Academic literature on the topic 'Axial fan noise'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Axial fan noise.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Axial fan noise"
Lauchle, Gerald C., John R. MacGillivray, and David C. Swanson. "Active control of axial-flow fan noise." Journal of the Acoustical Society of America 101, no. 1 (January 1997): 341–49. http://dx.doi.org/10.1121/1.417979.
Full textKang, Jongmin, and Seungchul Park. "Source modeling for the axial fan noise." Journal of the Acoustical Society of America 101, no. 5 (May 1997): 3189. http://dx.doi.org/10.1121/1.419234.
Full textCapdevila, Hugo. "High efficiency, low-noise axial fan assembly." Journal of the Acoustical Society of America 102, no. 1 (July 1997): 22. http://dx.doi.org/10.1121/1.419532.
Full textMacGillivray, John R., Gerald C. Lauchle, and David C. Swanson. "Active control of axial‐flow fan noise." Journal of the Acoustical Society of America 98, no. 5 (November 1995): 2885. http://dx.doi.org/10.1121/1.413142.
Full textPiper, George E., John M. Watkins, and Owen G. Thorp. "Active Control of Axial-flow Fan Noise Using Magnetic Bearings." Journal of Vibration and Control 11, no. 9 (September 2005): 1221–32. http://dx.doi.org/10.1177/1077546305057261.
Full textChun, Guo, Wang Mingnian, and Tang Zhaozhi. "A Study on Surge and Stall under the Interaction of Parallel Axial flow fan in Tunnel." Noise & Vibration Worldwide 42, no. 11 (December 2011): 9–14. http://dx.doi.org/10.1260/0957-4565.42.11.9.
Full textChang, Cheng-Yuan, Xiu-Wei Liu, Sen M. Kuo, Department of Electrical Engineering, Chung Y, Department of Electrical Engineering, Chung Y, Department of Electrical Engineering, Chung Y, Department of Electrical Engineering, Chung Y, and Department of Electrical Engineering, Chung Y. "Active noise control for centrifugal and axial fans." Noise Control Engineering Journal 68, no. 6 (November 1, 2020): 490–500. http://dx.doi.org/10.3397/1/376840.
Full textGallivan, William P. "High efficiency, low axial profile, low noise, axial flow fan." Journal of the Acoustical Society of America 97, no. 5 (May 1995): 3221. http://dx.doi.org/10.1121/1.411808.
Full textHunnaball, P. J. "Control of Axial Flow Fan Noise by Design." Building Acoustics 1, no. 4 (December 1994): 271–78. http://dx.doi.org/10.1177/1351010x9400100402.
Full textLi, Guoqi, Lifu Zhu, Yongjun Hu, Yingzi Jin, Toshiaki Setoguchi, and Heuy Dong Kim. "Influence of Chord Lengths of Splitter Blades on Performance of Small Axial Flow Fan." Open Mechanical Engineering Journal 9, no. 1 (June 25, 2015): 361–70. http://dx.doi.org/10.2174/1874155x01509010361.
Full textDissertations / Theses on the topic "Axial fan noise"
McKinlay, Ryan Neal. "An Investigation into the Performance of Axial Flow Refrigerator Fans." Thesis, University of Canterbury. Mechanical Engineering, 2014. http://hdl.handle.net/10092/9587.
Full textHomma, Kenji. "Compact Integrated Active-Passive Approach for Axial Fan Noise Control." Diss., Virginia Tech, 2004. http://hdl.handle.net/10919/29067.
Full textPh. D.
Shafer, Benjamin M. "Error Sensor Placement for Active Control of an Axial Cooling Fan." BYU ScholarsArchive, 2007. https://scholarsarchive.byu.edu/etd/1205.
Full textVan, der Spuy Sybrand Johannes. "The design of a low-noise rotor-only axial flow fan series." Thesis, Stellenbosch : University of Stellenbosch, 1997. http://hdl.handle.net/10019.1/20977.
Full textAFRIKAANSE OPSOMMING: 'n Ontwerpsroetine vir die ontwerp van 'n reeks enkelrotor aksiaalwaaiers is ontwikkel. Die roetine is toegepas deur twee verskillende reekse aksiaalwaaiers te ontwerp. Die eerste ontwerp was vir 'n algemene toepassings enkelrotor aksiaalwaaier. Die waaierreeks is ontwerp, gebou en getoets in samewerking met Howden Air Industries vir beide navorsings - en kommersieIe doeleindes. Die tweede ontwerp was vir 'n lae geraas waaierreeks. Die reeks is ontwerp, gebou en getoets deur die Universiteit van Stellenbosch vir navorsingsdoeleindes. Die onwerpsteorie het gebruik gemaak van die beginsel van lemverkorting, waardeur een lem ontwerp is om op al die groottes waaierdeursnee te pas. Die waaierreekse is ontwerp vir waaierdeursnee tussen 315 mm en 1000 mm. Die rotors is ontwerp om 'n uitlaatsneIheidsprofiel te gee wat 'n minimum verlies in kinetiese energie toelaat. Die algemene toepassings waaierontwerp het gekonsentreer rondom die gewilde waaierdeursnee van 500 mm, 560 en 630 mm. Dit is ontwerp vir 'n rotorspoed van 1440 met 'n kommersieel beskikbare waaierreeks wat as verwysing gebruik is. Die lae geraas waaierreeks het op slegs een waaiergrootte gekonsentreer, naamlik 630 mm. Die lae geraas waaierreeks is ook ontwerp met vorentoe gekurfde lemme. Die res van die ontwerpsbeginsels was dieseIfde as vir die algemene toepassings waaierreeks. Die F-reeks vleuelprofiele is gebruik vir die lemseksies van beide waaierreekse. Beide waaiereekse is getoets vir waaiergeraas en -effektiwiteit deur gebruik te maak van die BS 848 Standaarde deel 1 (] 980) en 2 (] 985). 'n Verskeidenheid van waaierdeursnee van die algemene toepassings waaierreeks is getoets om die waaier se vertoning oor 'n gebied van waaiergroottes te bepaal. Die resuItaat was 'n waaierreeks met 'n wye gebied van effektiewe werking, asook uitstekende geraaseienskappe. 'n 630 mm Deursnee waaier is gebruik om die lae geraas waaier te toets. Die toetse het 'n waaier getoon wat beide hoe effektiwiteit en lae geraaseienskappe het. Die afname in waaiergeraas wat verkry is met die lae geraas waaier, in vergelyking met die algemene toepassings waaier, regverdig egter rue die werk en kostes verbonde aan die ontwerp van die waaierreeks nie.
Shafer, Benjamin Michael. "Error sensor placement for active control of an axial cooling fan /." Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd2119.pdf.
Full textGreen, Matthew J. "Feedback Applications in Active Noise Control for Small Axial Cooling Fans." Diss., CLICK HERE for online access, 2006. http://contentdm.lib.byu.edu/ETD/image/etd1539.pdf.
Full textKhiabani, Amir, and Alanis Daniel Acebo. "Cooling Fan Optimization for Heavy Electrified Vehicles : A study on performance and noise." Thesis, KTH, Flygdynamik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-280145.
Full textFordonselektrifiering har en väsentlig roll i arbetet med att minska bilindustrins miljöpåverkan. Scania är en av de ledande tillverkarna av tunga fordon som för närvarandegår mot ett hållbart transportsystem, genom att tillverka en ny generation tunga fordon drivna med batterier. Ett stort bekymmer med dessa fordon är relaterattill det ljud som genereras av de elektriska axialfläktarna som används i kylsystemet. Detta projekt genomfördes i syfte till att undersöka de faktorer som positivtpåverkar både buller och prestanda hos de elektriska fläktarna. Baserat på två olika bladdesignmetoder och flera brusstyrningstekniker, utvecklades 11 fläktmodeller.Fläktmodellerna som är utformade med konstruktionsmetod 1 är utrustade med krökformade plattor, medan modellerna som skapades med designmetod 2 bestårav vingprofil blad. Dessutom analyserades prestandan för dessa modeller med användning av teoretiska metoder och strömningsmekaniska beräkningar. Ytterligaretvå empiriska tillvägagångssätt användes för att uppskatta den akustiska energin som släppts ut av fläktmodellerna. Utöver det jämfördes de utvecklade modellernamed två kommersiellt tillgängliga fläktar. Detta visade att båda konstruktionsmetoderna resulterar i liknande prestanda vid lågtrycksskillnader, däremot påverkasverkningsgraden och den akustiska energin av valet av brusstyrningsmetoder.
Rust, Ryan Leonard. "Active Noise Control of a Two-Fan Exhaust-Mounted Array Using Near-Field Control Sources and Error Sensors." BYU ScholarsArchive, 2010. https://scholarsarchive.byu.edu/etd/2427.
Full textBouley, Simon. "Modélisations analytiques du bruit tonal d'interaction rotor/ stator par la technique de raccordement modal." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEC007/document.
Full textThe rotor-stator wake-interaction tonal noise, generated by the impingement of rotor wakes onoutlet guide vanes, plays a crucial role in the aerodynamic noise of axial-flow ducted fan stages. Thelatter are widely used in most aeronautic propulsion and air-conditioning systems. The noise predictionby means of numerical simulations remains expensive, especially at the preliminary design stage whennumerous configurations must be tested. In this respect, the analytical approach chosen in this thesisprovides a well suited alternative. The analytical modeling based on an isolated-airfoil response functioncan not reproduce the cascade effect introduced by the large number of stator vanes. Conversely, drasticapproximations are required to extend the current cascade response functions to three-dimensionalconfigurations. The proposed modeling based on the mode-matching technique simply introduces thecascade effect in an annular rotor-stator stage. A rectilinear cascade response function is firstly presentedto account for the acoustic transmission through the stator along with the wake-interaction noise.In this context, a linearized and non-viscous analysis is carried out, in which the acoustic and vorticalmodes of a gas are coupled at rigid physical boundaries. The velocity perturbations issued from thewakes are written as a sum of convected gusts. Their impingement on the cascade of vanes generatesacoustic waves propagating upstream, downstream of the cascade, as well as inside the inter-vane channelsof the stator, seen as a periodic array of bifurcated waveguides. The duct cross sections at theleading-edge and the trailing-edge of the vanes are seen as interfaces on which the continuity of thefluctuating pressure, axial velocity and vorticity is fulfilled. A system of linear equations is obtained,then solved by means of modal projections and matrix inversions. The acoustic field is then uniformlycalculated in the whole domain. Comparisons with rectilinear cascade response functions show a verygood agreement with predictions based on the Wiener-Hopf technique. The configuration of an annularcascade is addressed by introducing the Bessel functions as radial shape functions, expressing threedimensionaleffects. Finally, a procedure is presented to account for the heterogeneity of the statorvanes, typical of modern fan architectures. This approach is based on the combinaison of the leadingedgedipole principle and the cascade response function derived from the mode-matching technique.The edge-dipole principle identifies Amiet’s solution for the unsteady loading and the radiation of adipole approached very close to the edge of a half plane. The predictions provided by this modeling,applied in a two-dimensional configuration, are finaly compared to measurements performed in the testcampaign of the SEMAFOR project
Monson, Brian B. "Optimization of Active Noise Control for Small Axial Cooling Fans." Diss., CLICK HERE for online access, 2006. http://contentdm.lib.byu.edu/ETD/image/etd1495.pdf.
Full textBooks on the topic "Axial fan noise"
Actuator feasibility study for active control of ducted axial fan noise: Under contract NAS3-26618. [Washington, DC: National Aeronautics and Space Administration, 1994.
Find full textActuator feasibility study for active control of ducted axial fan noise: Under contract NAS3-26618. [Washington, DC: National Aeronautics and Space Administration, 1994.
Find full textBook chapters on the topic "Axial fan noise"
Wang, C., W. Zhang, and L. Huang. "Noise Source Analysis and Control for Two Axial-Flow Cooling Fans in Series." In Fluid-Structure-Sound Interactions and Control, 57–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48868-3_9.
Full textBianchi, Stefano, Alessandro Corsini, and Anthony G. "Synergistic Noise-By-Flow Control Design of Blade-Tip in Axial Fans: Experimental Investigation." In Noise Control, Reduction and Cancellation Solutions in Engineering. InTech, 2012. http://dx.doi.org/10.5772/26682.
Full textConference papers on the topic "Axial fan noise"
Faverjon, Beatrice, Jeoffrey R. Fischer, Con J. Doolan, Danielle Moreau, and Zebb Prime. "Characterisation and modelling of axial fan noise." In 22nd AIAA/CEAS Aeroacoustics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-3002.
Full textSwienty, Andreas, Evgenii Palamarchuk, Raja Abou Ackl, and Paul Uwe Thamsen. "Noise Reduction Measures for an Axial Fan." In ASME 2017 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fedsm2017-69287.
Full textFedala, Djaafer, Smaïne Kouidri, Robert Rey, Thomas Carolus, and Marc Schneider. "Incident Turbulence Interaction Noise from an Axial Fan." In 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-2477.
Full textRoy, Subrata, Phillip Cho, and Fred Périé. "Designing Axial Flow Fan for Flow and Noise." In International Off-Highway & Powerplant Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1999. http://dx.doi.org/10.4271/1999-01-2817.
Full textSommerfeldt, Scott D., and Kent L. Gee. "Active control of axial and centrifugal fan noise." In ICA 2013 Montreal. ASA, 2013. http://dx.doi.org/10.1121/1.4799648.
Full textLee, Duck-Joo, Wan-Ho Jeon, and Ki-Hoon Chung. "Development and Application of Fan Noise Prediction Method to Axial and Centrifugal Fan." In ASME 2002 Joint U.S.-European Fluids Engineering Division Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/fedsm2002-31209.
Full textHeinemann, Till, Sven Münsterjohann, Florian Zenger, and Stefan Becker. "Cross Wind Influence on Noise Emission and Computed Vibrational Noise of an Axial Fan." In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-42444.
Full textLuo, Bo, Wuli Chu, Wei Dong, and Xiangyi Chen. "Aerodynamic Characteristics and Noise Analysis of a Low-Speed Axial Fan." In ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-76079.
Full textZenger, Florian, Clemens Junger, Manfred Kaltenbacher, and Stefan Becker. "A Benchmark Case for Aerodynamics and Aeroacoustics of a Low Pressure Axial Fan." In 9th International Styrian Noise, Vibration & Harshness Congress: The European Automotive Noise Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2016. http://dx.doi.org/10.4271/2016-01-1805.
Full textBae, Il-Sung, Hooi-Joong Kim, and Seungbae Lee. "Computation of Turbulent Flows and Aero-Acoustics From an Axial Fan." In ASME 2002 Joint U.S.-European Fluids Engineering Division Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/fedsm2002-31327.
Full text