Academic literature on the topic 'Axiomas de Hilbert'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Axiomas de Hilbert.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Axiomas de Hilbert"
Zeman, Jan. "Hilbertova aritmetizace geometrie." FILOSOFIE DNES 10, no. 1 (April 13, 2019): 45–63. http://dx.doi.org/10.26806/fd.v10i1.269.
Full textArboleda Aparicio, Luis Carlos. "Introducción de la topología de vecindades en los trabajos de Fréchet y Hausdorff." Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 41, no. 161 (January 12, 2018): 528. http://dx.doi.org/10.18257/raccefyn.510.
Full textNegri, Sara, and Jan von Plato. "From mathematical axioms to mathematical rules of proof: recent developments in proof analysis." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377, no. 2140 (January 21, 2019): 20180037. http://dx.doi.org/10.1098/rsta.2018.0037.
Full textRaftery, J. G. "Correspondences between gentzen and hilbert systems." Journal of Symbolic Logic 71, no. 3 (September 2006): 903–57. http://dx.doi.org/10.2178/jsl/1154698583.
Full textCoghetto, Roland, and Adam Grabowski. "Tarski Geometry Axioms – Part II." Formalized Mathematics 24, no. 2 (June 1, 2016): 157–66. http://dx.doi.org/10.1515/forma-2016-0012.
Full textRichter, William, Adam Grabowski, and Jesse Alama. "Tarski Geometry Axioms." Formalized Mathematics 22, no. 2 (June 30, 2014): 167–76. http://dx.doi.org/10.2478/forma-2014-0017.
Full textTorres Alcaraz, Carlos. "Hilbert, Kant y el fundamento de las matemáticas." Theoría. Revista del Colegio de Filosofía, no. 8-9 (December 31, 1999): 111–29. http://dx.doi.org/10.22201/ffyl.16656415p.1999.8-9.225.
Full textFontanella, Laura. "Axioms as Definitions: Revisiting Poincaré and Hilbert." Philosophia Scientae, no. 23-1 (February 18, 2019): 167–83. http://dx.doi.org/10.4000/philosophiascientiae.1827.
Full textBurn, R. P. "Non-Desarguesian planes and weak associativity." Mathematical Gazette 101, no. 552 (October 16, 2017): 458–64. http://dx.doi.org/10.1017/mag.2017.127.
Full textD'Ariano, Giacomo Mauro. "The solution of the sixth Hilbert problem: the ultimate Galilean revolution." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376, no. 2118 (March 19, 2018): 20170224. http://dx.doi.org/10.1098/rsta.2017.0224.
Full textDissertations / Theses on the topic "Axiomas de Hilbert"
Portela, Antonio Edilson Cardoso. "Noções de geometria projetiva." reponame:Repositório Institucional da UFC, 2017. http://www.repositorio.ufc.br/handle/riufc/25586.
Full textSubmitted by Jessyca Silva (jessyca@mat.ufc.br) on 2017-09-06T17:17:00Z No. of bitstreams: 1 2017_dis_aecportela.pdf: 1065928 bytes, checksum: 468c05aa35745f3fd2761f13aa26eff1 (MD5)
Rejected by Rocilda Sales (rocilda@ufc.br), reason: Boa tarde, Estou devolvendo a Dissertação de ANTONIO EDILSON CARDOSO PORTELA, para que o mesmo realize algumas correções na formatação do trabalho. 1- SUMÁRIO ( A formatação do sumário está incorreta, primeiro, retire o último ponto final que aparece após a numeração dos capítulos e seções (Ex.: 3.1. Axioma....; deve ser corrigido para: 3.1 Axioma.....), o alinhamento dos títulos deve seguir o modelo abaixo 1 INTRODUÇÃO.....................00 2 O ESPAÇO...........................00 3 GEOMETRIA........................00 3.1 Axiomas...............................00 REFERÊNCIAS...................00 (OBS.: não altere a formatação do negrito, pois já estava correta) 2- TITULO DOS CAPÍTULOS E SEÇÕES ( retire o ponto final que aparece após o último dígito da numeração dos capítulos e seções, seguindo o modelo do sumário. Retire o recuo de parágrafo dos títulos das seções. Ex.: 3.1 Axioma.......) 3- REFERÊNCIAS ( substitua o termo REFERÊNCIAS BIBLIOGRÁFICAS apenas por REFERÊNCIAS, com fonte n 12, negrito e centralizado. Retire a numeração progressiva que aparece nos itens da referência. Atenciosamente, on 2017-09-06T17:56:50Z (GMT)
Submitted by Jessyca Silva (jessyca@mat.ufc.br) on 2017-09-11T14:48:40Z No. of bitstreams: 1 2017_dis_aecportela.pdf: 944228 bytes, checksum: 3ab4691817df04ba5d7818fd02e5095f (MD5)
Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-09-11T15:30:32Z (GMT) No. of bitstreams: 1 2017_dis_aecportela.pdf: 944228 bytes, checksum: 3ab4691817df04ba5d7818fd02e5095f (MD5)
Made available in DSpace on 2017-09-11T15:30:32Z (GMT). No. of bitstreams: 1 2017_dis_aecportela.pdf: 944228 bytes, checksum: 3ab4691817df04ba5d7818fd02e5095f (MD5) Previous issue date: 2017
In this work, initially, some results of Linear Algebra are presented, in particular the study of the Vector Space R^n, which becomes, together with Analytical Geometry, the language used in the chapters that follow. We present a study from an axiomatic point of view, from the perspectives of Hilbert's axioms and we elaborate models of planes for the Euclidean, Elliptic and Projective Geometries. The validity of the Incidence and Order axioms for Euclidean Geometry is verified. In R^3, an approach is made to the study of the plane and the unitary sphere, highlighting the elliptical line obtained by the intersection of these sets, thus making an approach to the Elliptic Geometry. With the concepts and definitions studied in the Vector Space R^n, Three-dimensional Space and in the Euclidean and Elliptic Geometries we will approach the study of Projective Geometry, demonstrating propositions and verifying its axioms.
Neste trabalho, inicialmente, apresenta-se alguns resultados da Álgebra Linear, em especial o estudo do Espaço Vetorial R^n, que passa a ser, juntamente com a Geometria Analítica, a linguagem empregada nos capítulos que se seguem. Apresentamos um estudo de um ponto de vista axiomático, sob a ótica dos axiomas de Hilbert e elaboramos modelos de planos para as Geometrias Euclidiana, Elíptica e Projetiva. É verificada a validade dos axiomas de Incidência e Ordem para a Geometria Euclidiana. No R^3, é feita uma abordagem do estudo de plano e da esfera unitária, destacando a reta elíptica obtida pela interseção destes conjuntos, passando assim a fazer uma abordagem da Geometria Elíptica. Com os conceitos e definições estudadas no Espaço Vetorial R^n, Espaço tridimensional e nas Geometrias Euclidiana e Elíptica, abordaremos o estudo da Geometria Projetiva, demonstrando proposições e verificando os seus axiomas.
SOUZA, Carlos Bino de. "Geometria hiperbólica : consistência do modelo de disco de Poincaré." Universidade Federal Rural de Pernambuco, 2015. http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/6695.
Full textMade available in DSpace on 2017-03-28T14:00:56Z (GMT). No. of bitstreams: 1 Carlos Bino de Souza.pdf: 2371603 bytes, checksum: d2f0bb2e430fc899161fe573fbae4e50 (MD5) Previous issue date: 2015-08-26
Euclid wrote a book in 13 volumes called Elements where systematized all the mathematical knowledge of his time. In this work, the 5 postulates of Euclidean geometry were presented. For several years, the 5th Postulate was frequently asked, this inquiries it was discovered that there are several other possible geometries, including hyperbolic geometry. Beltrimi proved that hyperbolic geometry is consistent if Euclidean geometry is consistent. Hilbert showed that Euclidean geometry is consistent if the arithmetic is consistent and presented an axiomatic system that capped the gaps in Euclid’s axiomatic system. Poincaré created a model, called the Poincaré disk, to represent the plan of hyperbolic geometry. The objective of this work is to show that the Poincaré disk model is consistent with reference Axioms Hilbert, replacing only the Axioms of Parallel to "On a point outside a line passes through the two parallel straight lines given", by constructions of Euclidean geometry.
Euclides escreveu uma obra em 13 volumes chamada de Elementos onde sistematizava todo o conhecimento matemático do seu tempo. Nesta obra, foram apresentados os 5 postulados da Geometria Euclidiana. Durante vários anos, o 5o Postulado foi muito questionado, desses questionamentos descobriu-se a existência de várias outras Geometrias possíveis, entre elas a Geometria Hiperbólica. Beltrimi provou que a Geometria Hiperbólica é consistente se a Geometria Euclidiana é consistente. Hilbert mostrou que a Geometria Euclidiana é consistente se a Aritmética é consistente e apresentou um sistema axiomático que preencheu as lacunas do sistema axiomático de Euclides. Poincaré criou um Modelo, chamado de Disco de Poincaré, para representar o plano da Geometria Hiperbólica. O objetivo deste trabalho é mostrar que o Modelo de Disco de poincaré é consistente, tomando como referência os Axiomas de Hilbert, substituindo apenas os Axiomas das Paralelas para "Por um ponto fora de uma reta passam duas retas paralelas à reta dada", através de construções da Geometria Euclidiana.
Ward, Peter James. "Euclid's Elements, from Hilbert's Axioms." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1354311965.
Full textBooks on the topic "Axiomas de Hilbert"
Ludwig, Günther. An Axiomatic Basis for Quantum Mechanics: Volume 1 Derivation of Hilbert Space Structure. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985.
Find full textDavid Hilbert and the Axiomatization of Physics (1898-1918): From Grundlagen der Geometrie to Grundlagen der Physik (Archimedes). Springer, 2004.
Find full textRau, Jochen. Quantum Theory. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199595068.003.0002.
Full textBook chapters on the topic "Axiomas de Hilbert"
Hartshorne, Robin. "Hilbert’s Axioms." In Undergraduate Texts in Mathematics, 65–116. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-0-387-22676-7_3.
Full textSossinsky, A. "Hilbert’s axioms for plane geometry." In The Student Mathematical Library, 271–82. Providence, Rhode Island: American Mathematical Society, 2012. http://dx.doi.org/10.1090/stml/064/19.
Full textAnglin, W. S., and J. Lambek. "Non-Euclidean Geometry and Hilbert’s Axioms." In The Heritage of Thales, 89–92. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-0803-7_18.
Full textSchuster, Peter, and Daniel Wessel. "Syntax for Semantics: Krull’s Maximal Ideal Theorem." In Paul Lorenzen -- Mathematician and Logician, 77–102. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65824-3_6.
Full textLellmann, Björn, and Dirk Pattinson. "Correspondence between Modal Hilbert Axioms and Sequent Rules with an Application to S5." In Lecture Notes in Computer Science, 219–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40537-2_19.
Full textBrading, Katherine A., and Thomas A. Ryckman. "Hilbert’s Axiomatic Method and His “Foundations of Physics”: Reconciling Causality with the Axiom of General Invariance." In Einstein and the Changing Worldviews of Physics, 175–99. Boston: Birkhäuser Boston, 2011. http://dx.doi.org/10.1007/978-0-8176-4940-1_8.
Full textDasgupta, Subrata. "Entscheidungsproblem: What’s in a Word?" In It Began with Babbage. Oxford University Press, 2014. http://dx.doi.org/10.1093/oso/9780199309412.003.0008.
Full textvon Plato, Jan. "The Göttingers." In The Great Formal Machinery Works. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691174174.003.0008.
Full text"Hilbert’s axioms for plane Euclidean geometry." In Geometry: The Line and the Circle, 461–62. Providence, Rhode Island: American Mathematical Society, 2018. http://dx.doi.org/10.1090/text/044/21.
Full text"C. Hilbert’s Axioms for Euclidean Plane Geometry." In AMS/MAA Textbooks, 499–502. Providence, Rhode Island: American Mathematical Society, 2015. http://dx.doi.org/10.1090/text/026/14.
Full textConference papers on the topic "Axiomas de Hilbert"
Navarro, Juan F. "EL ARTE COMO AXIOMA DEL ARTE." In III Congreso Internacional de Investigación en Artes Visuales :: ANIAV 2017 :: GLOCAL. Valencia: Universitat Politècnica València, 2017. http://dx.doi.org/10.4995/aniav.2017.4617.
Full textD’Ariano, Giacomo Mauro. "How to Derive the Hilbert-Space Formulation of Quantum Mechanics From Purely Operational Axioms." In QUANTUM MECHANICS: Are There Quantum Jumps? - and On the Present Status of Quantum Mechanics. AIP, 2006. http://dx.doi.org/10.1063/1.2219356.
Full text