Academic literature on the topic 'Axial Flux Brushless DC (BLDC) Motors'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Axial Flux Brushless DC (BLDC) Motors.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Axial Flux Brushless DC (BLDC) Motors"

1

Patel, A. N. "Slot opening displacement technique for cogging torque reduction of axial flux brushless DC motor for electric two-wheeler application." Electrical Engineering & Electromechanics, no. 2 (March 5, 2023): 7–13. http://dx.doi.org/10.20998/2074-272x.2023.2.02.

Full text
Abstract:
Introduction. Reduction of cogging torque is the crucial design consideration of axial flux brushless DC (BLDC) motor, particularly for low-speed applications. Aim. The slot opening displacement technique is presented in this article to reduce cogging torque in axial flux BLDC motors suitable for electric two-wheeler applications. Methods. Double rotor single stator configuration of axial flux BLDC motor is the most suitable for such vehicular applications. Initially double rotor single stator 250 W, 150 rpm axial flux BLDC motor is designed with stator slot opening in middle position and considered as reference motor for further analysis. To evaluate the cogging torque profile of the reference motor 3D finite element modeling and analysis are performed. The design is enhanced by dividing all stator teeth into groups and displacing the slot openings of each group in opposite direction with respect to the adjacent group. Results. The influence of slot opening displacement on cogging torque is evaluated with finite element modeling and analysis. As cogging torque is reduced from 1.23 N×m to 0.63 N×m, the slot opening displacement technique is found to be effective in reducing cogging torque of axial flux BLDC motor.
APA, Harvard, Vancouver, ISO, and other styles
2

Nurmalia, Alif, Widyono Hadi, and Widya Cahyadi. "Performance Test of Three-Phase Brushless Direct Current Motor Axial Flux with Differences Diameter of Neodymium Type Permanent Magnet." ELKHA 13, no. 1 (April 20, 2021): 55. http://dx.doi.org/10.26418/elkha.v13i1.41693.

Full text
Abstract:
Technology that is growing rapidly and innovations that have sprung up in the electrical field today are driving the use of electricity as a source of energy to do work. Electric motor is one component that is very popular in the industrial world and households that are useful to human life. In addition to DC motors and induction motors, there are also 3 phase brushless direct current (BLDC) motors which are a type of synchronous motor where magnetic fields are produced by rotor and stator at the same frequency. The rotor is a moving part of the brushless direct current motor which is a place of permanent magnet called a pole. This paper discusses the performance of brushless direct current 3 phase axial flux motors with different diameters of neodymium type permanent magnets. Tests carried out using neodymium permanent magnets with diameters of 15mm x 2mm and 20mm x 2mm were tested without using a load and using load. The parameters used in testing motor performance include speed, torque, and motor power with a source voltage of 12V, 16V, 20V, and 24V. The test results shows that the speed value of a BLDC motor using permanent magnets with a size of 20mm x 2mm is greater than that of permanent magnets of 15mm x 2mm. The same thing applies to the value of the power produced while, for the value of torque when the motor uses a permanent magnet of 15mm x 2mm will be greater than that of a motor using a permanent magnet of 20mm x 2mm.
APA, Harvard, Vancouver, ISO, and other styles
3

Azizi, M. Fariz, Widyono Hadi, and Guido Dias Kalandro. "RANCANG BANGUN MOTOR BLDC AXIAL FLUX MENGGUNAKAN DUA KAWAT EMAIL PADA LILITAN KUMPARAN STATOR." Jurnal Arus Elektro Indonesia 6, no. 2 (August 31, 2020): 52. http://dx.doi.org/10.19184/jaei.v6i2.19617.

Full text
Abstract:
The rapid development of technology in this era of globalization has an impact on the development of electric motor technology in Indonesia. There are two types of electric motors based on the voltage source used namely DC electric motor and AC electric motor. Because the use of DC motor or AC motor has not been able to meet the needs, the use of BLDC motor (Brushless Direct Current) is a very appropriate choice. In this research, the design of BLDC Axial Flux motor used a single rotor attached to a neodymium magnet and a stator made of two email wires wrapped together. From testing the motor no-load when the source voltage is 18 V it has an input power of 4,038 W and motor speed of 1513 RPM. While when the source voltage is 24 V has an input power of 8,716 W and motor speed 1606 RPM. As for testing motors with loads when the source voltage is 24 V has an input power of 11,432 W, output power 3,579 W, efficiency 31,311%, motor speed 1098 RPM, mechanical torque 0.031 Nm, and electromagnetic torque 0.099 Nm. Coconut laying on overpressed blade roll results in the motor not being able to provide torque according to load needs, so the speed of the motor will drop, and torque increases. Besides, the greater the voltage of the source then the greater the power and speed of the motor.
APA, Harvard, Vancouver, ISO, and other styles
4

Tosun, Ozturk, and Necibe Fusun Oyman Serteller. "The Design of the Outer-Rotor Brushless DC Motor and an Investigation of Motor Axial-Length-to-Pole-Pitch Ratio." Sustainability 14, no. 19 (October 6, 2022): 12743. http://dx.doi.org/10.3390/su141912743.

Full text
Abstract:
In this study, the effects of the ratio of a motor’s axial length to its pole pitch on efficiency, magnetic flux density distribution, torque, torque/weight, and motor volume were investigated in an outer-rotor (hub) brushless direct current motor. The weight and volume of an electrical machine affects the output power, efficiency and output torque, and it is advantageous to design an electric motor at an appropriate power and high efficiency with an appropriate weight and volume. Therefore, the aim of this study was to optimize the motor’s axial length and stator outer diameter, which affects the motor volume. Initially, the axial-length-to-pole-pitch ratio of the hub BLDC motor was taken at 0.75. According to this ratio, the dimensions of the rotor outer diameter, rotor inner diameter, stator outer diameter, stator inner diameter, slot height, motor axial length, and magnet thickness were optimally determined. Then, the axial-length-to-pole-pitch ratio was considered as 1, 1.50, 2, and 3, respectively. The effects of the change in the motor’s axial-length-to-pole-pitch ratio on the efficiency, torque, speed, torque/volume, torque/weight, and cogging torque were examined in a simulation environment. According to the motor’s axial-length-to-pole-pitch ratio, the torque value in the final state was 28.65% higher than the torque value in the initial state. In the last part, the motor axial length and the stator outer diameter were defined as variables in a genetic algorithm procedure and optimized. The number of poles and the number of slots were fixed parameters. Simulation studies were carried out using the finite element method via AN-SYS/Maxwell software.
APA, Harvard, Vancouver, ISO, and other styles
5

Khlifi, M. A., M. Ben Slimene, A. Alradedi, and S. Al Ahmadi. "Investigation of a Leakage Reactance Brushless DC Motor for DC Air Conditioning Compressor." Engineering, Technology & Applied Science Research 12, no. 2 (April 9, 2022): 8316–20. http://dx.doi.org/10.48084/etasr.4762.

Full text
Abstract:
Home appliances using Brushless DC (BLDC) motors, such as Air Conditioners (ACs) and ceiling and pedestal fans, are gaining attention these days due to their low power consumption and low maintenance cost. This paper estimates and analyzes the leakage reactance of conventional and flux-switching permanent magnet BLDC motors. The leakage magnetic field of a high-power BLDC motor will be one of the main sources of interference. The magnetic field characteristics of the leakage field of a BLDC motor must be analyzed in order to acquire correct geomagnetic data. We also show the rotor's leakage magnetic field while the BLDC motor is static, the stator and rotor's leakage magnetic fields when the BLDC motor is functioning, and the near-field characteristic of the BLDC motor's leakage magnetic field.
APA, Harvard, Vancouver, ISO, and other styles
6

CRAIU, Ovidiu, Leonard Marius MELCESCU, and Cristian BOBOC. "Brushless DC Permanent Magnet Motors State of the Art." Electrotehnica, Electronica, Automatica 69, no. 4 (November 15, 2021): 5–16. http://dx.doi.org/10.46904/eea.21.69.4.1108001.

Full text
Abstract:
The paper presents a study of the permanent magnet brushless DC machine, from two perspectives - from authors’ own experience in designing and manufacturing such motors, as well as from actual published research. Various constructive topologies and how they influence BLDC operation, windings used with emphasis on slot, concentrated windings, are also presented. The following part describes current techniques used for enhancing BLDC limited maximum speed, such as phase advance and dwell control, somewhat similar to flux weakening in AC permanent magnet brushless motors. The paper concludes with presentation of several methods used for sensing BLDC rotor position. Overall, the authors’ intention publishing this paper was to provide an insight regarding current BLDC development, as well as to assist in making documented choices when using BLDC in specific applications.
APA, Harvard, Vancouver, ISO, and other styles
7

Özüpak, Yıldırım. "Investigation of the Effect of Design Parameters of Small Brushless DC Motors on Motor Performance by Finite Element Method." Brilliant Engineering 3, no. 3 (May 20, 2022): 1–6. http://dx.doi.org/10.36937/ben.2022.4658.

Full text
Abstract:
Direct Current (DC) motors are widely used in industrial applications. The limited use of brushed models in some areas has brought Brushless Direct Current Motors (BLDC) to the fore. The constant need for maintenance of brushed type motors creates a disadvantage in variable conditions and in areas that are used continuously. For this reason, brushless DC motors have a wide range of uses. Brushless DC motors stand out with their high-performance values. Brushless DC motors with outer rotor type are used in applications that require high torque and inertia. The fact that electrical machines have moving parts and the computational complexity created by these parts have led electrical machine designers to alternative ways such as software and simulation programs where the results can be predicted. In this paper, a Brusgless Permanent Magnet Direct Current motor (BLPMDC) was designed and analyzed. The obtained speed, efficiency, torque, and air gap flux distributions were examined and the results were compared with literature for the motor type. In this study, applications were made to examine the effects of design parameters such as rotor structure, rotor position, magnet arrangement and materials used in the structures on the efficiency and output power of the motor. Efficiency-speed and power-speed values were obtained for different structures and features of the engine. The results obtained are compared with each other and presented in the article in the form of graphs and tables.
APA, Harvard, Vancouver, ISO, and other styles
8

Lee, Ho-Young, Seung-Young Yoon, Soon-O. Kwon, Jin-Yeong Shin, Soo-Hwan Park, and Myung-Seop Lim. "A Study on a Slotless Brushless DC Motor with Toroidal Winding." Processes 9, no. 11 (October 21, 2021): 1881. http://dx.doi.org/10.3390/pr9111881.

Full text
Abstract:
In this study we developed a brushless DC (BLDC) slotless motor with toroidal winding. The proposed toroidal winding is a method of winding a coil around a ring-type stator yoke in the circumferential direction. As there is no need for a slot or tooth structure, it can be designed with a slotless motor structure that is advantageous for vibration and noise. The basic principle of operation and motor characteristics of a slotless motor with toroidal winding were explained using an analytical method and finite element analysis (FEA). Further, the air gap flux density, winding factor, and back electromotive force (EMF) for changes in the winding angle and number of coil turns were calculated using the analytical method and compared with the FEA results. Finally, the resistance, back EMF, cogging torque, and performance of the prototype were measured and compared with the FEA results. The results show that the air gap flux density and winding factor were approximately the same with an error of <2%, while the back EMF had an error of ~10% from the analysis result. Thus, the proposed slotless motor provides a basic design for conveniently manufacturing brushless DC (BLDC) slotless motors with toroidal windings.
APA, Harvard, Vancouver, ISO, and other styles
9

Soni, Umesh Kumar, and Ramesh Kumar Tripathi. "A low-power prototype of contactless field power controlled BLAC and BLDC motors." Wireless Power Transfer 7, no. 2 (August 13, 2020): 106–15. http://dx.doi.org/10.1017/wpt.2020.11.

Full text
Abstract:
AbstractIn this paper, a new design configuration has been proposed in which a prototype of resonant inductive power transfer-based contactless power transfer to wound rotor has been developed which provides field power to brushless alternating current (BLAC) or brushless direct current (BLDC) motors without the use of permanent magnets in the rotor. Further, wound field in the rotor of DC motor can be powered without carbon brushes. The proposed design facilitates motor performance improvement by adding an extra dimension of field flux control, while the armature circuit is conventionally fed from position detection and commutation schemes. It contains a primary multilayer concentrated coil fed with high-frequency resonating AC supply or switched mode supply. A single layer helical secondary coil coaxially fixed on the shaft receives high frequency wireless AC power transmitted from primary coil. Fast rectifier inside the hollow shaft and DC filter provides the transferred DC power to field terminals in the rotor. It has been verified that rotor power can be varied linearly with linear variation in input DC power with the highest efficiency at the resonant frequency. Available power to the rotor remains invariable with rotational speed and angle, which is a necessary requirement for rotor field. DC voltage on the rotor terminals can be effectively controlled during standstill as well as during rotation at any speed.
APA, Harvard, Vancouver, ISO, and other styles
10

Karthick, K., S. Ravivarman, Ravi Samikannu, K. Vinoth, and Bashyam Sasikumar. "Analysis of the Impact of Magnetic Materials on Cogging Torque in Brushless DC Motor." Advances in Materials Science and Engineering 2021 (December 17, 2021): 1–10. http://dx.doi.org/10.1155/2021/5954967.

Full text
Abstract:
The cogging torque is the most significant issue in permanent magnet applications, since it has a negative impact on machine performance. In this article, the impact of magnetic materials on cogging torque is analyzed on brushless DC motors (BLDC). The effect of neodymium magnets (NdFeB), compression molded magnet, and samarium cobalt (SmCo) magnet on the cogging torque is analyzed to the BLDC motor designed for hybrid electric vehicle traction that has the peak power rating of 50 kW motor with 48 stator slots and 8 rotor poles. With the presence of these three magnetic materials, the cogging torque is estimated independently using multiposition simulation. The multiposition is simulated using a transient application that runs at constant speed. The results of cogging torque, rotational speed, angular position of BLDC motor, and magnetic flux density distribution have been presented. Also, the maximal, mean, minimal, rectified mean, and rms values of cogging torque were provided.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Axial Flux Brushless DC (BLDC) Motors"

1

Yilmaz, Kurtulus. "Comparison Of Axial Flux And Radial Flux Brushless Dc Motor Topologies For Control Moment Gyroscope Wheel Applications." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12610565/index.pdf.

Full text
Abstract:
In this thesis axial flux and radial flux brushless dc motors will be studied as a drive motor for the control of moment gyroscope wheel. Design equations for axial flux and radial flux brushless dc motor topologies will be reviewed. Based on these equations radial and axial flux motors with different number of poles will be designed that meet control moment gyroscope wheel application requirements. The results will be evaluated in terms of efficiency, torque/mass and torque/volume, and suitability for the control moment gyroscope application.
APA, Harvard, Vancouver, ISO, and other styles
2

De, Sukumar. "Rectifier And Inverter System For Driving Axial Flux BLDC Motors In More Electric Aircraft Application." Thesis, 2011. https://etd.iisc.ac.in/handle/2005/2080.

Full text
Abstract:
In the past two decades the core aircraft technology is going through a drastic change. The traditional technologies that is almost half a century old, is going through a complete revamp. In the new “More Electric Aircraft” technology many mechanical, pneumatic and hydraulic systems are being replaced by electrical and power electronic systems. Airbus-A380, Boeing B-787 are the pioneers in the family of these new breed of aircrafts. As the aircraft technology is moving towards “More Electric”, more and more electric motors and motor controllers are being used in new aircrafts. Number of electric motor drive systems has increased by about ten times in more electric aircrafts compared to traditional aircrafts. Weight of any electric component that goes into aircraft needs to be low to reduce the overall weight of aircraft so as to improve the fuel efficiency of the aircraft. Hence there is an increased need to reduce weight of motors and motor controllers in commercial aircraft. High speed ironless axial flux permanent magnet brushless dc motors are becoming popular in the new more-electric aircrafts because of their ability to meet the demand of light weight, high power density, high efficiency and high reliability. However, these motors come with very low inductance, which poses a big challenge to the motor controllers in controlling the ripple current in motor windings. Multilevel inverters can solve this problem. Three-level inverters are proposed in this thesis for driving axial flux BLDC motors in aircraft. Majority of the motors in new more electric aircrafts are in the power range of 2kW to 20kW, while a few motor applications being in the range of 100kW to 150kW. Motor controllers in these applications run from 270Vdc or 540Vdc bus which is the standard in new more electric aircraft architecture. Multilevel Inverter is popular in the industry for high power and high voltage applications, where high-voltage power switching devices like IGBT, GTO are popularly used. However multilevel inverters have not been tried in the low power range which is appropriate for aircraft applications. A detail analysis of practical feasibility of constructing three-level inverter in lower power and voltage level is presented in this thesis. Analysis is presented that verify the advantages of driving low voltage and low power (300Vdc to 600Vdc and less than 100kW) motors with multilevel inverters. Practical considerations for design of MOSFET based three-level inverter are investigated and topological modifications are suggested. The effect of clamping diodes in the diode clamped multilevel inverters play an important role in determining its efficiency. SiC diodes are proposed to be used as clamping diodes. Further, it is realised that power loss introduced by reverse recovery of MOSFET body diode prohibits use of MOSFET in hard switched inverter legs. Hence, a technique of avoiding the reverse recovery losses of MOSFET body diode in three-level NPC inverter is conceived. The use of proposed multilevel inverter topology enables operation at high switching frequency without sacrificing efficiency. High switching frequency of operation reduces the output filter requirement, which in turn helps reducing size of the inverter. In this research work elaborate trade-off analysis is done to quantify the suitability of multilevel inverters in the low power applications. For successful operation of three-level NPC inverter in aircraft electrical system, it is important for the DC bus structure in aircraft electric primary distribution system to be compatible to drive NPC inverters. Hence a detail study of AC to DC power conversion system as applied to commercial aircraft electrical system is done. Multi-pulse rectifiers using autotransformers are used in aircrafts. Investigation is done to improve these rectifiers for future aircrafts, such that they can support new technologies of future generation motor controllers. A new 24-pulse isolated transformer rectifier topology is proposed. From two 15º displaced 6-phase systems feeding two 12-pulse rectifiers that are series connected, a 24-pulse rectifier topology is obtained. Though, windings of each 12-pulse rectifiers are isolated from primary, the 6-phase generation is done without any isolation of the transformer windings. The new 24-pulse transformer topology has lower VA rating compared to standard 12-pulse rectifiers. Though the new 24-pulse transformer-rectifier solution is robust and simple, it adds to the weight of the overall system, as compared to the present architecture as the proposed topology uses isolated transformer. Non-isolated autotransformer cannot provide split voltage at the dc-link that creates a stable mid-point voltage as required by the three-level NPC inverter. Hence, a new front-end AC-DC power conversion system with switched capacitor is conceived that can support motor controllers driven by three-level inverters. Laboratory experimental results are presented to validate the new proposed topology. In this proposed topology, the inverter dc-link voltage is double the input dc-link voltage. An intense research work is performed to understand the operation of Trapezoidal Back EMF BLDC motor driven by three-Level NPC inverter. Operation of BLDC motor from three-Level inverter is primarily advantageous for low inductance motors, like ironless axial flux motors. For low inductance BLDC motor, very high switching frequency is required to limit the magnitude of ripple current in motor winding. Three-level inverters help limiting the magnitude of motor ripple current without increasing the switching frequency to very high value. Further, it is analysed that dc link mid-point current in three-level NPC inverter for driving trapezoidal BLDC motor has a zero average current with fundamental frequency same as switching frequency. Because of this, trapezoidal BLDC motors can easily be operated from three-level NPC inverter without any special attention given to mid-point voltage unbalance. One non-ideal condition arrives in practical implementation of the inverter that leads to non-zero average mid point current. Unequal gate drive dead time delays from one leg to other leg of inverter introduce dc-link mid-point voltage unbalance. For the motoring mode operation of trapezoidal BLDC motor drive, simple gate drive logic is researched that eliminates need of the gate drive dead-time, and hence solves the mid-point voltage unbalance issue. Simple closed loop control scheme for mid-point voltage balancing also is also proposed. This control scheme may be used in applications where very precise control of speed and torque ripple is warranted. All the investigations reported in this thesis are simulated extensively on MATHCAD and MATLAB platform using SIMULINK toolbox. A laboratory experimental set-up of three-Level inverter driving axial flux BLDC motor is built. The three-level inverter, operating from 300Vdc bus is built using 500V MOSFETs and 600V SiC diodes. All the control schemes are implemented digitally on digital signal processor TMS320F2812 DSP platform and GAL22V10B platforms. Experimental results are collected to validate the theoretical propositions made in the present research work. At the end, in chapter 5, some future works are proposed. A new external voltage balance circuit is proposed where the inverter dc-link voltage is same as the input dc-link voltage. This topology is based on the resonant converter principle and uses a lighter resonant inductor than prior arts available in literature. Detail simulation and experimentation of this topology may be carried out to validate the industrial benefits of this circuit. It is also thought that current source inverters may work as an alternative to voltage source inverters for driving BLDC motors. Current source inverters eliminate use of bulky DC-link capacitors. Long term reliability of current source inverters is higher than voltage source inverters due to the absence of possibility of shoot-through. Further, in voltage source inverters, the voltage at the motor terminal is limited by the source voltage (dc-link voltage). This issue is eliminated in current source inverters. An interface circuit is conceived to reduce the size of dc-link inductors in current source inverters, pending detail analysis and experimental verification. The interface circuit bases its fundamentals on the principles of operation of multilevel inverters for BLDC motors that is presented in this thesis.
APA, Harvard, Vancouver, ISO, and other styles
3

De, Sukumar. "Rectifier And Inverter System For Driving Axial Flux BLDC Motors In More Electric Aircraft Application." Thesis, 2011. http://etd.iisc.ernet.in/handle/2005/2080.

Full text
Abstract:
In the past two decades the core aircraft technology is going through a drastic change. The traditional technologies that is almost half a century old, is going through a complete revamp. In the new “More Electric Aircraft” technology many mechanical, pneumatic and hydraulic systems are being replaced by electrical and power electronic systems. Airbus-A380, Boeing B-787 are the pioneers in the family of these new breed of aircrafts. As the aircraft technology is moving towards “More Electric”, more and more electric motors and motor controllers are being used in new aircrafts. Number of electric motor drive systems has increased by about ten times in more electric aircrafts compared to traditional aircrafts. Weight of any electric component that goes into aircraft needs to be low to reduce the overall weight of aircraft so as to improve the fuel efficiency of the aircraft. Hence there is an increased need to reduce weight of motors and motor controllers in commercial aircraft. High speed ironless axial flux permanent magnet brushless dc motors are becoming popular in the new more-electric aircrafts because of their ability to meet the demand of light weight, high power density, high efficiency and high reliability. However, these motors come with very low inductance, which poses a big challenge to the motor controllers in controlling the ripple current in motor windings. Multilevel inverters can solve this problem. Three-level inverters are proposed in this thesis for driving axial flux BLDC motors in aircraft. Majority of the motors in new more electric aircrafts are in the power range of 2kW to 20kW, while a few motor applications being in the range of 100kW to 150kW. Motor controllers in these applications run from 270Vdc or 540Vdc bus which is the standard in new more electric aircraft architecture. Multilevel Inverter is popular in the industry for high power and high voltage applications, where high-voltage power switching devices like IGBT, GTO are popularly used. However multilevel inverters have not been tried in the low power range which is appropriate for aircraft applications. A detail analysis of practical feasibility of constructing three-level inverter in lower power and voltage level is presented in this thesis. Analysis is presented that verify the advantages of driving low voltage and low power (300Vdc to 600Vdc and less than 100kW) motors with multilevel inverters. Practical considerations for design of MOSFET based three-level inverter are investigated and topological modifications are suggested. The effect of clamping diodes in the diode clamped multilevel inverters play an important role in determining its efficiency. SiC diodes are proposed to be used as clamping diodes. Further, it is realised that power loss introduced by reverse recovery of MOSFET body diode prohibits use of MOSFET in hard switched inverter legs. Hence, a technique of avoiding the reverse recovery losses of MOSFET body diode in three-level NPC inverter is conceived. The use of proposed multilevel inverter topology enables operation at high switching frequency without sacrificing efficiency. High switching frequency of operation reduces the output filter requirement, which in turn helps reducing size of the inverter. In this research work elaborate trade-off analysis is done to quantify the suitability of multilevel inverters in the low power applications. For successful operation of three-level NPC inverter in aircraft electrical system, it is important for the DC bus structure in aircraft electric primary distribution system to be compatible to drive NPC inverters. Hence a detail study of AC to DC power conversion system as applied to commercial aircraft electrical system is done. Multi-pulse rectifiers using autotransformers are used in aircrafts. Investigation is done to improve these rectifiers for future aircrafts, such that they can support new technologies of future generation motor controllers. A new 24-pulse isolated transformer rectifier topology is proposed. From two 15º displaced 6-phase systems feeding two 12-pulse rectifiers that are series connected, a 24-pulse rectifier topology is obtained. Though, windings of each 12-pulse rectifiers are isolated from primary, the 6-phase generation is done without any isolation of the transformer windings. The new 24-pulse transformer topology has lower VA rating compared to standard 12-pulse rectifiers. Though the new 24-pulse transformer-rectifier solution is robust and simple, it adds to the weight of the overall system, as compared to the present architecture as the proposed topology uses isolated transformer. Non-isolated autotransformer cannot provide split voltage at the dc-link that creates a stable mid-point voltage as required by the three-level NPC inverter. Hence, a new front-end AC-DC power conversion system with switched capacitor is conceived that can support motor controllers driven by three-level inverters. Laboratory experimental results are presented to validate the new proposed topology. In this proposed topology, the inverter dc-link voltage is double the input dc-link voltage. An intense research work is performed to understand the operation of Trapezoidal Back EMF BLDC motor driven by three-Level NPC inverter. Operation of BLDC motor from three-Level inverter is primarily advantageous for low inductance motors, like ironless axial flux motors. For low inductance BLDC motor, very high switching frequency is required to limit the magnitude of ripple current in motor winding. Three-level inverters help limiting the magnitude of motor ripple current without increasing the switching frequency to very high value. Further, it is analysed that dc link mid-point current in three-level NPC inverter for driving trapezoidal BLDC motor has a zero average current with fundamental frequency same as switching frequency. Because of this, trapezoidal BLDC motors can easily be operated from three-level NPC inverter without any special attention given to mid-point voltage unbalance. One non-ideal condition arrives in practical implementation of the inverter that leads to non-zero average mid point current. Unequal gate drive dead time delays from one leg to other leg of inverter introduce dc-link mid-point voltage unbalance. For the motoring mode operation of trapezoidal BLDC motor drive, simple gate drive logic is researched that eliminates need of the gate drive dead-time, and hence solves the mid-point voltage unbalance issue. Simple closed loop control scheme for mid-point voltage balancing also is also proposed. This control scheme may be used in applications where very precise control of speed and torque ripple is warranted. All the investigations reported in this thesis are simulated extensively on MATHCAD and MATLAB platform using SIMULINK toolbox. A laboratory experimental set-up of three-Level inverter driving axial flux BLDC motor is built. The three-level inverter, operating from 300Vdc bus is built using 500V MOSFETs and 600V SiC diodes. All the control schemes are implemented digitally on digital signal processor TMS320F2812 DSP platform and GAL22V10B platforms. Experimental results are collected to validate the theoretical propositions made in the present research work. At the end, in chapter 5, some future works are proposed. A new external voltage balance circuit is proposed where the inverter dc-link voltage is same as the input dc-link voltage. This topology is based on the resonant converter principle and uses a lighter resonant inductor than prior arts available in literature. Detail simulation and experimentation of this topology may be carried out to validate the industrial benefits of this circuit. It is also thought that current source inverters may work as an alternative to voltage source inverters for driving BLDC motors. Current source inverters eliminate use of bulky DC-link capacitors. Long term reliability of current source inverters is higher than voltage source inverters due to the absence of possibility of shoot-through. Further, in voltage source inverters, the voltage at the motor terminal is limited by the source voltage (dc-link voltage). This issue is eliminated in current source inverters. An interface circuit is conceived to reduce the size of dc-link inductors in current source inverters, pending detail analysis and experimental verification. The interface circuit bases its fundamentals on the principles of operation of multilevel inverters for BLDC motors that is presented in this thesis.
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Chih-Chiang, and 汪智強. "Velocity Control of Axial Flux Sensorless Brushless DC Motors." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/02582375897369393913.

Full text
Abstract:
碩士
國立交通大學
工學院精密與自動化工程學程
100
The characteristics of brushless direct current (BLDC) motors include high speed, high torque, high power density, rapidly transient response, and ease of control. With many advantages, BLDC motors have become more and more popular in our life and are applied to a wide variety of applications like DVD player, hard disk, i-Robot, electrical vehicles, compressor, etc. Conventional BLDC motors use internal magnetic sensors, e.g. Hall effect sensors to feedback signals and obtain rotor position. However, due to cost and size subject to mechanical or environment constraints, and reliability of thermal effect that may cause commutation error. Sensorless control methods without Hall-effect sensors have been widely used in recent years. According to stator winding patterns, BLDC can be radial or axial windings. Axial-flux BLDC motors outperform radial field in aspects of torque, power, efficiency, and compact geometry shape [Krishnan and Beutler, 1985]. Hence this thesis focuses on analyzes and then realizes a sensorless drive for the axial-flux BLDC motor with a position estimation method to control the motor from standstill state to desired speed based on back-EMFs zero-crossing of floating phase; i.e. not excited phase of BLDC motor estimated method and arrange in pairs with open-loop start-up algorithm to implement velocity control of BLDC motors. Finally, simulation and experimental results will demonstrate effectiveness of the proposed sensorless control method. Keywords: Axial-Flux, Sensorless, BLDC, Velocity control
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Axial Flux Brushless DC (BLDC) Motors"

1

Echle, Andreas, Andreas Neubauer, and Nejila Parspour. "Design and Comparison of Radial Flux and Axial Flux Brushless DC Motors for Power Tool Applications." In 2018 XIII International Conference on Electrical Machines (ICEM). IEEE, 2018. http://dx.doi.org/10.1109/icelmach.2018.8507221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Balkan Simsir, N., and H. Bulent Ertan. "A comparison of torque capabilities of axial flux and radial flux type of brushless DC (BLDC) drives for wide speed range applications." In Proceedings of the IEEE 1999 International Conference on Power Electronics and Drive Systems. PEDS'99 (Cat. No.99TH8475). IEEE, 1999. http://dx.doi.org/10.1109/peds.1999.792793.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Patel, Amit N., Bhavik N. Suthar, Tejas H. Panchal, and Rajesh M. Patel. "Comparative Performance Analysis of Radial Flux and Dual Air-Gap Axial Flux Permanent Magnet Brushless DC Motors for Electric Vehicle Application." In 2018 2nd IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES). IEEE, 2018. http://dx.doi.org/10.1109/icpeices.2018.8897459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography