Academic literature on the topic 'Axial capacity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Axial capacity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Axial capacity"
Saravanakumar, R., R. Gopi, K. S. Elango, D. Vivek, C. Kaleeswaran, V. Kavinkumar, S. Venkatraman, et al. "Axial Capacity of Encased Composite Column Under Axial Loading." IOP Conference Series: Materials Science and Engineering 1145, no. 1 (April 1, 2021): 012082. http://dx.doi.org/10.1088/1757-899x/1145/1/012082.
Full textLeach, Philip, and Laurence Weekes. "Axial capacity of perforated steel columns." Steel Construction 6, no. 2 (May 2013): 144–49. http://dx.doi.org/10.1002/stco.201310022.
Full textTawfik, M. S., and T. D. O’Rourke. "Load-Carrying Capacity of Welded Slip Joints." Journal of Pressure Vessel Technology 107, no. 1 (February 1, 1985): 36–43. http://dx.doi.org/10.1115/1.3264401.
Full textHao, Yan E., and Yong Qiang Lan. "Research on the Axial Bearing Capacity of Concrete-Filled Rectangular Steel Tube Short Column." Applied Mechanics and Materials 368-370 (August 2013): 1710–17. http://dx.doi.org/10.4028/www.scientific.net/amm.368-370.1710.
Full textCao, Bing, Xuyan Zhang, Nan Liang, Yizhen Yang, Dekang Shen, Bo Huang, and Yi-han Du. "Bearing capacity of welded composite T-shaped concrete-filled steel tubular columns under axial compression." Advances in Mechanical Engineering 12, no. 5 (May 2020): 168781402092310. http://dx.doi.org/10.1177/1687814020923102.
Full textXie, Jian, Xiao Dan Han, and An Xiang Ge. "Axial Capacity of Steel Angles with Local Deformation." Applied Mechanics and Materials 351-352 (August 2013): 753–59. http://dx.doi.org/10.4028/www.scientific.net/amm.351-352.753.
Full textLi, Hui, Jun Deng, and Jun Hong Lin. "Theoretical Study on Axial Capacity of CFRP Reinforced Self-Stressing Concrete Filled Steel Tubes." Applied Mechanics and Materials 121-126 (October 2011): 3025–29. http://dx.doi.org/10.4028/www.scientific.net/amm.121-126.3025.
Full textZhao, Gen Tian, and Chao Feng. "Axial Ultimate Capacity of Partially Encased Composite Columns." Applied Mechanics and Materials 166-169 (May 2012): 292–95. http://dx.doi.org/10.4028/www.scientific.net/amm.166-169.292.
Full textLong, James H., Diyar Bozkurt, John A. Kerrigan, and Michael H. Wysockey. "Value of Methods for Predicting Axial Pile Capacity." Transportation Research Record: Journal of the Transportation Research Board 1663, no. 1 (January 1999): 57–63. http://dx.doi.org/10.3141/1663-08.
Full textZAKERI, A., E. LIEDTKE, E. C. CLUKEY, and P. JEANJEAN. "Long-term axial capacity of deepwater jetted piles." Géotechnique 64, no. 12 (December 2014): 966–80. http://dx.doi.org/10.1680/geot.14.p.014.
Full textDissertations / Theses on the topic "Axial capacity"
Brooks, Heather Margaret. "Axial capacity of piles supported on intermediate geomaterials." Thesis, Montana State University, 2008. http://etd.lib.montana.edu/etd/2008/brooks/BrooksH0808.pdf.
Full textCoop, Matthew R. "The axial capacity of driven piles in clay." Thesis, University of Oxford, 1987. http://ora.ox.ac.uk/objects/uuid:5b1244f1-9e91-434a-ad15-5cc670c935a9.
Full textGarner, Michael Paul. "Loading Rate Effects on Axial Pile Capacity in Clays." Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd2016.pdf.
Full textBadri, Dhuruva. "Determination of axial pile capacity of prestressed concrete cylinder piles." [Gainesville, Fla.] : University of Florida, 2003. http://purl.fcla.edu/fcla/etd/UFE0001449.
Full textChe, Wai Fong. "Axial bearing capacity prediction of driven piles using artificial neural network." Thesis, University of Macau, 2003. http://umaclib3.umac.mo/record=b1445140.
Full textNiazi, Fawad Sulaman. "Static axial pile foundation response using seismic piezocone data." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/52195.
Full textSun, Miao. "Use of Material Tailoring to Improve Axial Load Capacity of Elliptical Composite Cylinders." Diss., Virginia Tech, 2006. http://hdl.handle.net/10919/29693.
Full textPh. D.
Müller, Matthias. "Predicting the ultimate axial load capacity of joints formed using V-band retainers." Thesis, University of Huddersfield, 2011. http://eprints.hud.ac.uk/id/eprint/12144/.
Full textKoen, Johan Alexander. "An investigation into the axial capacity of eccentrically loaded concrete filled double skin tube columns." Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/96797.
Full textENGLISH ABSTRACT: Concrete filled double skin tube (CFDST) columns is a new method of column construction. CFDST columns consists of two steel hollow sections, one inside the other, concentrically aligned. The cross-sections of the two hollow sections does not have to be the same shape. Concrete is cast in between the two hollow sections resulting in a CFDST. This study only considers CFDST columns constructed with circular steel hollow sections. The advantages of CFDST construction include: ● The inner and outer steel hollow sections replaces the traditional steel reinforcement that would be used in a normal reinforced concrete column. This reduces the construction time since there is no need to construct a reinforcing cage. ● The steel hollow sections acts as a stay in place formwork, eliminating the need for traditional formwork. This also reduces construction time. ● The steel hollow sections confine the concrete, making it more ductile and increasing its yield strength. The objective of this study is to identify methods that can predict the axial capacity of eccentrically loaded circular CFDST columns. Methods chosen for the investigation are: 1. Finite element model (FEM). A model was developed to predict the behaviour of eccentrically loaded CFDST columns. The FE model uses a concrete material model proposed in literature for stub columns. The aim was to determine whether the material model is suited for this application. 2. The failure load of CFDST columns under concentric loading was calculated using a model obtained in literature. These capacities were compared to the experimental test results of eccentrically loaded CFDST columns to establish a correlation. This study found that the concrete material model used does not adequately capture the behaviour resulting in the axial response of the column being too stiff. The difference between the eccentrically loaded experimental test results and the calculated concentrically loaded capacity showed a clear trend that could be used to predict the capacity of eccentrically loaded CFDST columns.
AFRIKAANSE OPSOMMING: Beton-gevulde dubbel laag pyp (BGDLP) kolomme is ‘n nuwe metode van kolom konstruksie. BGDLP kolomme bestaan uit twee staal pyp snitte, die een binne die ander geplaas met hul middelpunte opgelyn, die dwarssnit van die twee pype hoef nie dieselfde vorm te wees nie. Beton word dan in die wand tussen die twee pyp snitte gegiet. Die resultaat is ‘n hol beton snit. Hierdie studie handel slegs oor BGDLP kolomme wat met ronde pyp snitte verwaardig is. Die volgende voordele kan aan BGDLP toegeken word: ● Die binne en buite staalpype vervang die tradisionele staal bewapening was in normale bewapende-beton gebruik sou word. Dus verminder dit die tyd wat dit sal neem om die kolom op te rig. ● Die staalpypsnitte is ook permanente vormwerk. Dit doen dus weg met die gebruik van normale bekisting, wat ook konstruksie tyd spaar. ● Die buite-staalpypsnit bekamp die uitsetting van die beton onder las. Hierdie bekamping veroorsaak dat die beton se gedrag meer daktiel is en ‘n hoër falings spanning kan bereik. Die doel van die studie is om metodes te identifiseer wat gebruik kan word om die aksiale kapasiteit onder eksentriese laste van BGDLP kolomme te bepaal. Twee metodes was gekies: 1. Eindige element model. ‘n Model was ontwikkel om die gedrag van BGDLP kolomme te voorspel. Die mikpunt was om te bepaal of ‘n beton materiaal gedrag model vanuit die literatuur gebruik kan word om BGDLP kolomme te modelleer. 2. Die swiglas van BGDLP kolomme onder konsentriese belasting was bereken vanaf vergelykings uit die literatuur. Hierdie swiglaste was vergelyk met die eksperimentele toets resultate vir eksentriese belaste BGDLP kolomme om ‘n korrelasie te vind. Hierdie studie het bewys dat die beton materiaal model uit die literatuur kan nie gebruik word om die swiglaste van BGDLP kolomme te bepaal nie. Die model het die gedrag te styf gemodelleer. Die verskil tussen die berekende konsentriese belaste swiglas en die eksperimentele resultate van eksentriese BGDLP kolomme was voorspelbaar en kan gebruik word om die swiglas van eksentriese belaste BGDLP kolomme te voorspel.
Mu, Feng. "Analysis and prediction of the axial capacity and settlement of displacement piles in sandy soil." Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/HKUTO/record/B39558988.
Full textBooks on the topic "Axial capacity"
Salgado, Rodrigo, and Yanbei Zhang. Use of Pile Driving Analysis for Assessment of Axial Load Capacity of Piles. Purdue University Press, 2012.
Find full textC, Chang Peter, Taylor A. W, and National Institute of Standards and Technology (U.S.), eds. Determination of the ultimate capacity of elastomeric bearings under axial loading: A report to U.S. Department of Commerce, Technology Administration, National Institute of Standards and Technology, Building and Fire Research Laboratory. Gaithersburg, MD: The Institute, 1998.
Find full textDetermination of the ultimate capacity of elastomeric bearings under axial loading: A report to U.S. Department of Commerce, Technology Administration, National Institute of Standards and Technology, Building and Fire Research Laboratory. Gaithersburg, MD: The Institute, 1998.
Find full textDetermination of the ultimate capacity of elastomeric bearings under axial loading: A report to U.S. Department of Commerce, Technology Administration, National Institute of Standards and Technology, Building and Fire Research Laboratory. Gaithersburg, MD: The Institute, 1998.
Find full textCarlson Hasler, Laura. Archival Historiography in Jewish Antiquity. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780190918729.001.0001.
Full textBook chapters on the topic "Axial capacity"
Zhang, Yufen, and Degang Guo. "Analysis of Axial Bearing Capacity." In Springer Tracts in Civil Engineering, 21–47. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8089-5_2.
Full textYamin, Mohammad. "Axial Capacity of Single Pile Foundations in Soil." In Problem Solving in Foundation Engineering using foundationPro, 121–202. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-17650-5_2.
Full textPieczka, P., and P. Iwicki. "Axial capacity of steel built-up battened columns." In Modern Trends in Research on Steel, Aluminium and Composite Structures, 442–48. London: Routledge, 2021. http://dx.doi.org/10.1201/9781003132134-57.
Full textYamin, Mohammad. "Axial Capacity of Single Drilled Shaft Foundations in Soil." In Problem Solving in Foundation Engineering using foundationPro, 203–45. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-17650-5_3.
Full textBenali, Amel, Ammar Nechnech, and Ali Bouafia. "Development of Semi Empirical Method for Predicting Axial Pile Capacity." In Lecture Notes in Civil Engineering, 342–49. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2306-5_47.
Full textFang, Qin, Hao Wu, and Xiangzhen Kong. "Residual Axial Capacity of UHPCC-FST Column Under Contact Explosion." In UHPCC Under Impact and Blast, 319–67. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6842-2_10.
Full textSuryatriyastuti, Maria E., Hussein Mroueh, and Sébastien Burlon. "Numerical Analysis of the Bearing Capacity of Thermoactive Piles Under Cyclic Axial Loading." In Energy Geostructures, 139–55. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118761809.ch7.
Full textKukreti, Anant R., Musharraf Zaman, and Dhanada K. Mishra. "A High Capacity Cubical Device and Multi-Axial Testing for Constitutive Modeling of Concrete." In Anisotropy and Localization of Plastic Deformation, 221–24. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3644-0_52.
Full textCastaldo, P., B. Palazzo, and A. Mariniello. "Lifetime Axial-Bending Capacity of a R.C. Bridge Pier Cross-Section Subjected to Corrosion." In Lecture Notes in Civil Engineering, 371–84. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78936-1_27.
Full textLi, Xiaowei, Wei Chen, Xuewei Li, Yukun Quan, and Hongfen Nian. "Ultimate bearing capacity of concrete-filled-steel-tubular circular stub columns under axial compression." In Advances in Energy Science and Equipment Engineering II, 1033–38. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315116174-38.
Full textConference papers on the topic "Axial capacity"
Van Dijk, Bas, and Kostas Kaltekis. "Recalibration of Axial Pile Capacity Methods." In Offshore Technology Conference. Offshore Technology Conference, 2019. http://dx.doi.org/10.4043/29406-ms.
Full textLacasse, S., and F. Nadim. "Model Uncertainty in Pile Axial Capacity Calculations." In Offshore Technology Conference. Offshore Technology Conference, 1996. http://dx.doi.org/10.4043/7996-ms.
Full textKarlsrud, K., and F. Nadim. "Axial Capacity of Offshore Piles in Clay." In Offshore Technology Conference. Offshore Technology Conference, 1990. http://dx.doi.org/10.4043/6245-ms.
Full textLacasse, Suzanne, Farrokh Nadim, Thomas Langford, Siren Knudsen, Gülin Luis Yetginer, Tom Reidar Guttormsen, and Asle Eide. "Model Uncertainty in Axial Pile Capacity Design Methods." In Offshore Technology Conference. Offshore Technology Conference, 2013. http://dx.doi.org/10.4043/24066-ms.
Full textRybak, Jaroslaw. "PRACTICAL ASPECTS OF TUBULAR PILE AXIAL CAPACITY TESTING." In 15th International Multidisciplinary Scientific GeoConference SGEM2015. Stef92 Technology, 2011. http://dx.doi.org/10.5593/sgem2015/b12/s2.073.
Full textRybak, Jaroslaw. "SOME REMARKS ON CMC COLUMN AXIAL CAPACITY TESTING." In 15th International Multidisciplinary Scientific GeoConference SGEM2015. Stef92 Technology, 2011. http://dx.doi.org/10.5593/sgem2015/b12/s2.096.
Full textLam, D., and K. K. Y. Wong. "Axial Capacity of Concrete Filled Stainless Steel Columns." In Structures Congress 2005. Reston, VA: American Society of Civil Engineers, 2005. http://dx.doi.org/10.1061/40753(171)105.
Full textChen, Yit-Jin, and Fred H. Kulhawy. "Evaluation of Drained Axial Capacity for Drilled Shafts." In International Deep Foundations Congress 2002. Reston, VA: American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40601(256)86.
Full textLai, Peter, Michael McVay, David Bloomquist, and Dhuruva Badri. "Axial Pile Capacity of Large Diameter Cylinder Piles." In Symposium Honoring Dr. John H. Schmertmann for His Contributions to Civil Engineering at Research to Practice in Geotechnical Engineering Congress 2008. Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/40962(325)11.
Full textJardine, R. J., and R. F. Overy. "Axial capacity of offshore piles driven in dense sand." In Offshore Technology Conference. Offshore Technology Conference, 1996. http://dx.doi.org/10.4043/7973-ms.
Full textReports on the topic "Axial capacity"
Bradley, Gregory L., Peter C. Chang, and Andrew W. Taylor. Determination of the ultimate capacity of elastomeric bearings under axial loading. Gaithersburg, MD: National Institute of Standards and Technology, 1998. http://dx.doi.org/10.6028/nist.ir.6121.
Full textBradley, Gregory L., Andrew W. Taylor, and Peter C. Chang. Ultimate capacity testing of laminated elastomeric base isolation bearings under axial loading. Gaithersburg, MD: National Institute of Standards and Technology, 1997. http://dx.doi.org/10.6028/nist.ir.6002.
Full textSalgado, Rodrigo. Use of Pile Driving Analysis for Assessment of Axial Load Capacity of Piles. Purdue University, December 2012. http://dx.doi.org/10.5703/1288284314671.
Full textHao, Rui, Yuqing Liu, and Haohui Xin. EXPERIMENTAL STUDY ON BEARING CAPACITY OF Q420 STEEL U-RIB STIFFENED PLATES SUBJECTED TO AXIAL COMPRESSION. The Hong Kong Institute of Steel Construction, December 2018. http://dx.doi.org/10.18057/icass2018.p.081.
Full textGuo, Yan-Lin, Meng-Zheng Wang, Jing-Shen Zhu, and Xiao Yang. LOAD-BEARING CAPACITY OF CONCRETE-INFILLED DOUBLE STEEL CORRUGATED-PLATE WALLS WITH T-SECTION UNDER COMBINED AXIAL COMPRESSION AND BENDING MOMENT. The Hong Kong Institute of Steel Construction, December 2018. http://dx.doi.org/10.18057/icass2018.p.076.
Full textTerzic, Vesna, and William Pasco. Novel Method for Probabilistic Evaluation of the Post-Earthquake Functionality of a Bridge. Mineta Transportation Institute, April 2021. http://dx.doi.org/10.31979/mti.2021.1916.
Full textAXIAL RESIDUAL CAPACITY OF CIRCULAR CONCRETE-FILLED STEEL TUBE STUB COLUMNS CONSIDERING LOCAL BUCKLING. The Hong Kong Institute of Steel Construction, September 2018. http://dx.doi.org/10.18057/ijasc.2018.14.3.11.
Full textCAPACITY EVALUATION OF EIGHT BOLT EXTENDED ENDPLATE MOMENT CONNECTIONS SUBJECTED TO COLUMN REMOVAL SCENARIO. The Hong Kong Institute of Steel Construction, September 2021. http://dx.doi.org/10.18057/ijasc.2021.17.3.6.
Full textPERFORMANCE AND CAPACITY CALCULATION METHODS OF SELF-STRESSING STEEL SLAG CONCRETE FILLED STEEL TUBULAR SHORT COLUMNS SUBJECTED TO AXIAL LOAD. The Hong Kong Institute of Steel Construction, March 2021. http://dx.doi.org/10.18057/ijasc.2021.17.1.7.
Full text