction avalanche photodiodes." Fiber and Integrated Optics 7, no. 1 (1988): 1–15. http://dx.doi.org/10.1080/01468038808219347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hasnain, G., W. G. Bi, S. Song, et al. "Buried-mesa avalanche photodiodes." IEEE Journal of Quantum Electronics 34, no. 12 (1998): 2321–26. http://dx.doi.org/10.1109/3.736100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhou, Qiugui, Dion C. McIntosh, Zhiwen Lu, et al. "GaN/SiC avalanche photodiodes." Applied Physics Letters 99, no. 13 (2011): 131110. http://dx.doi.org/10.1063/1.3636412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kinch, M. A., J. D. Beck, C. F. Wan, F. Ma, and J. Campbell. "HgCdTe electron avalanche photodiodes." Journal of Electronic Materials 33, no. 6 (2004): 630–39. http://dx.doi.org/10.1007/s11664-004-0058-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fedorenko, A. V. "Spectral photosensitivity of diffused Ge-p–i–n photodiods." Технология и конструирование в электронной аппаратуре, no. 3-4 (2020): 17–23. http://dx.doi.org/10.15222/tkea2020.3-4.17.

Full text
Abstract:
Laser rangefinders are widely used to measure distances for various civil and military purposes, as well as in rocket and space technology. The optical channel of such rangefinders uses high-speed p–i–n, or avalanche, photodiodes based on Si, Ge or InGaAs depending on the operating wavelength of the rangefinder in question. The paper describes a manufacturing process for high-speed Ge-p–i–n photodiodes for laser rangefinders using the diffusion method. The passivation layer is made of ZnSe, which is a new solution for this type of photodiodes. The existing theoretical models are used to study
APA, Harvard, Vancouver, ISO, and other styles
9

Gao Yanlei, 高艳磊, 芦小刚 Lu Xiaogang, 白金海 Bai Jinhai, et al. "Avalanche Luminescence Crosstalk between Avalanche Photodiodes." Acta Optica Sinica 35, no. 7 (2015): 0727004. http://dx.doi.org/10.3788/aos201535.0727004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ong, D. S., G. J. Rees, and J. P. R. David. "Avalanche speed in thin avalanche photodiodes." Journal of Applied Physics 93, no. 7 (2003): 4232–39. http://dx.doi.org/10.1063/1.1557785.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Nada, Masahiro, Fumito Nakajima, Toshihide Yoshimatsu, et al. "Inverted p-down Design for High-Speed Photodetectors." Photonics 8, no. 2 (2021): 39. http://dx.doi.org/10.3390/photonics8020039.

Full text
Abstract:
We discuss the structural consideration of high-speed photodetectors used for optical communications, focusing on vertical illumination photodetectors suitable for device fabrication and optical coupling. We fabricate an avalanche photodiode that can handle 100-Gbit/s four-level pulse-amplitude modulation (50 Gbaud) signals, and pin photodiodes for 100-Gbaud operation; both are fabricated with our unique inverted p-side down (p-down) design.
APA, Harvard, Vancouver, ISO, and other styles
12

Yan, Feng, Xiao Bin Xin, Petre Alexandrov, Carl M. Stahle, Bing Guan, and Jian Hui Zhao. "Development of Ultra High Sensitivity UV Silicon Carbide Detectors." Materials Science Forum 527-529 (October 2006): 1461–64. http://dx.doi.org/10.4028/www.scientific.net/msf.527-529.1461.

Full text
Abstract:
A variety of silicon carbide (SiC) detectors have been developed to study their sensitivity, including Schottky photodiodes, p-i-n photodiodes, avalanche photodiodes (APDs), and single photon-counting APDs. Due to the very wide bandgap and thus extremely low leakage current, SiC photo-detectors show excellent sensitivity. The specific detectivity, D*, of SiC photodiodes are many orders of magnitude higher than the D* of other solid state detectors, and for the first time, comparable to that of photomultiplier tubes (PMTs). SiC APDs have also been fabricated to pursue the ultimate sensitivity.
APA, Harvard, Vancouver, ISO, and other styles
13

Ahmadov, F. "Alpha particle detector based on micro pixel avalanche photodiodes." Functional materials 20, no. 3 (2013): 390–82. http://dx.doi.org/10.15407/fm20.03.390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Cheang, Pei Ling, Eng Kiong Wong, and Lay Lian Teo. "Avalanche characteristics in thin GaN avalanche photodiodes." Japanese Journal of Applied Physics 58, no. 8 (2019): 082001. http://dx.doi.org/10.7567/1347-4065/ab2e17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Low, L. C., A. H. You, L. L. Y. Andy, and S. L. Tan. "Avalanche characteristics of single heterojunction avalanche photodiodes." European Physical Journal Applied Physics 45, no. 3 (2009): 30301. http://dx.doi.org/10.1051/epjap/2009014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Singh, Anand, Vanya Srivastav, and Ravinder Pal. "HgCdTe avalanche photodiodes: A review." Optics & Laser Technology 43, no. 7 (2011): 1358–70. http://dx.doi.org/10.1016/j.optlastec.2011.03.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Moszyński, M., M. Szawlowski, M. Kapusta, and M. Balcerzyk. "Avalanche photodiodes in scintillation detection." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 497, no. 1 (2003): 226–33. http://dx.doi.org/10.1016/s0168-9002(02)01916-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Pilicer, Ercan, Fatma Kocak, Ilhan Tapan, and Muhitdin Ahmetoglu (Afrailov). "Avalanche photodiodes for electromagnetic calorimeters." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 572, no. 1 (2007): 120–21. http://dx.doi.org/10.1016/j.nima.2006.10.167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Anfimov, N., I. Chirikov-Zorin, Z. Krumshteyn, R. Leitner, and A. Olchevski. "Test of micropixel avalanche photodiodes." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 572, no. 1 (2007): 413–15. http://dx.doi.org/10.1016/j.nima.2006.10.218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Mazzillo, M., G. Condorelli, A. Campisi, et al. "Single photon avalanche photodiodes arrays." Sensors and Actuators A: Physical 138, no. 2 (2007): 306–12. http://dx.doi.org/10.1016/j.sna.2007.05.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Zheng, Jiyuan, Yuan Yuan, Yaohua Tan, et al. "Digital Alloy InAlAs Avalanche Photodiodes." Journal of Lightwave Technology 36, no. 17 (2018): 3580–85. http://dx.doi.org/10.1109/jlt.2018.2844114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Roy, B. C., and N. B. Chakrabarti. "Pulse response of avalanche photodiodes." Journal of Lightwave Technology 10, no. 2 (1992): 169–81. http://dx.doi.org/10.1109/50.120572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Campbell, J. C., S. Demiguel, F. Ma, et al. "Recent Advances in Avalanche Photodiodes." IEEE Journal of Selected Topics in Quantum Electronics 10, no. 4 (2004): 777–87. http://dx.doi.org/10.1109/jstqe.2004.833971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

David, J. P. R., and C. H. Tan. "Material Considerations for Avalanche Photodiodes." IEEE Journal of Selected Topics in Quantum Electronics 14, no. 4 (2008): 998–1009. http://dx.doi.org/10.1109/jstqe.2008.918313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Pansart, J. P. "Avalanche photodiodes for particle detection." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 387, no. 1-2 (1997): 186–93. http://dx.doi.org/10.1016/s0168-9002(96)00987-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Sun, Wenlu, Zhiwen Lu, Xiaoguang Zheng, et al. "High-Gain InAs Avalanche Photodiodes." IEEE Journal of Quantum Electronics 49, no. 2 (2013): 154–61. http://dx.doi.org/10.1109/jqe.2012.2233462.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Campbell, Joe C. "Recent Advances in Avalanche Photodiodes." Journal of Lightwave Technology 34, no. 2 (2016): 278–85. http://dx.doi.org/10.1109/jlt.2015.2453092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Woods, R. C. "Noise effects in avalanche photodiodes." IEEE Transactions on Education 43, no. 3 (2000): 321–23. http://dx.doi.org/10.1109/13.865208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kuchibhotla, R., J. C. Campbell, C. Tsai, and W. T. Tsang. "Delta-doped SAGM avalanche photodiodes." IEEE Transactions on Electron Devices 38, no. 12 (1991): 2705–6. http://dx.doi.org/10.1109/16.158729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Becla, P. "Long wavelength HgMnTe avalanche photodiodes." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 10, no. 4 (1992): 1599. http://dx.doi.org/10.1116/1.586255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Mazzillo, M., G. Condorelli, D. Sanfilippo, et al. "Silicon Geiger mode avalanche photodiodes." Optoelectronics Letters 3, no. 3 (2007): 177–80. http://dx.doi.org/10.1007/s11801-007-6203-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Jafarova, Elmira A., Ziraddin Y. Sadygov, Ali Huseyn A. Dovlatov, Lala A. Aliyeva, Eldar S. Tapdygov, and Kamala A. Askerova. "Negative Capacitance on Silicon Avalanche Photodiodes with Deeply Buried Micropixels." European Journal of Engineering Research and Science 3, no. 4 (2018): 61. http://dx.doi.org/10.24018/ejers.2018.3.4.701.

Full text
Abstract:
There have been investigated reactive properties of silicon avalanche photodiodes (MAPD- Micropixel Avalanche Photodiode) with deeply buried micropixels (amplification channels) within AC signal frequencies f= (50-500) kHz.By experiment is found out that measured capacitance of structures involving three p-n junctions in section passing through the pixels increases exponentially with Ufor (negative potential is applying to n-Si substrate) reaches maximum and at certain value Ufor= Uinv changes the sign becoming the negative capacitance (equivalent inductance).The magnitude of active component
APA, Harvard, Vancouver, ISO, and other styles
33

Rowland, L. B., Jeffery L. Wyatt, Jody Fronheiser, et al. "6H and 4H-SiC Avalanche Photodiodes." Materials Science Forum 615-617 (March 2009): 869–72. http://dx.doi.org/10.4028/www.scientific.net/msf.615-617.869.

Full text
Abstract:
We report on the fabrication and testing of SiC p-i-n avalanche photodiodes. APDs of 0.25 mm2 area on a-plane (1120) 6H-SiC as well as off-axis Si face 6H and 4H-SiC were successfully fabricated. A beveled mesa was used as edge termination. Recessed windows were formed using reactive ion etching to enhance low-wavelength UV performance. We performed current-voltage tests with and without UV illumination to determine dark current, photocurrent, and gain on selected devices. Dark current was less than 1 pA at 0.5Vbr on multiple devices. Quantum efficiency of 40% or greater was observed for all o
APA, Harvard, Vancouver, ISO, and other styles
34

Soloviev, Stanislav I., Alexey V. Vert, Jody Fronheiser, and Peter M. Sandvik. "Solar-Blind 4H-SiC Avalanche Photodiodes." Materials Science Forum 615-617 (March 2009): 873–76. http://dx.doi.org/10.4028/www.scientific.net/msf.615-617.873.

Full text
Abstract:
In this work, solar-blind UV 4H-SiC avalanche photodetectors were fabricated and tested in linear and Geiger modes. APDs with both PIN and separate absorption and multiplication (SAM) structures were investigated. PIN structures demonstrated higher quantum efficiencies while the SAM structure exhibit lower leakage currents. Deposition of a thin film optical filter on top of the devices was used to provide a high photon rejection ratio of (Stas add value here). However, an external filter showed a better photon rejection ratio compared to the deposited one by about one order of magnitude.
APA, Harvard, Vancouver, ISO, and other styles
35

BRITVITCH, I., K. DEITERS, Q. INGRAM, et al. "Avalanche photodiodes now and possible developments." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 535, no. 1-2 (2004): 523–27. http://dx.doi.org/10.1016/s0168-9002(04)01720-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Khodin, Alexandre, Dmitry Shvarkov, and Valery Zalesski. "Silicon avalanche photodiodes for particle detector:." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 465, no. 1 (2001): 253–56. http://dx.doi.org/10.1016/s0168-9002(01)00403-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Huang, Tao. "Photon emission characteristics of avalanche photodiodes." Optical Engineering 44, no. 7 (2005): 074001. http://dx.doi.org/10.1117/1.1950087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

McIntosh, Dion, Qiugui Zhou, Yaojia Chen, and Joe C. Campbell. "High quantum efficiency GaP avalanche photodiodes." Optics Express 19, no. 20 (2011): 19607. http://dx.doi.org/10.1364/oe.19.019607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Sciacca, E., S. Lombardo, M. Mazzillo, et al. "Arrays of Geiger mode avalanche photodiodes." IEEE Photonics Technology Letters 18, no. 15 (2006): 1633–35. http://dx.doi.org/10.1109/lpt.2006.879576.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

White, Benjamin S., Ian C. Sandall, Xinxin Zhou, et al. "High-Gain InAs Planar Avalanche Photodiodes." Journal of Lightwave Technology 34, no. 11 (2016): 2639–44. http://dx.doi.org/10.1109/jlt.2016.2531278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Sun, X., and F. M. Davidson. "Photon counting with silicon avalanche photodiodes." Journal of Lightwave Technology 10, no. 8 (1992): 1023–32. http://dx.doi.org/10.1109/50.156841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Campbell, Joe C., Xiangyi Guo, Ariane Beck, Han-Din Liu, and Dion McIntosh. "4H- and 6H- SiC Avalanche Photodiodes." ECS Transactions 3, no. 5 (2019): 359–65. http://dx.doi.org/10.1149/1.2357225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Liu, Y., S. R. Forrest, R. Loo, G. Tangonan, and H. Yen. "Anomalous multiplication in Hg0.56Cd0.44Te avalanche photodiodes." Applied Physics Letters 61, no. 24 (1992): 2878–80. http://dx.doi.org/10.1063/1.108063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Conceição, A. S., L. F. Requicha Ferreira, L. M. P. Fernandes, et al. "GEM scintillation readout with avalanche photodiodes." Journal of Instrumentation 2, no. 09 (2007): P09010. http://dx.doi.org/10.1088/1748-0221/2/09/p09010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Baccaro, S., J. E. Bateman, F. Cavallari, et al. "Radiation damage effect on avalanche photodiodes." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 426, no. 1 (1999): 206–11. http://dx.doi.org/10.1016/s0168-9002(98)01493-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Wilson, Robert J. "A focussing DIRC with avalanche photodiodes." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 433, no. 1-2 (1999): 487–91. http://dx.doi.org/10.1016/s0168-9002(99)00369-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Tapan, I., A. R. Duell, R. S. Gilmore, T. J. Llewellyn, S. Nash, and R. J. Tapper. "Avalanche photodiodes as proportional particle detectors." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 388, no. 1-2 (1997): 79–90. http://dx.doi.org/10.1016/s0168-9002(97)00316-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Mo Qiu-Yan and Zhao Yan-Li. "Frequency responses of communication avalanche photodiodes." Acta Physica Sinica 60, no. 7 (2011): 072902. http://dx.doi.org/10.7498/aps.60.072902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Wu, Zhiwei, Jingshu Guo, Yuan Li, and Yanli Zhao. "Low-Noise 3-D Avalanche Photodiodes." IEEE Photonics Journal 8, no. 4 (2016): 1–10. http://dx.doi.org/10.1109/jphot.2016.2578932.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Shao, Z. G., X. F. Yang, H. F. You, et al. "Ionization-Enhanced AlGaN Heterostructure Avalanche Photodiodes." IEEE Electron Device Letters 38, no. 4 (2017): 485–88. http://dx.doi.org/10.1109/led.2017.2664079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!