Academic literature on the topic 'Axioma de Peano'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Axioma de Peano.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Axioma de Peano"
Heck, Richard G. "The development of arithmetic in Frege's Grundgesetze der arithmetik." Journal of Symbolic Logic 58, no. 2 (June 1993): 579–601. http://dx.doi.org/10.2307/2275220.
Full textWillard, Dan E. "How to extend the semantic tableaux and cut-free versions of the second incompleteness theorem almost to Robinson's arithmetic q." Journal of Symbolic Logic 67, no. 1 (March 2002): 465–96. http://dx.doi.org/10.2178/jsl/1190150055.
Full textYukami, Tsuyoshi. "Taking out LK parts from a proof in Peano arithmetic." Journal of Symbolic Logic 51, no. 3 (September 1986): 682–700. http://dx.doi.org/10.2307/2274022.
Full textDecock, Lieven. "Neo-Fregeanism naturalized: The role of one-to-one correspondence in numerical cognition." Behavioral and Brain Sciences 31, no. 6 (December 2008): 648–49. http://dx.doi.org/10.1017/s0140525x08005645.
Full textChangat, Manoj, and Joseph Mathew. "Induced path transit function, monotone and Peano axioms." Discrete Mathematics 286, no. 3 (September 2004): 185–94. http://dx.doi.org/10.1016/j.disc.2004.02.017.
Full textLubarsky, Robert S. "An introduction to γ-recursion theory (or what to do in KP – Foundation)." Journal of Symbolic Logic 55, no. 1 (March 1990): 194–206. http://dx.doi.org/10.2307/2274962.
Full textChong, C. T. "Maximal sets and fragments of Peano arithmetic." Nagoya Mathematical Journal 115 (September 1989): 165–83. http://dx.doi.org/10.1017/s0027763000001604.
Full textRead, Dwight. "Learning natural numbers is conceptually different than learning counting numbers." Behavioral and Brain Sciences 31, no. 6 (December 2008): 667–68. http://dx.doi.org/10.1017/s0140525x08005840.
Full textWhite, Jonathan J. "The Peano Axioms: An IBL Unit Constructing the Natural Numbers." PRIMUS 27, no. 7 (July 14, 2016): 725–35. http://dx.doi.org/10.1080/10511970.2016.1199619.
Full textKahle, Reinhard. "Dedekinds Sätze und Peanos Axiomata." Philosophia Scientae, no. 25-1 (February 25, 2021): 69–93. http://dx.doi.org/10.4000/philosophiascientiae.2846.
Full textDissertations / Theses on the topic "Axioma de Peano"
Sousa, Pedro SÃrgio Sales de. "A construÃÃo dos nÃmeros naturais: um foco nas quatro operaÃÃes fundamentais." Universidade Federal do CearÃ, 2014. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=13230.
Full textThis paper aims to present the construction of the natural numbers and the axiomatic definition with respect to the four fundamental operations for students and teachers of elementary school.To this was presented a sequence initially addressing on the study of mathematics, the concept of mathematics, mathematical knowledge and a mathematical brief history to see how mathematical theories and practices are designed, developed and used in a specific context of each era. The second moment was described the construction of natural numbers through the Peano axioms, continuing with the rigorous definition of each operation and ending with the order relation in the set of natural numbers.
Sousa, Pedro Sérgio Sales de. "A construção dos números naturais: um foco nas quatro operações fundamentais." reponame:Repositório Institucional da UFC, 2014. http://www.repositorio.ufc.br/handle/riufc/10444.
Full textSubmitted by Erivan Almeida (eneiro@bol.com.br) on 2015-01-12T16:34:08Z No. of bitstreams: 1 2014_dis_psssousa.pdf: 1314798 bytes, checksum: d58f97e2efdcfc7a1a8d07e1edb49b0b (MD5)
Approved for entry into archive by Rocilda Sales(rocilda@ufc.br) on 2015-01-15T12:57:36Z (GMT) No. of bitstreams: 1 2014_dis_psssousa.pdf: 1314798 bytes, checksum: d58f97e2efdcfc7a1a8d07e1edb49b0b (MD5)
Made available in DSpace on 2015-01-15T12:57:36Z (GMT). No. of bitstreams: 1 2014_dis_psssousa.pdf: 1314798 bytes, checksum: d58f97e2efdcfc7a1a8d07e1edb49b0b (MD5) Previous issue date: 2014
This paper aims to present the construction of the natural numbers and the axiomatic definition with respect to the four fundamental operations for students and teachers of elementary school.To this was presented a sequence initially addressing on the study of mathematics, the concept of mathematics, mathematical knowledge and a mathematical brief history to see how mathematical theories and practices are designed, developed and used in a specific context of each era. The second moment was described the construction of natural numbers through the Peano axioms, continuing with the rigorous definition of each operation and ending with the order relation in the set of natural numbers.
O presente trabalho tem como objetivo apresentar a construção dos números naturais e a definição axiomática no que diz respeito às quatro operações fundamentais para alunos e professores do ensino fundamental. Para isso foi apresentado uma sequência abordando inicialmente as considerações sobre o estudo da Matemática, o conceito de Matemática, o saber matemático e um breve histórico matemático para se perceber como teorias e práticas matemáticas foram criadas, desenvolvidas e utilizadas num contexto específico de cada época. No segundo momento foi descrita a construção dos números naturais através dos axiomas de Peano, prosseguindo com a definição rigorosa de cada operação e finalizando com a relação de ordem no conjunto dos números naturais.
Oliveira, Wesley Sidney Santos. "A construção ortodoxa dos números : dos números naturais aos complexos." Universidade Federal de Sergipe, 2017. https://ri.ufs.br/handle/riufs/6522.
Full textNo presente trabalhos, investigamos, cuidadosamente, a construção do números Naturais, inteiros, Racionais, Reais e Complexos. Sendo que, o conjunto dos números reais foi obtido através dos conhecidos métodos: Cortes de Dedekind e Classes de Equivalência por sequência de Cauchy. O estudo consistiu em utilizar os famosos Axiomas de Peano, ps quais estão relacionados aos números naturais, em ordem a obter as em conhecidas propriedades elementares, satisfeitas para todos esses números. E, a partir deste conhecimento, encontramos rigorosamente as provas dos resultados básicos envolvendo os números reais. Este processo em questão, foi desenvolvida de maneira construtiva através dos números inteiros e racionais. Em seguida, mostramos que é possível estabelecer a existência de números complexos, juntamente com suas propriedades aritméticas mais usuais. Por fim, terminamos cada capítulo do nosso trabalho, mostrando algumas possíveis aplicações em cada conjunto trabalhado.
Blot, Valentin. "Game semantics and realizability for classical logic." Thesis, Lyon, École normale supérieure, 2014. http://www.theses.fr/2014ENSL0945/document.
Full textThis thesis investigates two realizability models for classical logic built on HO game semantics. The main motivation is to have a direct computational interpretation of classical logic, arithmetic and analysis with programs manipulating a higher-order store.Relaxing the innocence condition in HO games provides higher-order references, and dropping the well-bracketing of strategies reveals the CPS of HO games and gives a category of continuations in which we can interpret Parigot's lambda-mu calculus. This permits a direct computational interpretation of classical proofs from which we build two realizability models.The first model is orthogonality-based, as the one of Krivine. However, it is simply-typed and first-order. This means that we do not use a second-order coding of falsity, and extraction is handled by considering realizers with a free mu-variable. We provide a bar-recursor in this model and prove that it realizes the axiom of dependent choice, relying on two consequences of the CPO structure of the games model: every function on natural numbers (possibly non computable) exists in the model, and every functional on sequences is Scott-continuous. Usually, bar-recursion is used to intuitionistically realize the double negation shift and consequently the negative translation of the axiom of choice. Here, we directly realize the axiom of choice in a classical setting.The second model relies on winning conditions and is very specific to the games model. A winning condition is a set of positions in a game which satisfies some coherence properties, and a realizer of a formula is then a strategy which positions are all winning
Almeida, João Paulo da Cruz [UNESP]. "Indução finita, deduções e máquina de Turing." Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/151718.
Full textApproved for entry into archive by Monique Sasaki (sayumi_sasaki@hotmail.com) on 2017-09-28T12:58:50Z (GMT) No. of bitstreams: 1 almeida_jpc_me_sjrp.pdf: 1021011 bytes, checksum: 1717c0a1baae32699bdf06c781a9ed31 (MD5)
Made available in DSpace on 2017-09-28T12:58:50Z (GMT). No. of bitstreams: 1 almeida_jpc_me_sjrp.pdf: 1021011 bytes, checksum: 1717c0a1baae32699bdf06c781a9ed31 (MD5) Previous issue date: 2017-06-29
Este trabalho apresenta uma proposta relacionada ao ensino e prática do pensamento dedutivo formal em Matemática. São apresentados no âmbito do conjunto dos números Naturais três temas essencialmente interligados: indução/boa ordem, dedução e esquemas de computação representados pela máquina teórica de Turing. Os três temas se amalgamam na teoria lógica de dedução e tangem os fundamentos da Matemática, sua própria indecidibilidade e extensões / limites de tudo que pode ser deduzido utilizando a lógica de Aristóteles, caminho tão profundamente utilizado nos trabalhos de Gödel, Church, Turing, Robinson e outros. São apresentadas inúmeros esquemas de dedução referentes às “fórmulas” e Teoremas que permeiam o ensino fundamental e básico, com uma linguagem apropriada visando treinar os alunos (e professores) para um enfoque mais próprio pertinente à Matemática.
This work deals with the teaching and practice of formal deductive thinking in Mathematics. Three essentially interconnected themes are presented within the set of Natural Numbers: induction, deduction and computation schemes represented by the Turing theoretical machine. The three themes are put together into the logical theory of deduction and touch upon the foundations of Mathematics, its own undecidability and the extent / limits of what can be deduced by using Aristotle's logic, that is the subject in the works of Gödel, Church, Turing, Robinson, and others. There are a large number of deduction schemes referring to the "formulas" and Theorems that are usual subjects in elementary and basic degrees of the educational field, with an appropriate language in order to train students (and teachers) for a more pertinent approach to Mathematics.
Santos, Rafael Messias. "Fundamentos de lógica, conjuntos e números naturais." Universidade Federal de Sergipe, 2015. https://ri.ufs.br/handle/riufs/6488.
Full textThe present work has as main objective to approach the fundaments of logic and the notions of sets in a narrow and elementary way, culminating in the construction of natural numbers. We present and advance, as far as possible, natural and intuitively, the concepts of propositions and open propositions, and the use of these in the speci cation sets, according with the axiom of the speci cation. We also present the logic connectives of open propositions and logic equivalences, relating them to the sets. We showed the concept of Theorem, as well as some forms of writing and demonstrations in the scope of the sets, and we used properties and relations of sets in the demonstration techniques. Our study ended with the construction of natural numbers and some of its properties, for example, the Relation Order.
O presente trabalho tem como principal objetivo abordar os fundamentos de lógica e as noções de conjuntos de maneira estreita e elementar, culminando na constru- ção dos números naturais. Apresentamos, e progredimos na medida do possível, de forma natural e/ou intuitiva, os conceitos de proposições e proposições abertas, e o uso destes nas especi cações de conjuntos, de acordo com o axioma da especi cação. Apresentamos também os conectivos lógicos de proposições abertas e as equivalências lógicas, relacionando-os aos conjuntos. Mostramos o conceito de Teorema, bem como algumas formas de escritas e demonstrações no âmbito dos conjuntos, e utilizamos propriedades e relações de conjuntos nas técnicas de demonstração. Encerramos nosso estudo com a construção dos números naturais e algumas das suas principais propriedades, como por exemplo, a Relação de Ordem.
Books on the topic "Axioma de Peano"
Button, Tim, and Sean Walsh. Internal categoricity and the natural numbers. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198790396.003.0010.
Full textLinnebo, Øystein. The Natural Numbers. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199641314.003.0010.
Full textButton, Tim, and Sean Walsh. Categoricity and the natural numbers. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198790396.003.0007.
Full textBook chapters on the topic "Axioma de Peano"
Forster, Otto. "Die Peano-Axiome." In Algorithmische Zahlentheorie, 1–8. Wiesbaden: Vieweg+Teubner Verlag, 1996. http://dx.doi.org/10.1007/978-3-663-09239-1_1.
Full textForster, Otto. "Die Peano-Axiome." In Algorithmische Zahlentheorie, 1–8. Wiesbaden: Springer Fachmedien Wiesbaden, 2014. http://dx.doi.org/10.1007/978-3-658-06540-9_1.
Full textDasgupta, Abhijit. "The Dedekind–Peano Axioms." In Set Theory, 29–46. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8854-5_2.
Full textHalbeisen, Lorenz, and Regula Krapf. "Models of Peano Arithmetic." In Gödel's Theorems and Zermelo's Axioms, 199–202. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52279-7_16.
Full textHalbeisen, Lorenz, and Regula Krapf. "Arithmetic in Peano Arithmetic." In Gödel's Theorems and Zermelo's Axioms, 79–88. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52279-7_8.
Full textHalbeisen, Lorenz, and Regula Krapf. "Gӧdelisation of Peano Arithmetic." In Gödel's Theorems and Zermelo's Axioms, 89–108. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52279-7_9.
Full textHalbeisen, Lorenz, and Regula Krapf. "Countable Models of Peano Arithmetic." In Gödel's Theorems and Zermelo's Axioms, 73–78. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52279-7_7.
Full textSmullyan, Raymond M. "The Incompleteness of Peano Arithmetic with Exponentiation." In Gödel's Incompleteness Theorems. Oxford University Press, 1992. http://dx.doi.org/10.1093/oso/9780195046724.003.0006.
Full text"The Peano Axioms." In Algebra from A to Z, 100–105. World Scientific Publishing Company, 2002. http://dx.doi.org/10.1142/9789814291903_0005.
Full text"THE PEANO AXIOMS." In Arithmetic and Ontology, 103–28. Brill | Rodopi, 2006. http://dx.doi.org/10.1163/9789004333680_009.
Full textConference papers on the topic "Axioma de Peano"
Cerioli, Márcia R., Vitor Krauss, and Petrucio Viana. "An Arithmetical-like Theory of Hereditarily Finite Sets." In Workshop Brasileiro de Lógica. Sociedade Brasileira de Computação, 2021. http://dx.doi.org/10.5753/wbl.2021.15774.
Full textCerioli, Márcia, Hugo Nobrega, Guilherme Silveira, and Petrucio Viana. "On the (in)dependence of the Dedekind-Peano axioms for natural numbers." In CNMAC 2016 - XXXVI Congresso Nacional de Matemática Aplicada e Computacional. SBMAC, 2017. http://dx.doi.org/10.5540/03.2017.005.01.0239.
Full text