Academic literature on the topic 'Axillary Meristem'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Axillary Meristem.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Axillary Meristem"

1

McSteen, Paula, and Sarah Hake. "barren inflorescence2 regulates axillary meristem development in the maize inflorescence." Development 128, no. 15 (2001): 2881–91. http://dx.doi.org/10.1242/dev.128.15.2881.

Full text
Abstract:
Organogenesis in plants is controlled by meristems. Shoot apical meristems form at the apex of the plant and produce leaf primordia on their flanks. Axillary meristems, which form in the axils of leaf primordia, give rise to branches and flowers and therefore play a critical role in plant architecture and reproduction. To understand how axillary meristems are initiated and maintained, we characterized the barren inflorescence2 mutant, which affects axillary meristems in the maize inflorescence. Scanning electron microscopy, histology and RNA in situ hybridization using knotted1 as a marker for meristematic tissue show that barren inflorescence2 mutants make fewer branches owing to a defect in branch meristem initiation. The construction of the double mutant between barren inflorescence2 and tasselsheath reveals that the function of barren inflorescence2 is specific to the formation of branch meristems rather than bract leaf primordia. Normal maize inflorescences sequentially produce three types of axillary meristem: branch meristem, spikelet meristem and floral meristem. Introgression of the barren inflorescence2 mutant into genetic backgrounds in which the phenotype was weaker illustrates additional roles of barren inflorescence2 in these axillary meristems. Branch, spikelet and floral meristems that form in these lines are defective, resulting in the production of fewer floral structures. Because the defects involve the number of organs produced at each stage of development, we conclude that barren inflorescence2 is required for maintenance of all types of axillary meristem in the inflorescence. This defect allows us to infer the sequence of events that takes place during maize inflorescence development. Furthermore, the defect in branch meristem formation provides insight into the role of knotted1 and barren inflorescence2 in axillary meristem initiation.
APA, Harvard, Vancouver, ISO, and other styles
2

Grbić, Vojislava. "Comparative analysis of axillary and floral meristem development." Canadian Journal of Botany 83, no. 4 (2005): 343–49. http://dx.doi.org/10.1139/b05-017.

Full text
Abstract:
Axillary and floral meristems are shoot meristems that initiate postembryonically. In Arabidopsis, axillary meristems give rise to branches during vegetative development while floral meristems give rise to flowers during reproductive development. This review compares the development of these meristems from their initiation at the shoot apical meristem up to the establishment of their specific developmental fates. Axillary and floral meristems originate from lateral primordia that form at flanks of the shoot apical meristem. Initial development of vegetative and reproductive primordia are similar, resulting in the formation of a morphologically defined primordium partitioned into adaxial and abaxial domains. The adaxial primordial domain is competent to form a meristem, while the abaxial domain correlates with the formation of a leaf. This review proposes that all primordia partition into domains competent to form the meristem and the leaf. According to this model, a vegetative primordium develops as leaf-bias while a reproductive primordium develops as meristem-bias.Key words: SHOOTMERISTEMLESS, LATERAL SUPPRESSOR, AINTEGUMENTA, adaxial primordial domain, abaxial primordial domain, shoot morphogenesis.
APA, Harvard, Vancouver, ISO, and other styles
3

Stirnberg, Petra, Karin van de Sande, and H. M. Ottoline Leyser. "MAX1 and MAX2 control shoot lateral branching in Arabidopsis." Development 129, no. 5 (2002): 1131–41. http://dx.doi.org/10.1242/dev.129.5.1131.

Full text
Abstract:
Plant shoots elaborate their adult form by selective control over the growth of both their primary shoot apical meristem and their axillary shoot meristems. We describe recessive mutations at two loci in Arabidopsis, MAX1 and MAX2, that affect the selective repression of axillary shoots. All the first order (but not higher order) axillary shoots initiated by mutant plants remain active, resulting in bushier shoots than those of wild type. In vegetative plants where axillary shoots develop in a basal to apical sequence, the mutations do not clearly alter node distance, from the shoot apex, at which axillary shoot meristems initiate but shorten the distance at which the first axillary leaf primordium is produced by the axillary shoot meristem. A small number of mutant axillary shoot meristems is enlarged and, later in development, a low proportion of mutant lateral shoots is fasciated. Together, this suggests that MAX1 and MAX2 do not control the timing of axillary meristem initiation but repress primordia formation by the axillary meristem. In addition to shoot branching, mutations at both loci affect leaf shape. The mutations at MAX2 cause increased hypocotyl and petiole elongation in light-grown seedlings. Positional cloning identifies MAX2 as a member of the F-box leucine-rich repeat family of proteins. MAX2 is identical to ORE9, a proposed regulator of leaf senescence (Woo, H. R., Chung, K. M., Park, J.-H., Oh, S. A., Ahn, T., Hong, S. H., Jang, S. K. and Nam, H. G. (2001) Plant Cell13, 1779-1790). Our results suggest that selective repression of axillary shoots involves ubiquitin-mediated degradation of as yet unidentified proteins that activate axillary growth.
APA, Harvard, Vancouver, ISO, and other styles
4

Xue, Zhihui, Liya Liu, and Cui Zhang. "Regulation of Shoot Apical Meristem and Axillary Meristem Development in Plants." International Journal of Molecular Sciences 21, no. 8 (2020): 2917. http://dx.doi.org/10.3390/ijms21082917.

Full text
Abstract:
Plants retain the ability to produce new organs throughout their life cycles. Continuous aboveground organogenesis is achieved by meristems, which are mainly organized, established, and maintained in the shoot apex and leaf axils. This paper will focus on reviewing the recent progress in understanding the regulation of shoot apical meristem and axillary meristem development. We discuss the genetics of plant meristems, the role of plant hormones and environmental factors in meristem development, and the impact of epigenetic factors on meristem organization and function.
APA, Harvard, Vancouver, ISO, and other styles
5

Chiari, Alessandro, and Mark P. Bridgen. "Effect of Meristem Position and Medium on in Vitro Meristem Culture of Alstroemeria." HortScience 32, no. 3 (1997): 461C—461. http://dx.doi.org/10.21273/hortsci.32.3.461c.

Full text
Abstract:
Meristems from three different positions were excised from in vitro plants of Alstroemeria genotype A30. Explants were removed from the most-distal vegetative shoot apical meristems, rhizome tip apical meristems, and rhizome tip axillary meristems. Meristems were cultured on four different media to compare the effect of meristem position and medium on the ability to produce Alstroemeria rhizomes from meristems. The meristem culture media were Murashige & Skoog salts plus 8.39 μM pantothenic acid, 1.19 μM thiamine, and 0.55 mm myo-inositol (MSM), MSM plus 8.88 μM of 6-benzylaminopurine (BA), MSM plus 8.88 μM BA, and 0.72 μM gibberellic acid (GA3), and MSM plus 0.72 μM GA3. Meristems that were removed from the vegetative shoot apices did not develop rhizomes on any medium. Rhizome tip apical meristems developed less than 10% rhizomes when subcultured on media containing BA and GA3. However, rhizome tip axillary meristems developed rhizomes on all media with best results achieved when the medium was supplemented with BA.
APA, Harvard, Vancouver, ISO, and other styles
6

Andrés, Javier, and Elli Koskela. "Axillary Bud Fate Shapes Plant Architecture in Horticultural Crops." Horticulturae 8, no. 2 (2022): 130. http://dx.doi.org/10.3390/horticulturae8020130.

Full text
Abstract:
Above-ground plant architecture is dictated to a large extent by the fates and growth rates of aerial plant meristems. Shoot apical meristem gives rise to the fundamental plant form by generating new leaves. However, the fates of axillary meristems located in leaf axils have a great influence on plant architecture and affect the harvest index, yield potential and cultural practices. Improving plant architecture by breeding facilitates denser plantations, better resource use efficiency and even mechanical harvesting. Knowledge of the genetic mechanisms regulating plant architecture is needed for precision breeding, especially for determining feasible breeding targets. Fortunately, research in many crop species has demonstrated that a relatively small number of genes has a large effect on axillary meristem fates. In this review, we select a number of important horticultural and agricultural plant species as examples of how changes in plant architecture affect the cultivation practices of the species. We focus specifically on the determination of the axillary meristem fate and review how plant architecture may change even drastically because of altered axillary meristem fate. We also explain what is known about the genetic and environmental control of plant architecture in these species, and how further changes in plant architectural traits could benefit the horticultural sector.
APA, Harvard, Vancouver, ISO, and other styles
7

Yang, Qingqing, Cunquan Yuan, Tianci Cong, and Qixiang Zhang. "The Secrets of Meristems Initiation: Axillary Meristem Initiation and Floral Meristem Initiation." Plants 12, no. 9 (2023): 1879. http://dx.doi.org/10.3390/plants12091879.

Full text
Abstract:
The branching phenotype is an extremely important agronomic trait of plants, especially for horticultural crops. It is not only an important yield character of fruit trees, but also an exquisite ornamental trait of landscape trees and flowers. The branching characteristics of plants are determined by the periodic initiation and later development of meristems, especially the axillary meristem (AM) in the vegetative stage and the floral meristem (FM) in the reproductive stage, which jointly determine the above-ground plant architecture. The regulation of meristem initiation has made great progress in model plants in recent years. Meristem initiation is comprehensively regulated by a complex regulatory network composed of plant hormones and transcription factors. However, as it is an important trait, studies on meristem initiation in horticultural plants are very limited, and the mechanism of meristem initiation regulation in horticultural plants is largely unknown. This review summarizes recent research advances in axillary meristem regulation and mainly reviews the regulatory networks and mechanisms of AM and FM initiation regulated by transcription factors and hormones. Finally, considering the existing problems in meristem initiation studies and the need for branching trait improvement in horticulture plants, we prospect future studies to accelerate the genetic improvement of the branching trait in horticulture plants.
APA, Harvard, Vancouver, ISO, and other styles
8

Nicolas, Antoine, and Patrick Laufs. "The NGATHA-like Genes DPA4 and SOD7 Are Not Required for Stem Cell Specification during Embryo Development in Arabidopsis thaliana." International Journal of Molecular Sciences 23, no. 19 (2022): 12007. http://dx.doi.org/10.3390/ijms231912007.

Full text
Abstract:
In plants, stem cells are embedded in structures called meristems. Meristems can be formed either during embryogenesis or during the plant’s life such as, for instance, axillary meristems. While the regulation of the stem cell population in an established meristem is well described, how it is initiated in newly formed meristems is less well understood. Recently, two transcription factors of the NGATHA-like family, DEVELOPMENT-RELATED PcG TARGET IN THE APEX4 (DPA4)/NGAL3 and SUPPRESSOR OF DA1-1 7 (SOD7)/NGAL2 have been shown to facilitate de novo stem cell initiation in Arabidopsis thaliana axillary meristems. Here, we tested whether the DPA4 and SOD7 genes had a similar role during stem cell formation in embryo shoot apical meristems. Using DPA4 and SOD7 reporter lines, we characterized the expression pattern of these genes during embryo development, revealing only a partial overlap with the stem cell population. In addition, we showed that the expression of a stem cell reporter was not modified in dpa4-2 sod7-2 double mutant embryos compared to the wild type. Together, these observations suggest that DPA4 and SOD7 are not required for stem cell specification during embryo shoot apical meristem initiation. This work stresses the difference in the regulatory network leading to meristem formation during the embryonic and post-embryonic phases.
APA, Harvard, Vancouver, ISO, and other styles
9

Galli, Mary, Qiujie Liu, Britney L. Moss, et al. "Auxin signaling modules regulate maize inflorescence architecture." Proceedings of the National Academy of Sciences 112, no. 43 (2015): 13372–77. http://dx.doi.org/10.1073/pnas.1516473112.

Full text
Abstract:
In plants, small groups of pluripotent stem cells called axillary meristems are required for the formation of the branches and flowers that eventually establish shoot architecture and drive reproductive success. To ensure the proper formation of new axillary meristems, the specification of boundary regions is required for coordinating their development. We have identified two maize genes, BARREN INFLORESCENCE1 and BARREN INFLORESCENCE4 (BIF1 and BIF4), that regulate the early steps required for inflorescence formation. BIF1 and BIF4 encode AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins, which are key components of the auxin hormone signaling pathway that is essential for organogenesis. Here we show that BIF1 and BIF4 are integral to auxin signaling modules that dynamically regulate the expression of BARREN STALK1 (BA1), a basic helix-loop-helix (bHLH) transcriptional regulator necessary for axillary meristem formation that shows a striking boundary expression pattern. These findings suggest that auxin signaling directly controls boundary domains during axillary meristem formation and define a fundamental mechanism that regulates inflorescence architecture in one of the most widely grown crop species.
APA, Harvard, Vancouver, ISO, and other styles
10

Burrows, GE. "Axillary Meristem Ontogeny in Araucaria cunninghamii Aiton ex D Don." Australian Journal of Botany 34, no. 4 (1986): 357. http://dx.doi.org/10.1071/bt9860357.

Full text
Abstract:
The presence of axillary meristems in apparently blank leaf axils from the main stem of 2-year-old Araucaria cunninghamii is demonstrated. These meristems are groups of cells of meristematic appearance, which possess neither a bud-like organisation nor vascular or pro-vascular connections with the central vascular cylinder. They are first discernible in the axils of the recently initiated leaves, where each meristem is delimited from the vacuolating cortex by a shell zone. The axillary meristems then persist indefinitely in an inhibited, undifferentiated state, unless stimulated to bud formation by decapitation of the terminal shoot apex. They are exogenous in origin but are subsequently buried beneath the stem surface by the formation of localised periderms, the bark patches, and are not abscissed when extensive periderm formation begins. A. cunninghamii is apparently unique amongst conifers in possessing distinct, long-lived, exogenously initiated meristems or bud primordia in macroscopically blank leaf axils. The meristems are found in most leaf axils not occupied by branch buds. In this respect A. cunninghamii differs from most conifers and approaches the typical condition of angiosperms. The axillary meristems are inter- mediate in form between previously described vegetative axillary structures in gymnosperms and angiosperms.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Axillary Meristem"

1

Parmenter, Kathleen S. "Developmental regulation of axillary meristem initiation /." [St. Lucia, Qld.], 2004. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chou, Nan-yen. "Regulation of branching by phytochrome B and PPFD in Arabidopsis thaliana." Texas A&M University, 2008. http://hdl.handle.net/1969.1/85986.

Full text
Abstract:
The branching or tillering of crops is an important agronomic trait with a major impact on yield. Maintaining an appropriate number of branches allows the plant to use limited light resources and to produce biomass or yield more effectively. The branching process includes the initiation of the axillary meristem leading to bud formation and the further outgrowth of the axillary buds. Phytohormones, including cytokinins and auxin, are known to play major roles in regulating axillary bud outgrowth. Light signals, including light quantity and light quality, are among the most important factors regulating plant growth and are perceived by the action of specialized photoreceptors, including phytochromes. Phytochromes sense red (R) and far-red (FR) light and allow some plants to perceive and respond to competing neighbors by evoking the shade avoidance syndrome (SAS). One component of the SAS is inhibition of branching. Phytochrome B (phyB) is especially important in sensing shade signals and loss of phyB function results in a constitutive shade avoidance phenotype, including reduced branching. While it has been anecdotally reported that phyB-deficient Arabidopsis branches less than wild type, a detailed study of the defects in the process is lacking. In this research, the interactions between light signals, phytochromes and phytohormones in the regulation of branching were assessed using an integrated physiological, molecular and genetic approach.
APA, Harvard, Vancouver, ISO, and other styles
3

Silva, Guilherme Portes. "Ontogenetic development of Pennisetum purpureum cv. Napier: consequences for grazing management." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/11/11139/tde-28052018-160137/.

Full text
Abstract:
Characterization of the ontogenic program is essential to infer about palnts adaptation strategies. Frequently, morphogenesis of tropical forage grasses is reported to be analogous to that of temperate forage grasses. However, tropical grasses show stem development still during the vegetative phase of growth and under high light availability conditions. Stem elongation potentially impacts plants growth, with implications for grazing management. In tropical conditions, elephantgrass cv. Napier is considered one of the most productive grass species under grazing. The objective of this study was to characterize the ontogenic development of elephantgrass, coordination between phytomers, stem elongation and leaf and internode coordination in main and primary axes, using an isolated plant protocol. The experiment was conducted in Piracicaba, SP, during the Spring (2015), Summer (2016) and Autumn (2016), using a complete randomized block design, with 4 replicates. Eighty fiber cement tanks (0.343 m3) were used. Each block was composed of 20 tanks, 10 used to evaluate the morphogenic and developmental characteristics and 10 for the destructive evaluations. Measurements of leaf and stem elongation were performed every two days to determine the following variables: leaf appearance rate (LAR), leaf elongation rate (LER), leaf elongation duration (LED) and final leaf length (FLL). From day 10 of the evaluation period in Summer and Autumn and day 25 in Spring, 10 cuts were performed for destructive assessments every 5 days. At the time of the destructive evaluations, the following variables were measured: apical meristem heigth (AMH); sheath tube length (STL); number of expanding leaves (NEL); number of expanded leaves (NEXL). Measurements of sheath length (SL) and internode length (IL) were performed only on the main axis. On the main axis LAR (0.02 leaves degree-days-1) and LER (0.26 cm degree-days-1) were constant, whereas LED and FLL increased with leaf rank on the axis. LED ranged from 150 to 280 degree-days from phytomer 10 to 20. In Autumn, due to flowering, LED decreased with leaf rank. SL increased until reaching a maximum value of approximately 10-12 cm from the phytomer 12-13 onwards. When evaluated in phyllochronic units, similar pattern was observed across seasons of the year for a common leaf rank group. However, in all seasons, higher leaf ranks presented greater LED. Higher LAR were reported for topmost primary axes and LER increased with leaf rank until reaching a maximum, remaining constant afterwards. The LED increased with leaf rank in main and primary axes. The stem elongation began from phytomer 8 on the main axis in all seasons of the year, and in earlier phytomers for the other primary axes. In the main axis, internode length ranged from 0.5-2.0 cm for phytomer 8 until reaching a maximum value of 8-10 cm for phytomers 12-13 onwards, in Spring and Summer. During Autumn, maximum values of internode length were approximately 20 cm. Internode elongation begins concomitantly with the cessation of leaf elongation, and after 5 phyllochronic units from leaf appearance. In all axes, STL increased until reaching a maximum value of approximately 12-13 cm in Summer and 11-12 cm in Spring, coinciding with the beginning of stem elongation. The ontogenic development described for elephantgrass differs from that reported for temperate forage grasses. There was a seasonality effect. Axes development presents a hierarchical and synchronized organization. However, for the upper axes and topmost phytomers behavior is different and needs to be investigated. The stem elongation process can be described by the number of produced leaves. This study provides a key element for understanding phenotypic plasticity and corresponds to an useful information to identify the onset of stem elongation in field conditons. This result can potentially be used for functional-structural plant modelling.
A caracterização do desenvolvimento ontogênico é de fundamental importância para inferir sobre estratégias de adaptação das plantas. Frequentemente, a morfogênese de gramíneas tropicais é reportada como análoga à de gramíneas de clima temperado. No entanto, gramíneas tropicais apresentam colmo ainda na fase vegetativa e com elevada disponibilidade de luz. O alongamento de colmo potencialmente altera a dinâmica do desenvolvimento, com implicações sobre o manejo do pastejo. Em condições tropicais, o capim-elefante cv. Napier é considerado uma das gramíneas mais produtivas sob condições de pastejo. Objetivou-se com esse estudo caracterizar o desenvolvimento ontogênico do capim-elefante, a coordenação entre fitômeros, o alongamento de colmo e a coordenação entre folha e entrenó em perfilhos principais e axilares, em condições de plantas isoladas. O experimento foi conduzido em Piracicaba-SP, durante a Primavera (2015), Verão (2016) e Outono (2016), utilizando um delineamento em blocos completos casualizados, com 4 repetições. Foram instalados 80 tanques de fibrocimento (0,343 m3). Cada bloco era composto por 20 tanques, sendo que 10 foram utilizados para avaliar as características morfogênicas e de desenvolvimento e os outros 10 para as avaliações destrutivas. Medições do alongamento da lâmina foliar e do colmo foram realizadas a cada dois dias, para determinação das variáveis: taxa de aparecimento de folhas (TAF), taxa de alongamento de folhas (TAlF), duração do alongamento de folhas (DAF) e comprimento final da folha (CFF). A partir do dia 10 do período de avaliação no Verão e no Outono e do dia 25 na Primavera, foram feitos 10 cortes para avaliações destrutivas, a cada 5 dias. Por ocasião das avaliações destrutivas, as seguintes variáveis foram medidas: altura do meristema apical (AMA); comprimento do tubo de bainha (CTB); número de folhas em expansão (NFE); número de folhas expandidas (NFEX). Medições da bainha foliar (BF) e do comprimento do entreno (CE) foram realizadas apenas para o eixo principal (perfilho basal). No eixo principal, a TAF (0,02 folhas graus-dias-1) e a TAlF (0,26 cm graus-dias-1) foram constantes, enquanto que a DAF e o CFF aumentou com nível de inserção da folha no perfilho. A DAF variou de 150 a 280 graus-dias do fitômero 10 ao 20. No Outono, em função do florescimento, a DAF diminuiu com o nível de inserção da folha. O comprimento da BF foi crescente até atingir um valor máximo de aproximadamente 10-12 cm do fitômero 12-13 em diante. Quando avaliado em unidades filocrônicas, padrão semelhante foi observado entre épocas do ano para um grupo comum de níveis de inserção de folhas. No entanto, em todas as estações, níveis de inserção de folhas superiores apresentaram maiores DAF. Maiores TAF foram reportadas para eixos primários (perfilhos axilares) localizados acima do nível do solo e a TAlF foi crescente com o nível de inserção da folha até atingir um nível máximo, apartir do qual foi constante. A DAF foi crescente com o nível de inserção da folha em todos os eixos. O alongamento do colmo ocorreu a partir do fitômero 8 no eixo principal em todas as estações do ano, e em fitômeros anteriores para os demais eixos primários. No eixo principal, o CE variou de 0,5-2,0 cm no fitômero 8 até atingir valores máximos de 8-10 cm do fitômero 12-13 em diante, na Primavera e Verão. No Outono, valores máximos de entrenó foram de aproximadamente 20 cm. O alongamento do entrenó inicia-se concomitantemente ao término do alogamento da folha, e a um tempo de 5 filocronos do aparecimento da folha. Em todos os eixos, o CTB aumentou até atingir um valor máximo de aproximadamente 12-13 cm no verão e 11-12 cm na primavera, momento que coincidiu com o início do alongamento do colmo. O desenvolvimento ontogênico descrito para capim-elefante diverge daquele descrito para gramíneas de clima temperado. Houve efeito de sazonalidade. O desenvolvimento dos eixos apresenta organização hierárquica e sincronizada. No entanto, para os eixos superiores e fitômeros acima do nível do solo, o comportamento é diferente. O alongamento do colmo pode ser descrito pelo número de folhas produzidas. Este estudo fornece um elemento-chave para a compreensão da plasticidade fenotítipa e informações úteis para identificar o início do alongamento do colmo no campo. Este resultado pode ser utilizado potencialmente para modelagem de processos estrutura-função da planta.
APA, Harvard, Vancouver, ISO, and other styles
4

Grandi, V. "FUNCTIONAL ANALYSIS OF TRANSCRIPTION FACTORS INVOLVED IN REPRODUCTIVE MERISTEM IDENTITY IN ARABIDOPSIS THALIANA." Doctoral thesis, Università degli Studi di Milano, 2011. http://hdl.handle.net/2434/150562.

Full text
Abstract:
Flowering is the most important process in a plant’s life as it is the essential step for its reproduction. Flower development starts with a tightly regulated process called the floral transition in which different regulatory pathways, which are regulated by environmental and internal signals, culminate in the transition from vegetative to reproductive growth. Subsequently, flowers develop instead of leaves and the formation of these flowers is controlled by complex regulatory pathways. In model organism Arabidopsis thaliana there are at least five different pathways that regulate the floral transition to guarantee that it occurs under the best possible conditions. The signals derived from these pathways are than integrated at the level of the floral pathway integrators which are LEAFY (LFY), FLOWERING LOCUS T (FT), SOPPRESSOR OF OVEREXPRESSION OF CO (SOC1). These genes are responsible for the switch from the shoot apical meristem (SAM) to the inflorescence meristem (IM) and are involved in the activation of the floral meristem identity (FMI) genes: LFY, LATE MERISTEM IDENTITY1 (LMI1), APETALA1 (AP1), CAULIFLOWER (CAL), SHORT VEGETATIVE PHASE (SVP) and AGAMOUS-LIKE 24 (AGL24). In fact, after the floral transition, the inflorescence meristem (IM) starts to produce floral meristems from its flanks. These meristems remain undifferentiated until stage 3 of flower development, thanks to the action of the FMI genes; afterwards, when some of these genes become repressed, the floral organs start to differentiate. In these first undifferentiated stages, the floral meristem grows and produces enough cells to support the subsequent differentiation of all the floral organs. Many of the genes involved in these two processes, floral transition and floral meristem determination, are MADS-box transcription factors. The MADS-box family is one of the best-characterized gene families in Arabidopsis and the its members represent key regulators of developmental processes. MADS-box factors are combinatorial proteins that act via multimerization and interact with other regulatory proteins in complexes to regulate the transcription of target genes. The aim of this thesis is the analysis of the genetic interactions of MADS-box transcription factors playing key roles during the floral transition and early stages of flower development. The floral pathways integrator SOC1 is a MADS-box gene that integrates at least four pathways that control flowering (photoperiod, vernalization, autonomous and gibberellin pathways), giving rise to the activation of the floral meristem identity genes (Parcy, 2005). In chapter 2, , we show that AGAMOUS-LIKE 42 (AGL42), AGAMOUS-LIKE 71 (AGL71) and AGAMOUS-LIKE 72 (AGL72) that are phylogenetically related to SOC1, are also involved in the floral transition of both the shoot apical meristem and axillary meristems and moreover, are involved in the gibberellin pathway. The soc1 agl42 ami::agl71-72 mutant shows an aerial rosettes bearing nodes phenotype. Our findings suggest that the SOC1-like genes are involved in the floral transition especially in the axillary meristem and the GA pathway is the main player controlling flowering in these axillary meristems both under short day and long day conditions. Furthermore SOC1 is able to directly control the expression of AGL42, AGL71 and AGL72 to maintain a proper expression level of SOC1-like genes. In chapter 3, the interactions between the floral meristem identity genes SVP, AGL24, AP1, CAL, which are all MADS-box transcription factors, and LFY is described. The lfy mutant shows partial reversions of flowers in inflorescence shoot-like structures and this phenotype is enhanced in the lfy ap1 double mutant. Here we show that combining the lfy mutant with agl24, svp single or agl4 svp double mutant enhances the lfy phenotype and that the agl24 svp lfy triple mutant phenocopies the ap1 lfy double mutant. Analysis of the molecular interactions between LFY and AGL24 and SVP showed that LFY is, together with AP1, a repressor of AGL24 and SVP whereas AGL24 and SVP positively regulate AP1 and LFY by direct binding to their regulatory regions. Since all genes are important to establish floral meristem identity this regulatory loop is probably important to maintain the correct relative expression levels of these genes. In chapter 4, we focalize our attention on SVP, a MADS-box gene involved in floral repression, before the floral transition, and in floral meristem (FM) identity determination, after the floral transition. An interesting feature of SVP is that it is the only Floral Meristem Identity Gene identified so far that is expressed exclusively in the undifferentiated FM. To date some transcription factors that are able to bind the SVP genomic region have already been identified by ChIP experiments, but it is still not clear how this gene is regulated. To understand this as a first step we are interested in the identification of the SVP minimal promoter region that fully comprises all its regulatory elements. We use, for our studies, lines that contain different SVP promoter fragments, that are cloned as transcriptional or translational fusions to the uidA gene, that encodes the beta-glucuronidase enzyme. This studies show that at least two regions are necessary for normal SVP expression: a 1 Kb fragment, located from 3000 to 2000 bp upstream of the start codon, and the first intron. In fact constructs lacking one of these two regions aren’t able to express GUS in the flower primordia. In conclusion this work contributes to get a better understanding of what exactly happens during the floral transition and, afterwards, in undifferentiated flower meristems.
APA, Harvard, Vancouver, ISO, and other styles
5

Filho, José Hernandes Lopes. "Ontogênese do complexo de gemas em Passiflora L. (Passifloraceae) e expressão de PasAP1, ortólogo de APETALA1." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/41/41132/tde-17072015-084101/.

Full text
Abstract:
A axila foliar em Passiflora L. (Passifloraceae) apresenta uma estrutura complexa: de um mesmo ponto parecem surgir flores e gavinhas, além de uma gema vegetativa também estar presente. A origem da gavinha foi interpretada de diferentes maneiras ao longo da história, sendo considerada desde modificações de um ramo até uma flor. Além disso, a ontogenia dessas estruturas tem início em um único meristema axilar, que geralmente é descrito como capaz de se dividir em dois ou mais meristemas (chamado de \"complexo de gemas\"), cada qual dando origem a uma estrutura diferente (gavinhas e flores). Estudos de expressão gênica demonstram a presença do ortólogo do gene LEAFY de Arabidopsis, em meristemas axilares, florais e de gavinhas, em duas espécies de Passiflora. Esse gene é tipicamente relacionado à transição de fase vegetativa para reprodutiva em diversas angiospermas. Assim, o presente estudo objetivou descrever em detalhes a ontogenia das diferentes estruturas originadas no meristema axilar de diferentes espécies, focando em diferentes fases de vida da planta, bem como averiguar a expressão de ortólogos de APETALA1 (AP1), um gene tipicamente relacionado à identidade de meristemas florais e na determinação de sépalas e pétalas. Como resultado, propomos uma nova interpretação para a ontogenia do complexo de gemas, baseada na produção de brácteas e seus meristemas associados. Demonstramos também que o ortólogo de AP1 se expressa de maneira mais ampla do que aquela encontrada no modelo Arabidopsis, possivelmente desempenhando diversas funções relacionadas à manutenção da indeterminação celular.
The leaf axil in Passiflora L. (Passifloraceae) bears a complex structure: a tendril and one or more flowers seem to arise from the same growing point. In addition, vegetative bud is also present. There are many different interpretations for the origin of the tendril in this group, ranging from modifications of flowers to side shoots. Also, the ontogeny of these structures is often understood as a single meristem which subdivides into a bud complex, comprising the tendril and flower meristems. Recently, the expression of the LEAFY ortholog was demonstrated in the axillary, tendril and floral meristems of two Passiflora species. In Arabidopsis and many angiosperms, this gene is responsible for the shift between vegetative and reproductive phase. Therefore, the present work aimed to describe, in detail, the ontogeny of the bud complex in Passiflora species belonging to different subgenera, including different life stages. The expression of the ortholog of APETALA1, a gene typically related to floral meristem identity and sepal/petal specification was also assessed. As results, we propose a different interpretation for the ontogeny of the bud complex, based on the production of bracts and their associated meristems by the original axillary meristem, which then turns into the tendril meristem. We also demonstrate that expression of AP1 is much broader than that of the Arabidopsis model, and possibly have many other functions related to cell indeterminacy.
APA, Harvard, Vancouver, ISO, and other styles
6

Alonso, Marie. "Balance entre reproduction sexuée et asexuée chez le fraisier : vers la construction d’un réseau de gènes contrôlant le devenir du méristème axillaire." Thesis, Bordeaux, 2022. http://www.theses.fr/2022BORD0158.

Full text
Abstract:
Le fraisier est capable de se reproduire de manière sexuée, via la floraison, et de manière asexuée, via la production de stolons. Ces deux modes de reproduction sont en compétition au niveau du méristème axillaire (MAx), qui peut devenir soit une branche latérale pouvant se terminer par une inflorescence, soit un stolon ou soit rester dormant. Ainsi, jouer sur le devenir du MAx modifie l’architecture de la plante et favorise le rendement soit en fruits soit en plants filles. L’objectif de la thèse est d’identifier et de caractériser des acteurs influençant le devenir d’un MAx en branche latérale ou en stolon en utilisant comme modèle le fraisier diploïde. Il se décline en trois points :(1) L’observation morphologique et histologique des évènements précoces du développement du MAx a permis de définir pour la première fois chez le fraisier une échelle de développement du MAx en stolon ou en branche latérale. Cette étude met en évidence un stade indifférencié, morphologiquement identique entre les deux devenirs possibles.(2) L’étude du transcriptome de bourgeons axillaires indifférenciés a permis d’identifier 283 gènes différentiellement exprimés (DEG) entre ceux qui vont devenir un stolon et ceux qui vont devenir une branche latérale. Parmi les DEG, certains gènes comme FveTCP9, homologue de AtBRC1, ainsi que des gènes impliqués dans la voie des phytohormones et de la floraison ont été identifiés et sélectionnés pour d’autres analyses afin d’approfondir leur rôle dans le devenir du MAx. Afin d’initier un réseau de gènes, une seconde analyse transcriptomique a pris en compte le développement spatio-temporel du bourgeon axillaire en branche latérale ou en stolon. Les effets de la position du bourgeon axillaire au niveau du nœud de l’axe primaire et du stade de développement de la plantule sur le transcriptome ont été mis en évidence.(3) Des analyses d’expression par qPCR sur des fonds génétiques différents et/ou hybridation in situ ont permis de confirmer l’implication des DEG sélectionnés dans le contrôle du devenir du MAx. Parmi ces gènes, les mutations obtenues par CRISPR-Cas9 sur FveTVP9 ont permis de valider son rôle dans le déterminisme du MAx grâce la production de branches latérales aux dépens des stolons.Cette thèse a permis d’initier un réseau de régulation contrôlant le devenir du MAx et également, de mettre en évidence des gènes clés qui pourront être étudiés chez le fraisier cultivé octoploïde à des fins agronomiques
Strawberry is able to reproduce both sexually, via flowering, and asexually, via the production of stolons. The AxM governs these two modes of reproduction since AxM can become a lateral branch terminated by an inflorescence, or a stolon, or remain dormant. Thus, the AxM fate shapes the plant architecture and promotes the fruit yield or daughter plant production. The objective of this thesis is to identify and characterise molecular actors that affect the AxM fate by using the diploid strawberry model. The manuscript is divided into three points:(1) Morphological and histological observation of the early events of the AxM development has allowed to define for the first time in strawberry a scale of the AxM development into a stolon or a lateral branch. This study highlights an undifferentiated stage that is morphologically identical for both types of AxM.(2) A transcriptome study of undifferentiated axillary buds identified 283 differentially expressed genes (DEGs) between those becoming a stolon and becoming a lateral branch. Among the DEGs, we identified FveTCP9, homologous to AtBRC1, and genes involved in the phytohormone and flowering pathways. These genes were chosen for further analysis to investigate their role in the AxM fate.In order to initiate a gene network, a second transcriptomic analysis included the spatio-temporal development of the axillary bud into a lateral branch or a stolon. Results highlighted the effects of the axillary bud position at the node of the primary crown and the developmental stage of the seedling on the transcriptome.(3) The study of the chosen DEGs by using different approaches, qPCR in different genetic backgrounds and/or in situ hybridization, confirmed their role in controlling the AxM fate. Among these genes, the CRISPR-Cas9 mutation of FveTCP9 validates its role in the AXM fate and shows that lateral branches were produced at the expense of stolons.This thesis initiated a regulatory network controlling the fate of MAx and also identified key genes that could be studied in octoploid strawberry for future agronomic applications
APA, Harvard, Vancouver, ISO, and other styles
7

Steels, C. "The analysis of metabolic change in axillary meristems." Thesis, University of Sheffield, 2013. http://etheses.whiterose.ac.uk/3704/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

FEDERICI, SILVIA. "Genetic mechanisms of maize development: from gametophyte to flowers." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/50226.

Full text
Abstract:
Zea mays L. is one of the world’s most agronomically important crop. The understanding of the molecular basis of inflorescences architecture and seed development may be useful for agronomic purposes. The major goal of this research is to investigate different aspect of maize development to shed light on the genetic mechanisms involved in the formation of maize inflorescences as well as seed development. In the first part of my thesis, the mechanisms regulating inflorescences development have been investigated by studying a new barren mutant, barren inflorescence173 (bif173). The recessive mutant bif173 is affected in the formation of axillary meristems, showing defects in inflorescences development, such as a reduction in the number of spikelets and branches in the tassel and smaller and more disorganized ears. The phenotype of this mutant is not fully penetrant and its severity seems to be related to temperature or light changes. Also, we demonstrated that bif173, like other barren mutants, is involved in auxin biology and may play a role in auxin signaling. In order to identify the gene responsible of bif173 mutation, a RNA-seq analysis was carried out to closely examine a mapping region previously identified and one SNP present only in bif173 mutant transcripts was found. This SNP represents a non-synonymous mutation in the coding region of the gene GRMZM2G038401, causing a change of a very conserved amino acid in the encoded protein. This gene encodes a metalloprotease, homologous to the FtsH ATP- dependent metalloproteases, a conserved family of membrane- bound proteases. The ubiquitous localization of the GRMZM2G038401 transcripts seems to be consistent with the numerous functions of these proteases. As evidence that GRMZM2G038401 gene is a good candidate for bif173 mutation is the fact that the SNP found in the RNA-seq reads was not present in teosinte and other maize inbred lines, suggesting that it is not a polymorphism due to the genetic variability among maize background. In order to confirm that GRMZM2G038401 is the gene responsible for bif173 mutation, plants homozygous for a transposon insertion are currently growing and if the phenotype resembles the bif173 mutant phenotype, this gene will be confirmed as the causative gene. This finding will shed light on the molecular mechanisms regulating inflorescences development in maize and will increase our knowledge in auxin biology. In the second part of my thesis, genetic mechanisms acting in seed development have been investigated, particularly focusing on gametogenesis and embryogenesis. In A. thaliana, DME is a gene encoding a DNA glycosylase/lyase, active in the central cell of the female gametophyte before fertilization. The role of this enzyme is essential for the viability of the seed, in fact, acting as a demethylase, it activates the expression of maternal alleles, establishing imprinting in the endosperm. Here, two DME homologues in maize were identified: ZmDME1 and ZmDME2. The proteins encoded by these genes showed a high homology with A. thaliana DME and a conserved protein structure characteristic of the DME family. A phylogenetic analysis also suggested that these proteins have a common evolutionary origin. The expression of these genes was found in different stages of gametogenesis, previously identified through a morphological analysis. ZmDME1 and ZmDME2 showed a different expression pattern compared to A. thaliana DME, i.e. the expression was not only found in the mature gametophyte containing the central cell, but also in the embryo and endosperm and in all the vegetative tissues tested. Furthermore, the localization of the expression of ZmDME1 and ZmDME2 in the mature gametophyte was detected not only in the central cell but also in the other cells of the embryo sac and in the nucellus. In A. thaliana dme mutants produce non viable seeds, with enlarged endosperm and aborted embryos. A functional analysis using Zmdme1 mutant plants revealed no defects in vegetative and reproductive phases, producing all normal-shaped seeds. A morphological analysis of these mutants showed that gametogenesis and embryogenesis occur normally. Nevertheless, further analyses are needed to verify the function of these genes. Even if the lack of DME orthologues in monocots has been previously hypothesized, recent findings suggest that a similar mechanism of DNA demethylation may take place in monocot gametophyte. Thus, we discuss about the possibility that ZmDME1 and ZmDME2 may be responsible of active demethylation in maize gametophyte, allowing the proper development of embryo and endosperm.
APA, Harvard, Vancouver, ISO, and other styles
9

Longstaff, Muriel Tahiameiani. "Diversity in Tiller Suppression of Domesticated Cereals: MorphologicalVariance Observed in Maize, Sorghum, and Setaria." BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/7432.

Full text
Abstract:
Tillers are vegetative branches found in grasses, which develop in early stages of plant life. Located at the base of the central stalk, tillers have agronomical importance by increasing seed production with fewer tillers, or providing alternative forms of biofuel with more tillers. As grains have typically decreased tiller number while undergoing domestication, we explored wild and domesticated strains of varying grains by doing a morphological analysis on tiller development. This thesis shows how the decrease of tillers through in domestication cereals shows diversity not only across maize, Sorghum, and Setaria, but also between lines of maize and Setaria species. To do so, we first measured axillary bud growth across these grasses and compared bud initiation, growth, dormancy and outgrowth. While maize inbred B73 demonstrated a tiller dormancy pattern by initiating buds, growing buds and then bud dormancy we measured growth in Sorghum and Setaria to compare and found that although Sorghum patterns dormancy similar to maize, Setaria had more than one way tiller suppression not previously expected. We look further at Setaria buds with a statistical analysis of tiller origin and bud frequency in a wild strain and two domesticated strains of Setaria. Furthermore we performed Scanning Electron Microscopy (SEM) to have a clear understanding of bud initiation or lack of initiation in Setaria italica (B100) comparing it to its wild ancestor Setaria viridis. Because of the diversity in Setaria, we re-visited maize tiller domestication by taking bud measurements, performing SEMs and counting bud frequency on other strains of inbred maize. We found that maize also shows diversity in its patterning of tiller domestication. These results demonstrate that there is diversity in the patterns in which tiller domestication has occurred. This diversity is shown here through differences in tiller bud decisions to initiate or not initiate, or to have axillary buds go dormant post-initiation. Furthermore this variance is shown through differences in bud frequency counts, growth measurements, SEMs, and where tiller branches originate across the grains of maize, Sorghum and Setaria.
APA, Harvard, Vancouver, ISO, and other styles
10

Fernandes, João Carlos Martins. "Characterization and expression of cytokinin signalling genes in sulfur deficient grapevine (Vitis vinifera L.)." Master's thesis, 2009. http://hdl.handle.net/10400.5/1103.

Full text
Abstract:
Mestrado em Engenharia Agronómica - Instituto Superior de Agronomia
Sulfur (S) is an essential macronutrient for plant growth and development. In vitro grapevine callus, cells and shoots in culture media in the absence of sulfur (-S) respond markedly with a reduction of growth and shoot multiplication. This may result from an interference of -S with cytokinin signal pathway (CSP) or at shoot apical meristem (SAM) or axillary meristem (AM) identity level. Cytokinins are essential plant hormones that control various processes in plants. As in Arabidopsis, Vitis CSP is composed by receptors (HKs), phosphotransmitters (HPTs) and two types of response regulators (A-type and B-type RRs). Cells in -S in the presence of cytokinin show a downregulation of most CSP genes while -S without cytokinin leads to an upregulation of A-type RRs. CSP is not significantly affected by –S in in vitro shoots, so the multiplication inhibition can be caused by a downregulation of the expression of SAM and AM identity genes, respectively STM and LAS. In vitro conditions more similar to autotrophy as Temporary Immersion System, the scarce multiplication impairment must result from the reduction of B-type RRs transcription. As a whole the present work provides new insights on the crosstalk between –S and cytokinin signaling in in vitro grapevine model systems.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Axillary Meristem"

1

Rossman, Susanne Elisabeth. Analysis of the Lateral suppressor pathway in tomato axillary meristem formation. 2012.

APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Axillary Meristem"

1

Shi, Bihai, Hongli Wang, and Yuling Jiao. "Live Imaging of Arabidopsis Axillary Meristems." In Plant Stem Cells. Springer US, 2019. http://dx.doi.org/10.1007/978-1-0716-0183-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Aycan, Murat, Muhammet Cagri Oguz, Yasin Ozgen, Burak Onol, and Mustafa Yildiz. "Gamma Radiation Effect on Agrobacterium tumefaciens-Mediated Gene Transfer in Potato (Solanum tuberosum L.)." In Solanum tuberosum - a Promising Crop for Starvation Problem [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99878.

Full text
Abstract:
Potato (Solanum tuberosum L.) is one of the major crops of the world. Significant improvements can be achieved in terms of yield and quality by the determination of efficient transformation methods. On the other hand, low transformation frequency seriously limits the application of molecular techniques in obtaining transgenic crops. In the present study, the effect of gamma radiation on Agrobacterium tumefaciens-mediated transformation to the potato was firstly investigated. Sterile seedlings of potato cv. ‘Marabel’, which was grown on Gamborg’s B5 medium in Magenta vessels, were irradiated with different gamma radiation doses (0-control, 40, 80, 120 Gy 60Co). Stem parts having axillary meristems were excised from irradiated seedlings and inoculated by A. tumefaciens (GV2260), which harbors the binary plasmid p35S GUS-INT contains and GUS (β-glucuronidase) gene controlled by 35S promoter (CaMV) and nptII (neomycin phosphotransferase II) gene driven by NOS (nopaline synthase) promoter). Inoculated stem parts having axillary meristems explants were then directly transported to a selection medium containing duocid (500 mg l−1), and kanamycin (100 mg l−1), 4 mg l−1 gibberellic acid, 1 mg l−1 BAP and 0.1 mg l−1 NAA. The adult transgenic plants were detected by polymerase chain reaction (PCR) analysis. According to the number of transgenic plants determined by PCR analysis, results obtained from explants treated with 40 Gy gamma gave the best results compared to the control (0 Gy) application. The doses over 40 Gy were also found statistically significant compared to the control (0 Gy). It is expected that the protocol described in this study make the transformation studies easier by skipping the stages of ‘co-cultivation’, ‘culturing explants on selection medium’ and ‘recovery of transgenic shoots on selection medium’ not only for potato but also for other crop plants. This study was supported by a grant from the Scientific and Technological Research Council of Turkey (TUBİTAK) (Grant number 113O280 to Prof. Dr. Mustafa YILDIZ).
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Axillary Meristem"

1

Eshed-Williams, Leor, and Daniel Zilberman. Genetic and cellular networks regulating cell fate at the shoot apical meristem. United States Department of Agriculture, 2014. http://dx.doi.org/10.32747/2014.7699862.bard.

Full text
Abstract:
The shoot apical meristem establishes plant architecture by continuously producing new lateral organs such as leaves, axillary meristems and flowers throughout the plant life cycle. This unique capacity is achieved by a group of self-renewing pluripotent stem cells that give rise to founder cells, which can differentiate into multiple cell and tissue types in response to environmental and developmental cues. Cell fate specification at the shoot apical meristem is programmed primarily by transcription factors acting in a complex gene regulatory network. In this project we proposed to provide significant understanding of meristem maintenance and cell fate specification by studying four transcription factors acting at the meristem. Our original aim was to identify the direct target genes of WUS, STM, KNAT6 and CNA transcription factor in a genome wide scale and the manner by which they regulate their targets. Our goal was to integrate this data into a regulatory model of cell fate specification in the SAM and to identify key genes within the model for further study. We have generated transgenic plants carrying the four TF with two different tags and preformed chromatin Immunoprecipitation (ChIP) assay to identify the TF direct target genes. Due to unforeseen obstacles we have been delayed in achieving this aim but hope to accomplish it soon. Using the GR inducible system, genetic approach and transcriptome analysis [mRNA-seq] we provided a new look at meristem activity and its regulation of morphogenesis and phyllotaxy and propose a coherent framework for the role of many factors acting in meristem development and maintenance. We provided evidence for 3 different mechanisms for the regulation of WUS expression, DNA methylation, a second receptor pathway - the ERECTA receptor and the CNA TF that negatively regulates WUS expression in its own domain, the Organizing Center. We found that once the WUS expression level surpasses a certain threshold it alters cell identity at the periphery of the inflorescence meristem from floral meristem to carpel fate [FM]. When WUS expression highly elevated in the FM, the meristem turn into indeterminate. We showed that WUS activate cytokinine, inhibit auxin response and represses the genes required for root identity fate and that gradual increase in WUCHEL activity leads to gradual meristem enlargement that affect phyllotaxis. We also propose a model in which the direction of WUS domain expansion laterally or upward affects meristem structure differently. We preformed mRNA-seq on meristems with different size and structure followed by k-means clustering and identified groups of genes that are expressed in specific domains at the meristem. We will integrate this data with the ChIP-seq of the 4 TF to add another layer to the genetic network regulating meristem activity.
APA, Harvard, Vancouver, ISO, and other styles
2

Eshed, Yuval, and Sarah Hake. Shaping plant architecture by age dependent programs: implications for food, feed and biofuel. United States Department of Agriculture, 2012. http://dx.doi.org/10.32747/2012.7597922.bard.

Full text
Abstract:
Age dependent programs are responsible for the physiological and developmental differences of young and mature plants. These include a range of morphological characters such as leaf shape and leaf composition (waxes, lignin etc..) but also different in developmental potentials. Apical buds of juvenile plants are vegetative, while those of mature plants can be reproductive. Likewise, basal buds form in the axills of juvenile leaves have different fates than distal buds formed in the axils of mature leaves. The goal of our joint project is to understand and exploit theses age related programs for specific improvement of crop plants. To that end both the WIS group and the PGEC group are using mutants with age related defects as well as modified expression of miR156 to modify age related programs in crop plants- Tomato and potato in Israel and Maize, switchgrass and Brchipodium in the US. In the US, major effort were made to: Characterize the contribution of selected miR156 target genes to yield component traits of maize. Functional analysis of microRNAs and their targets in new crop plants. In Israel, the research progressed in several directions: Understanding the interplay between age dependent programs and the potential of tomato and potato meristems to produce tubers. Evaluation of the agronomic value of mutants that alter flowering regime in side shoots in general, and in the sympodial buds in particular Characterization of wild type axillary buds, comparing shoot ontogeny of gradually maturing apices from basal and distal positions along the main shoot of tomato.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography