To see the other types of publications on this topic, follow the link: Axial Flux Brushless DC (BLDC) Motors.

Journal articles on the topic 'Axial Flux Brushless DC (BLDC) Motors'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 19 journal articles for your research on the topic 'Axial Flux Brushless DC (BLDC) Motors.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Patel, A. N. "Slot opening displacement technique for cogging torque reduction of axial flux brushless DC motor for electric two-wheeler application." Electrical Engineering & Electromechanics, no. 2 (March 5, 2023): 7–13. http://dx.doi.org/10.20998/2074-272x.2023.2.02.

Full text
Abstract:
Introduction. Reduction of cogging torque is the crucial design consideration of axial flux brushless DC (BLDC) motor, particularly for low-speed applications. Aim. The slot opening displacement technique is presented in this article to reduce cogging torque in axial flux BLDC motors suitable for electric two-wheeler applications. Methods. Double rotor single stator configuration of axial flux BLDC motor is the most suitable for such vehicular applications. Initially double rotor single stator 250 W, 150 rpm axial flux BLDC motor is designed with stator slot opening in middle position and considered as reference motor for further analysis. To evaluate the cogging torque profile of the reference motor 3D finite element modeling and analysis are performed. The design is enhanced by dividing all stator teeth into groups and displacing the slot openings of each group in opposite direction with respect to the adjacent group. Results. The influence of slot opening displacement on cogging torque is evaluated with finite element modeling and analysis. As cogging torque is reduced from 1.23 N×m to 0.63 N×m, the slot opening displacement technique is found to be effective in reducing cogging torque of axial flux BLDC motor.
APA, Harvard, Vancouver, ISO, and other styles
2

Nurmalia, Alif, Widyono Hadi, and Widya Cahyadi. "Performance Test of Three-Phase Brushless Direct Current Motor Axial Flux with Differences Diameter of Neodymium Type Permanent Magnet." ELKHA 13, no. 1 (April 20, 2021): 55. http://dx.doi.org/10.26418/elkha.v13i1.41693.

Full text
Abstract:
Technology that is growing rapidly and innovations that have sprung up in the electrical field today are driving the use of electricity as a source of energy to do work. Electric motor is one component that is very popular in the industrial world and households that are useful to human life. In addition to DC motors and induction motors, there are also 3 phase brushless direct current (BLDC) motors which are a type of synchronous motor where magnetic fields are produced by rotor and stator at the same frequency. The rotor is a moving part of the brushless direct current motor which is a place of permanent magnet called a pole. This paper discusses the performance of brushless direct current 3 phase axial flux motors with different diameters of neodymium type permanent magnets. Tests carried out using neodymium permanent magnets with diameters of 15mm x 2mm and 20mm x 2mm were tested without using a load and using load. The parameters used in testing motor performance include speed, torque, and motor power with a source voltage of 12V, 16V, 20V, and 24V. The test results shows that the speed value of a BLDC motor using permanent magnets with a size of 20mm x 2mm is greater than that of permanent magnets of 15mm x 2mm. The same thing applies to the value of the power produced while, for the value of torque when the motor uses a permanent magnet of 15mm x 2mm will be greater than that of a motor using a permanent magnet of 20mm x 2mm.
APA, Harvard, Vancouver, ISO, and other styles
3

Azizi, M. Fariz, Widyono Hadi, and Guido Dias Kalandro. "RANCANG BANGUN MOTOR BLDC AXIAL FLUX MENGGUNAKAN DUA KAWAT EMAIL PADA LILITAN KUMPARAN STATOR." Jurnal Arus Elektro Indonesia 6, no. 2 (August 31, 2020): 52. http://dx.doi.org/10.19184/jaei.v6i2.19617.

Full text
Abstract:
The rapid development of technology in this era of globalization has an impact on the development of electric motor technology in Indonesia. There are two types of electric motors based on the voltage source used namely DC electric motor and AC electric motor. Because the use of DC motor or AC motor has not been able to meet the needs, the use of BLDC motor (Brushless Direct Current) is a very appropriate choice. In this research, the design of BLDC Axial Flux motor used a single rotor attached to a neodymium magnet and a stator made of two email wires wrapped together. From testing the motor no-load when the source voltage is 18 V it has an input power of 4,038 W and motor speed of 1513 RPM. While when the source voltage is 24 V has an input power of 8,716 W and motor speed 1606 RPM. As for testing motors with loads when the source voltage is 24 V has an input power of 11,432 W, output power 3,579 W, efficiency 31,311%, motor speed 1098 RPM, mechanical torque 0.031 Nm, and electromagnetic torque 0.099 Nm. Coconut laying on overpressed blade roll results in the motor not being able to provide torque according to load needs, so the speed of the motor will drop, and torque increases. Besides, the greater the voltage of the source then the greater the power and speed of the motor.
APA, Harvard, Vancouver, ISO, and other styles
4

Tosun, Ozturk, and Necibe Fusun Oyman Serteller. "The Design of the Outer-Rotor Brushless DC Motor and an Investigation of Motor Axial-Length-to-Pole-Pitch Ratio." Sustainability 14, no. 19 (October 6, 2022): 12743. http://dx.doi.org/10.3390/su141912743.

Full text
Abstract:
In this study, the effects of the ratio of a motor’s axial length to its pole pitch on efficiency, magnetic flux density distribution, torque, torque/weight, and motor volume were investigated in an outer-rotor (hub) brushless direct current motor. The weight and volume of an electrical machine affects the output power, efficiency and output torque, and it is advantageous to design an electric motor at an appropriate power and high efficiency with an appropriate weight and volume. Therefore, the aim of this study was to optimize the motor’s axial length and stator outer diameter, which affects the motor volume. Initially, the axial-length-to-pole-pitch ratio of the hub BLDC motor was taken at 0.75. According to this ratio, the dimensions of the rotor outer diameter, rotor inner diameter, stator outer diameter, stator inner diameter, slot height, motor axial length, and magnet thickness were optimally determined. Then, the axial-length-to-pole-pitch ratio was considered as 1, 1.50, 2, and 3, respectively. The effects of the change in the motor’s axial-length-to-pole-pitch ratio on the efficiency, torque, speed, torque/volume, torque/weight, and cogging torque were examined in a simulation environment. According to the motor’s axial-length-to-pole-pitch ratio, the torque value in the final state was 28.65% higher than the torque value in the initial state. In the last part, the motor axial length and the stator outer diameter were defined as variables in a genetic algorithm procedure and optimized. The number of poles and the number of slots were fixed parameters. Simulation studies were carried out using the finite element method via AN-SYS/Maxwell software.
APA, Harvard, Vancouver, ISO, and other styles
5

Khlifi, M. A., M. Ben Slimene, A. Alradedi, and S. Al Ahmadi. "Investigation of a Leakage Reactance Brushless DC Motor for DC Air Conditioning Compressor." Engineering, Technology & Applied Science Research 12, no. 2 (April 9, 2022): 8316–20. http://dx.doi.org/10.48084/etasr.4762.

Full text
Abstract:
Home appliances using Brushless DC (BLDC) motors, such as Air Conditioners (ACs) and ceiling and pedestal fans, are gaining attention these days due to their low power consumption and low maintenance cost. This paper estimates and analyzes the leakage reactance of conventional and flux-switching permanent magnet BLDC motors. The leakage magnetic field of a high-power BLDC motor will be one of the main sources of interference. The magnetic field characteristics of the leakage field of a BLDC motor must be analyzed in order to acquire correct geomagnetic data. We also show the rotor's leakage magnetic field while the BLDC motor is static, the stator and rotor's leakage magnetic fields when the BLDC motor is functioning, and the near-field characteristic of the BLDC motor's leakage magnetic field.
APA, Harvard, Vancouver, ISO, and other styles
6

CRAIU, Ovidiu, Leonard Marius MELCESCU, and Cristian BOBOC. "Brushless DC Permanent Magnet Motors State of the Art." Electrotehnica, Electronica, Automatica 69, no. 4 (November 15, 2021): 5–16. http://dx.doi.org/10.46904/eea.21.69.4.1108001.

Full text
Abstract:
The paper presents a study of the permanent magnet brushless DC machine, from two perspectives - from authors’ own experience in designing and manufacturing such motors, as well as from actual published research. Various constructive topologies and how they influence BLDC operation, windings used with emphasis on slot, concentrated windings, are also presented. The following part describes current techniques used for enhancing BLDC limited maximum speed, such as phase advance and dwell control, somewhat similar to flux weakening in AC permanent magnet brushless motors. The paper concludes with presentation of several methods used for sensing BLDC rotor position. Overall, the authors’ intention publishing this paper was to provide an insight regarding current BLDC development, as well as to assist in making documented choices when using BLDC in specific applications.
APA, Harvard, Vancouver, ISO, and other styles
7

Özüpak, Yıldırım. "Investigation of the Effect of Design Parameters of Small Brushless DC Motors on Motor Performance by Finite Element Method." Brilliant Engineering 3, no. 3 (May 20, 2022): 1–6. http://dx.doi.org/10.36937/ben.2022.4658.

Full text
Abstract:
Direct Current (DC) motors are widely used in industrial applications. The limited use of brushed models in some areas has brought Brushless Direct Current Motors (BLDC) to the fore. The constant need for maintenance of brushed type motors creates a disadvantage in variable conditions and in areas that are used continuously. For this reason, brushless DC motors have a wide range of uses. Brushless DC motors stand out with their high-performance values. Brushless DC motors with outer rotor type are used in applications that require high torque and inertia. The fact that electrical machines have moving parts and the computational complexity created by these parts have led electrical machine designers to alternative ways such as software and simulation programs where the results can be predicted. In this paper, a Brusgless Permanent Magnet Direct Current motor (BLPMDC) was designed and analyzed. The obtained speed, efficiency, torque, and air gap flux distributions were examined and the results were compared with literature for the motor type. In this study, applications were made to examine the effects of design parameters such as rotor structure, rotor position, magnet arrangement and materials used in the structures on the efficiency and output power of the motor. Efficiency-speed and power-speed values were obtained for different structures and features of the engine. The results obtained are compared with each other and presented in the article in the form of graphs and tables.
APA, Harvard, Vancouver, ISO, and other styles
8

Lee, Ho-Young, Seung-Young Yoon, Soon-O. Kwon, Jin-Yeong Shin, Soo-Hwan Park, and Myung-Seop Lim. "A Study on a Slotless Brushless DC Motor with Toroidal Winding." Processes 9, no. 11 (October 21, 2021): 1881. http://dx.doi.org/10.3390/pr9111881.

Full text
Abstract:
In this study we developed a brushless DC (BLDC) slotless motor with toroidal winding. The proposed toroidal winding is a method of winding a coil around a ring-type stator yoke in the circumferential direction. As there is no need for a slot or tooth structure, it can be designed with a slotless motor structure that is advantageous for vibration and noise. The basic principle of operation and motor characteristics of a slotless motor with toroidal winding were explained using an analytical method and finite element analysis (FEA). Further, the air gap flux density, winding factor, and back electromotive force (EMF) for changes in the winding angle and number of coil turns were calculated using the analytical method and compared with the FEA results. Finally, the resistance, back EMF, cogging torque, and performance of the prototype were measured and compared with the FEA results. The results show that the air gap flux density and winding factor were approximately the same with an error of <2%, while the back EMF had an error of ~10% from the analysis result. Thus, the proposed slotless motor provides a basic design for conveniently manufacturing brushless DC (BLDC) slotless motors with toroidal windings.
APA, Harvard, Vancouver, ISO, and other styles
9

Soni, Umesh Kumar, and Ramesh Kumar Tripathi. "A low-power prototype of contactless field power controlled BLAC and BLDC motors." Wireless Power Transfer 7, no. 2 (August 13, 2020): 106–15. http://dx.doi.org/10.1017/wpt.2020.11.

Full text
Abstract:
AbstractIn this paper, a new design configuration has been proposed in which a prototype of resonant inductive power transfer-based contactless power transfer to wound rotor has been developed which provides field power to brushless alternating current (BLAC) or brushless direct current (BLDC) motors without the use of permanent magnets in the rotor. Further, wound field in the rotor of DC motor can be powered without carbon brushes. The proposed design facilitates motor performance improvement by adding an extra dimension of field flux control, while the armature circuit is conventionally fed from position detection and commutation schemes. It contains a primary multilayer concentrated coil fed with high-frequency resonating AC supply or switched mode supply. A single layer helical secondary coil coaxially fixed on the shaft receives high frequency wireless AC power transmitted from primary coil. Fast rectifier inside the hollow shaft and DC filter provides the transferred DC power to field terminals in the rotor. It has been verified that rotor power can be varied linearly with linear variation in input DC power with the highest efficiency at the resonant frequency. Available power to the rotor remains invariable with rotational speed and angle, which is a necessary requirement for rotor field. DC voltage on the rotor terminals can be effectively controlled during standstill as well as during rotation at any speed.
APA, Harvard, Vancouver, ISO, and other styles
10

Karthick, K., S. Ravivarman, Ravi Samikannu, K. Vinoth, and Bashyam Sasikumar. "Analysis of the Impact of Magnetic Materials on Cogging Torque in Brushless DC Motor." Advances in Materials Science and Engineering 2021 (December 17, 2021): 1–10. http://dx.doi.org/10.1155/2021/5954967.

Full text
Abstract:
The cogging torque is the most significant issue in permanent magnet applications, since it has a negative impact on machine performance. In this article, the impact of magnetic materials on cogging torque is analyzed on brushless DC motors (BLDC). The effect of neodymium magnets (NdFeB), compression molded magnet, and samarium cobalt (SmCo) magnet on the cogging torque is analyzed to the BLDC motor designed for hybrid electric vehicle traction that has the peak power rating of 50 kW motor with 48 stator slots and 8 rotor poles. With the presence of these three magnetic materials, the cogging torque is estimated independently using multiposition simulation. The multiposition is simulated using a transient application that runs at constant speed. The results of cogging torque, rotational speed, angular position of BLDC motor, and magnetic flux density distribution have been presented. Also, the maximal, mean, minimal, rectified mean, and rms values of cogging torque were provided.
APA, Harvard, Vancouver, ISO, and other styles
11

Fico, Vito Mario, Antonio Leopoldo Rodríguez Vázquez, María Ángeles Martín Prats, and Franco Bernelli-Zazzera. "Failure Detection by Signal Similarity Measurement of Brushless DC Motors." Energies 12, no. 7 (April 9, 2019): 1364. http://dx.doi.org/10.3390/en12071364.

Full text
Abstract:
In recent years, Brushless DC (BLDC) motors have been gaining popularity as a solution for providing mechanical power, starting from low cost mobility solutions like the electric bikes, to high performance and high reliability aeronautical Electro-Mechanical Actuator (EMA). In this framework, the availability of fault detection tools suited to these types of machines appears necessary. There is already a vast literature on this topic, but only a small percentage of the proposed techniques have been developed to a sufficiently high Technology Readiness Level (TRL) to be implementable in industrial applications. The investigation on the state of the art carried out during the first phase of the present work, tried to collect the techniques which are closest to possible implementation. To fill a gap identified in the current techniques, a partial demagnetisation detection method is proposed in this paper. This technique takes advantage of the asymmetries generated in the current by the missing magnetic flux to detect the failure. Simulations and laboratory experiments have been carried out to validate the idea, showing the potential and the easy implementation of the method. The results have been examined in detail and satisfactory conclusions have been drawn.
APA, Harvard, Vancouver, ISO, and other styles
12

Rossi, Andrea, and Carlo Concari. "A Novel BLDC-Like DTC Control Technique for Induction Motors." Advances in Power Electronics 2012 (June 21, 2012): 1–8. http://dx.doi.org/10.1155/2012/986702.

Full text
Abstract:
DC brushless motors are widely adopted for their simplicity of control, even in sensorless configuration, and their high torque density. On the other hand, induction motors are very economical due to the absence of permanent magnets; for the same reason they can easily be driven in the flux-weakening region to attain a wide speed range. Nevertheless, high dynamic induction motors drives, based on field-oriented (FOC) or predictive control, require large amounts of computing power and are rather sensitive to motor parameter variations. This paper presents a simple DTC induction motor control algorithm based on a well-known BLDC control technique, which allows to realize a high dynamic induction motor speed control with wide speed range. The firmware implementation is very compact and occupies a low amount of program memory, comparable to volt-per-Hertz- (V/f-) based control algorithms. The novel control algorithm presents also good performance and low current ripple and can be implemented on a low-cost motion control DSP without resorting to high-frequency PWM.
APA, Harvard, Vancouver, ISO, and other styles
13

Sang-Ho Lee, Su-Beom Park, Soon-O Kwon, Ji-Young Lee, Jung-Jong Lee, Jung-Pyo Hong, and Jin Hur. "Characteristic analysis of the slotless axial-flux type brushless DC motors using image method." IEEE Transactions on Magnetics 42, no. 4 (April 2006): 1327–30. http://dx.doi.org/10.1109/tmag.2006.871922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Patel, Amit Narayanbhai. "Optimization of Power Density of Axial Flux Permanent Magnet Brushless DC Motor for Electric Two-Wheeler." Trends in Sciences 18, no. 22 (November 11, 2021): 497. http://dx.doi.org/10.48048/tis.2021.497.

Full text
Abstract:
The main objective of this work is to optimize the power density of axial flux permanent magnet brushless dc (PMBLDC) motor based on genetic algorithm (GA) technique for performance improvement of electric 2-wheeler. Power density is one of the important performance parameter of motor as it significantly influences overall performance of electric 2-wheeler. Firstly, the rating of electric motor is determined according to the application requirements and vehicular dynamics. Axial flux PMBLDC motor of 250 W, 150 rpm is designed to fit in to the rim of electric 2-wheeler based on assumption of various design variables. The salient contribution of this work is to suggest the best combination of design variables with the application of GA optimization technique for power density optimization. Comparative performance analysis is carried out between initially designed motor and optimized motor. Finally, 3 dimensional (3-D) finite element analysis (FEA) is performed to verify the results obtained from design optimization. Results obtained from FEA fairly validates the initial design and optimized design. It is analyzed that the power density of motor is enhanced by 42.85 % with the proposed optimization technique. The proposed technique is implementable and complexity free. It may further be applied to the performance improvement of a non-linear design comprising different design variables. HIGHLIGHTS Axial flux permanent magnet motors are the most compatible in electric vehicle applications Power density is one of the important performance parameters of axial flux permanent magnet motors Optimization of power density improves drive range and overall performance of electric vehicle Influential design variables are identified based on parametric analysis and its optimization is carried out with an GA based optimization technique with an objective of power density optimization Proposed optimization technique is validated with finite element analysis GRAPHICAL ABSTRACT
APA, Harvard, Vancouver, ISO, and other styles
15

Nagalingam, Umadevi, Balaji Mahadevan, Kamaraj Vijayarajan, and Ananda Padmanaban Loganathan. "Design optimization for cogging torque mitigation in brushless DC motor using multi-objective particle swarm optimization algorithm." COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 34, no. 4 (July 6, 2015): 1302–18. http://dx.doi.org/10.1108/compel-07-2014-0162.

Full text
Abstract:
Purpose – The purpose of this paper is to propose a multi-objective particle swarm optimization (MOPSO) algorithm based design optimization of Brushless DC (BLDC) motor with a view to mitigate cogging torque and enhance the efficiency. Design/methodology/approach – The suitability of MOPSO algorithm is tested on a 120 W BLDC motor considering magnet axial length, stator slot opening and air gap length as the design variables. It avails the use of MagNet 7.5.1, a Finite Element Analysis tool, to account for the geometry and the non-linearity of material for assuaging an improved design framework and operates through the boundaries of generalized regression neural network (GRNN) to advocate the optimum design. The results of MOPSO are compared with Multi-Objective Genetic Algorithm and Non-dominated Sorting Genetic Algorithm-II based formulations for claiming its place in real world applications. Findings – A MOPSO design optimization procedure has been enlivened to escalate the performance of the BLDC motor. The optimality in design has been out reached through minimizing the cogging torque, maximizing the average torque and reducing the total losses to claim an increase in the efficiency. The results have been fortified in well-distributed Pareto-optimal planes to arrive at trade-off solutions between different objectives. Research limitations/implications – The rhetoric theory of multi objective formulations has been reinforced to provide a decisive solution with regard to the choice of the design obtained from Pareto-optimal planes. Practical implications – The incorporation of a larger number of design variables together with an orientation to thermal and vibration analysis will still go a long way in bringing on board new dimensions to the fold of optimality in the design of BLDC motors. Originality/value – The proposal offers a new perspective to the design of BLDC motor in the sense it be-hives the facility of a swarm based approach to optimize the parameters in order that it serves to improve its performance. The results of a 120 W motor in terms of lowering the losses, minimizing the cogging torque and maximizing the average torque emphasize the benefits of the GRNN based multi-objective formulation and establish its viability for use in practical applications.
APA, Harvard, Vancouver, ISO, and other styles
16

Rao, Nagaraj, and Shantharama Rai Chelladka. "Stability analysis and speed control of brushless DC motor based on self-ameliorate soft switching control methods." International Journal of Electrical and Computer Engineering (IJECE) 13, no. 3 (June 1, 2023): 2459. http://dx.doi.org/10.11591/ijece.v13i3.pp2459-2470.

Full text
Abstract:
In recent years, electric vehicles are the large-scale spread of the transportation field has led to the emergence of brushless direct current (DC) motors (BLDCM), which are mostly utilized in electrical vehicle systems. The speed control of a BLDCM is a subsystem, consisting of torque, flux hysteresis comparators, and appropriate switching logic of an inverter. Due to the sudden load torque variation and improper switching pulse, the speed of the BLDCM is not maintained properly. In recent research, the BLDC current control method gives a better way to control the speed of the motor. Also, the rotor position information should be the need for feedback control of the power electronic converters to varying the appropriate pulse width modulation (PWM) of the inverter. The proposed optimization work controls the switching device to manage the power supply BLDCM. In this proposed self-ameliorate soft switching (SASS) system is a simple and effective way for BLDC motor current control technology, a proposed control strategy is intended to stabilize the speed of the BLDCM at different load torque conditions. The proposed SASS system method is analyzing hall-based sensor values continuously. The suggested model is simulated using the MATLAB Simulink tool, and the results reveal that the maximum steady-state error value achieved is 4.2, as well as a speedy recovery of the BLDCM's speed.
APA, Harvard, Vancouver, ISO, and other styles
17

Yang, Y. P., Y. P. Luh, and C. H. Cheung. "Design and Control of Axial-Flux Brushless DC Wheel Motors for Electric Vehicles—Part I: Multiobjective Optimal Design and Analysis." IEEE Transactions on Magnetics 40, no. 4 (July 2004): 1873–82. http://dx.doi.org/10.1109/tmag.2004.828164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Yang, Y. P., J. P. Wang, S. W. Wu, and Y. P. Luh. "Design and Control of Axial-Flux Brushless DC Wheel Motors for Electric Vehicles—Part II: Optimal Current Waveforms and Performance Test." IEEE Transactions on Magnetics 40, no. 4 (July 2004): 1883–91. http://dx.doi.org/10.1109/tmag.2004.828165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Yadav, Shekhar, Nitesh Tiwari, and Sabha Raj Arya. "A Comprehensive Review of Indian Market Scenario and Motor Used in Electric Vehicle." Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering) 16 (November 30, 2022). http://dx.doi.org/10.2174/2352096516666221130145206.

Full text
Abstract:
Abstract: This paper focuses on better understanding the Indian Electric Vehicle (EV) market scenario based on battery and motor specifications. Electric two-wheelers, three-wheelers, and four-wheelers have different challenges and requirements at the efficient design level. This paper also provides a comprehensive review of brushed DC motors, brushless DC (BLDC) motors, permanent magnet synchronous motors (PMSM), induction motors (IM), switched reluctance motors (SRM), and flux switching motors (FSM) for EV application. Background: The market for EVs is growing rapidly in India as a developing country, and users are looking forward to highly efficient and cost-effective EVs due to the pollution and unavailability of petroleum. Objective: The main objective of this paper is to provide the right choice of EV motor based on vehicle type, driving cycle, and user requirement. Method: This paper comprehensively reviews DC and AC motor drive systems for EV application. Conclusion: Nowadays, manufacturing is mainly inclined towards the BLDC, PMSM, and IM. In contrast, SRM and FSM are in the early stage of development and are mainly used by the researcher. A brushed DC motor is not too famous due to its high running cost, frequent maintenance requirements, and comparatively bulky size.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography