Academic literature on the topic 'Axon guidance'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Axon guidance.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Axon guidance"
Kim, Sung Wook, and Kyong-Tai Kim. "Expression of Genes Involved in Axon Guidance: How Much Have We Learned?" International Journal of Molecular Sciences 21, no. 10 (May 18, 2020): 3566. http://dx.doi.org/10.3390/ijms21103566.
Full textVactor, David Van. "Axon guidance." Current Biology 9, no. 21 (November 1999): R797—R799. http://dx.doi.org/10.1016/s0960-9822(99)80492-8.
Full textZallen, J. A., S. A. Kirch, and C. I. Bargmann. "Genes required for axon pathfinding and extension in the C. elegans nerve ring." Development 126, no. 16 (August 15, 1999): 3679–92. http://dx.doi.org/10.1242/dev.126.16.3679.
Full textNishikimi, Mitsuaki, Koji Oishi, and Kazunori Nakajima. "Axon Guidance Mechanisms for Establishment of Callosal Connections." Neural Plasticity 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/149060.
Full textStoeckli, Esther. "Where does axon guidance lead us?" F1000Research 6 (January 25, 2017): 78. http://dx.doi.org/10.12688/f1000research.10126.1.
Full textLiu, Zhi-Zhi, Jian Zhu, Chang-Ling Wang, Xin Wang, Ying-Ying Han, Ling-Yan Liu, and Hong A. Xu. "CRMP2 and CRMP4 Are Differentially Required for Axon Guidance and Growth in Zebrafish Retinal Neurons." Neural Plasticity 2018 (June 21, 2018): 1–9. http://dx.doi.org/10.1155/2018/8791304.
Full textShigeoka, Toshiaki, Bo Lu, and Christine E. Holt. "RNA-based mechanisms underlying axon guidance." Journal of Cell Biology 202, no. 7 (September 30, 2013): 991–99. http://dx.doi.org/10.1083/jcb.201305139.
Full textKellermeyer, Riley, Leah Heydman, Grant Mastick, and Thomas Kidd. "The Role of Apoptotic Signaling in Axon Guidance." Journal of Developmental Biology 6, no. 4 (October 18, 2018): 24. http://dx.doi.org/10.3390/jdb6040024.
Full textTuttle, R., J. E. Braisted, L. J. Richards, and D. D. O'Leary. "Retinal axon guidance by region-specific cues in diencephalon." Development 125, no. 5 (March 1, 1998): 791–801. http://dx.doi.org/10.1242/dev.125.5.791.
Full textBashaw, Greg J., Thomas Kidd, Dave Murray, Tony Pawson, and Corey S. Goodman. "Repulsive Axon Guidance." Cell 101, no. 7 (June 2000): 703–15. http://dx.doi.org/10.1016/s0092-8674(00)80883-1.
Full textDissertations / Theses on the topic "Axon guidance"
Ohler, Stephan. "Photoreceptor axon guidance in Drosophila melanogaster." Diss., lmu, 2012. http://nbn-resolving.de/urn:nbn:de:bvb:19-144130.
Full textGoeke, Scott Charles. "The role of lola in axon guidance /." Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/10639.
Full textLerner, Oleg. "Motor axon guidance to the extraocular muscles." Thesis, King's College London (University of London), 2006. https://kclpure.kcl.ac.uk/portal/en/theses/motor-axon-guidance-to-the-extraocular-muscles(4baaa0d2-474a-4b7e-86e5-dd434ac5a9f7).html.
Full textZylbersztejn, Kathleen. "Role of vesicular traffic in axon guidance." Paris 7, 2011. http://www.theses.fr/2011PA077146.
Full textDuring development, attractive and repulsive guidance molecules, such as semaphorins (Sema), are responsible for proper wiring of axons and dendrites. Attractive and repulsive external guidance cues bind to receptors which activate intracellular signalling pathways and reshape the growth cone. The role of vesicular traffic in axonal guidance is still largely unknown. Vesicular traffic requires SNAREs proteins for membrane fusion. The exocytic vesicular SNARE Synaptobrevin2 (Syb2) mediates neurotransmitter release in mature neurons while TI-VAMP is mainly known for mediating axon growth. Their potential roles in axon guidance remain elusive. According to a previous model, attraction would rely solely on Syb2-dependent exocytosis while repulsion would exclusively require endocytosis. However, my PhD work has hinted a more complex view on guidance mechanisms. I showed that Syb2 is required for SemaSA-dependent repulsion but not SemaSC-dependent attraction in cultured neurons and in the mouse brain. Syb2 associates with Neuropilinl and PlexinAl, two essential components of the SemaSA receptor, via its juxta-transmembrane domain. We concluded that SemaS A-mediated signalling and axonal repulsion require Syb2-dependent vesicular traffic. We thus propose a model in which SemaSA-induced repulsion is mediated by local increased endocytosis and decreased exocytosis. SemaSA is also involved in non neuronal cell navigation, Some of our observations were obtained in non-neuronal cells further suggesting that our conclusions may more generally apply to SemaSA signaling
Eberhart, Johann. "EphA4/Ephrin interactions in motor axon guidance /." free to MU campus, to others for purchase, 2002. http://wwwlib.umi.com/cr/mo/fullcit?p3060095.
Full textSuh, Christopher D. Y. "Identification of axon guidance molecules in C. elegans /." Diss., Digital Dissertations Database. Restricted to UC campuses, 2006. http://uclibs.org/PID/11984.
Full textYu, Li. "Dissection of Semaphorin reverse signaling in axon guidance." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=96816.
Full textMa thèse de doctorat s'intéresse au rôle des protéines transmembranaires Semaphorin1a (Sema1a) et PlexinA (Plexa) au cours du guidage axonal des photorécepteurs ou cellules R dans le système visuel de la Drosophile. Mes résultats indiquent que Sema1a agit comme un récepteur contrôlant la transmission d'un signal attractif, tandis que PlexA agit en amont de Sema1a. Les sémaphorines sont des protéines soit sécrétées soit transmembranaires qui participent au guidage du cône axonal des neurones, à la régénération axonale, ainsi qu'au développement du tissu nerveux et d'autres tissus. Il a été démontré dans le système neuromusculaire de la Drosophile que Sema1a est une protéine transmembranaire qui, une fois liée a son récepteur PlexA, induit un signal répulsif. Notre analyse de mutants de perte-de-fonction Sema1a révèle que Sema1a est requise pour le guidage des cellules R1-6 et la mise en place de la topographie précise des terminaisons neuronales. La surexpression de Sema1a cause une hyper-fasciculation qui se traduit par la formation de faisceaux neuronaux anormalement épais dans la lamina et la medulla. De plus, nous avons trouvé que la portion cytoplasmique de Sema1a est requise pour son rôle dans le guidage des cellules R. Ainsi, mes résultats suggèrent un nouveau rôle pour Sema-1a en tant que récepteur modulant un effet attractif lors de la projection axonale. Qui plus est, par une approche de gènes candidats j'ai étudié les ligands en amont de Sema-1a. Cette analyse m'a permis de montrer que la perte de fonction ainsi que la surexpression de PlexA induisent des phénotypes similaires a ceux observés chez le mutant Sema1a ou lors de la surexpression de Sema-1a. J'ai également démontré que PlexA interagit génétiquement avec Sema-1a. Ces résultats démontrent que PlexA et Sema-1a fonctionnent au sein de la même voie de signalisation. De façon intéressante la queue cytoplasmique de PlexA est dispensable pour la formation des fascicules neuronaux suggérant que PlexA fonctionne comme un ligand. Finalement des études épistatiques suggèrent que PlexA est en amont de Sema-1a. En conclusion, nous proposons que dans le système visuel de la Drosophile, PlexA soit le ligand de Sema-1a dans une voie de signalisation Sema-1a inversée.
Tayler, Timothy D. 1972. "Compartmentalization and axon guidance in the Drosophila brain." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/28937.
Full textIncludes bibliographical references.
The Drosophila brain is composed of many morphologically and functionally distinct processing centers and brain morphogenesis depends on the creation and maintenance of distinct boundaries between adjacent regions to prevent cells from mixing. In the Drosophila visual system, I have found that Slit and Roundabout (Robo) proteins function to prevent cells from adjacent compartments from mixing. I have defined a boundary between two distinct compartments, the lamina and lobula, and find that the secreted ligand Slit is present in the lamina, while the Robo receptors (Robo, Robo2 and Robo3) are expressed on lobula neurons. I examined the function of theses proteins by identifying a tissue-specific allele of slit and creating transgenic RNAi flies that inhibit the expression of the Robo proteins. Loss of Slit or all three Robo proteins in the visual system results in the invasion of lobula neurons into the lamina. Mixing of cells at the lamina/lobula boundary results in glial cell mispositioning and aberrant photoreceptor axon targeting. Thus, Slit and Robo proteins are required to restrict movement of cells across the lamina/lobula boundary. Additionally, I have characterized Ptpmeg, a highly conserved protein tyrosine phosphatase (PTP). In addition to the C-terminus PTP domain, Ptpmeg contains a central PDZ domain and an N-terminus FERM domain. The in vivo role of this family of proteins is unknown. To explore the function of Ptpmeg in flies, mutants were generated by targeted gene disruption. Examination of the adult nervous system of Ptpmeg mutants reveals a defect in the mushroom bodies (MB), brain structures required for olfactory learning and memory. In mutant animals, the MB lobes are disorganized and fail to elaborate their characteristic structure. I find
(cont.) that Ptpmeg is expressed on MB axons and targeted knockdown of Ptpmeg in the MB results in similar defects as seen in homozygous mutants. Thus, the MB neurons appear to require Ptpmeg for proper formation.
by Timothy D. Tayler.
Ph.D.
Brown, Samantha. "The mechanisms controlling embryonic axon growth and guidance." Thesis, University of Aberdeen, 2018. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=238413.
Full textSun, Qi Zinn Kai George. "Molecular genetics of axon guidance in Drosophila melanogaster /." Diss., Pasadena, Calif. : California Institute of Technology, 2000. http://resolver.caltech.edu/CaltechETD:etd-03242005-130557.
Full textBooks on the topic "Axon guidance"
Bagnard, Dominique, ed. Axon Growth and Guidance. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-76715-4.
Full textDominique, Bagnard, ed. Axon growth and guidance. New York: Springer Science + Business Media, 2007.
Find full textBinns, Kathleen Leslie. Phosphopeptide mapping of axon guidance molecules by Nano-ESI tandem mass spectrometry. Ottawa: National Library of Canada, 2002.
Find full textMurray, David Andrew. The binding of proteins with modular domains to the cytoplasmic domain of the axon guidance receptor human roundaboutl. Ottawa: National Library of Canada, 2001.
Find full textPoo, Mu-Ming, and Joshua Sanes. Abstracts of papers presented at the 2004 meeting on axon guidance & neural plasticity: September 18-September 22, 2004. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory, 2004.
Find full textPoo, Mu-Ming. Abstracts of papers presented at the 2006 meeting on axon guidance, synaptogenesis & neural plasticity: Sept. 13-Sept. 17, 2006. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory, 2006.
Find full textKolodkin, Alex. Abstracts of papers presented at the 2006 meeting on axon guidance, synaptogenesis & neural plasticity: Sept. 10-Sept. 14, 2008. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory, 2006.
Find full textSteven, Robert Michael. The molecular cloning and characterization of unc-73: A complex gene that plays a role in axon guidance and cell migration in Caenorhabditis elegans. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1998.
Find full textBook chapters on the topic "Axon guidance"
Tannahill, David, Geoff M. W. Cook, and Roger J. Keynes. "Axon guidance and somites." In Molecular Bases of Axonal Growth and Pathfinding, 275–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60905-3_13.
Full textBlockus, Heike, and Alain Chédotal. "Disorders of Axon Guidance." In The Genetics of Neurodevelopmental Disorders, 155–94. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118524947.ch8.
Full textImai, Fumiyasu, and Yutaka Yoshida. "Axon Guidance in the Spinal Cord." In Semaphorins, 39–63. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-54385-5_3.
Full textStoeckli, Esther T., and Vera Niederkofler. "Molecular Aspects of Commissural Axon Guidance." In New Aspects of Axonal Structure and Function, 3–18. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-1676-1_1.
Full textPrasad, Asheeta A., and R. Jeroen Pasterkamp. "Axon Guidance in the Dopamine System." In Advances in Experimental Medicine and Biology, 91–100. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-0322-8_9.
Full textChédotal, Alain. "Chemotropic Axon Guidance Molecules in Tumorigenesis." In Neuronal Activity in Tumor Tissue, 78–90. Basel: KARGER, 2007. http://dx.doi.org/10.1159/000100048.
Full textPiper, Michael, Francis van Horck, and Christine Holt. "The Role of Cyclic Nucleotides in Axon Guidance." In Advances in Experimental Medicine and Biology, 134–43. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-76715-4_10.
Full textLuck, Robert, and Carmen Ruiz de Almodovar. "Axon Guidance Factors in Developmental and Pathological Angiogenesis." In Endothelial Signaling in Development and Disease, 259–91. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2907-8_11.
Full textde Wit, Joris, and Joost Verhaagen. "Proteoglycans as Modulators of Axon Guidance Cue Function." In Advances in Experimental Medicine and Biology, 73–89. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-70956-7_7.
Full textRobichaux, Michael A., and Christopher W. Cowan. "Signaling Mechanisms of Axon Guidance and Early Synaptogenesis." In The Neurobiology of Childhood, 19–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-662-45758-0_255.
Full textConference papers on the topic "Axon guidance"
Aletti, Giacomo, Paola Causin, Giovanni Naldi, Luigi M. Ricciardi, Aniello Buonocore, and Enrica Pirozzi. "A Model for Axon Guidance: Sensing, Transduction and Movement." In COLLECTIVE DYNAMICS: TOPICS ON COMPETITION AND COOPERATION IN THE BIOSCIENCES: A Selection of Papers in the Proceedings of the BIOCOMP2007 International Conference. AIP, 2008. http://dx.doi.org/10.1063/1.2965082.
Full textSiriwardane, M. L., K. E. DeRosa, and B. J. Pfister. "Collagen-based fiber-gel constructs engineered for schwann cell guidance and adult axon growth." In 2011 37th Annual Northeast Bioengineering Conference (NEBEC). IEEE, 2011. http://dx.doi.org/10.1109/nebc.2011.5778694.
Full textYong, Lin-Kin, Dali Li, Ethan Poteet, Zhengdong Liang, William Fisher, Changyi Chen, and Qizhi Cathy Yao. "Abstract 3574: Novel roles of an axon-guidance molecule, semaphorin 3E, in pancreatic cancer." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-3574.
Full textBiankin, Andrew V., John D. McPherson, and Richard A. Gibbs. "Abstract IA3: Genomic analysis reveals roles for chromatin modification and axon guidance in pancreatic cancer." In Abstracts: AACR Special Conference on Pancreatic Cancer: Progress and Challenges; June 18-21, 2012; Lake Tahoe, NV. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.panca2012-ia3.
Full textBiankin, Andrew V., John D. McPherson, Richard A. Gibbs, and Sean M. Grimmond. "Abstract LB-404: Genomic analysis reveals roles for chromatin modification and axon guidance in pancreatic cancer." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-lb-404.
Full textTurpin, Anthony, Carine Delliaux, Tian Tian, Nathalie Vanpouille, Anne Flourens, Rachel Deplus, Xavier Leroy, Yvan de Launoit, and Martine Duterque-Coquillaud. "Abstract 694: Axon guidance neuropilin and plexin A2 genes are involved in ERG-associated prostate cancer." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-694.
Full textCai, Shurui, Renata Fu, Kevin Wang, Na Li, Haowen Chen, Ellie Xi, Daniel Lin, Yongsheng Bai, and Qi-En Wang. "Bioinformatics analysis of miRNAs identifies enrichment of axon guidance pathway genes in ovarian cancer stem cells." In 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2021. http://dx.doi.org/10.1109/bibm52615.2021.9669299.
Full textBhattacharjee, N., N. Li, and A. Folch. "A neuron-benign microfluidic gradient generator for studying the growth of mammalian neurons towards axon guidance factors." In TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2009. http://dx.doi.org/10.1109/sensor.2009.5285619.
Full textElhassan, Mohamed O., Jennifer Christie, Marlieke Molendijk, and Mark Duxbury. "Abstract 5272: Multimodality interrogation of systemic RNA interference-defective-1 transmembrane family member 1 (SIDT1) identifies axon guidance protein interactions." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-5272.
Full textKörner, S., N. Thau-Habermann, and S. Petri. "Die Expression des Axon-guidance Protein Rezeptor Neuropilin 1 ist im Rückenmark von transgenen SOD1G93A ALS Mäusen erhöht und im Muskel erniedrigt." In 24. Kongress des Medizinisch-Wissenschaftlichen Beirates der Deutschen Gesellschaft für Muskelkranke (DGM) e.V. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-1685003.
Full textReports on the topic "Axon guidance"
Selleck, Scott B. Understanding the Function of Tuberous Sclerosis Complex Genes in Neural Development: Roles in Synapse Assembly and Axon Guidance. Fort Belvoir, VA: Defense Technical Information Center, February 2012. http://dx.doi.org/10.21236/ada603854.
Full text