To see the other types of publications on this topic, follow the link: Axon transport.

Dissertations / Theses on the topic 'Axon transport'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 28 dissertations / theses for your research on the topic 'Axon transport.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Siow, Bernard, Ivana Drobnjak, Andrada Ianus, Isabel N. Christie, Mark F. Lythgoe, and Daniel C. Alexander. "Axon radius estimation with Oscillating Gradient Spin Echo (OGSE) diffusion MRI." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-184163.

Full text
Abstract:
The estimation of axon radius provides insights into brain function [1] and could provide progression and classification biomarkers for a number of white matter diseases [2-4]. A recent in silico study [5] has shown that optimised gradient waveforms (GEN) and oscillating gradient waveform spin echo (OGSE) have increased sensitivity to small axon radius compared to pulsed gradient spin echo (PGSE) diffusion MR sequences. In a follow-up study [6], experiments with glass capillaries show the practical feasibility of GEN sequences and verify improved pore-size estimates. Here, we compare PGSE with sine, sine with arbitrary phase, and square wave OGSE (SNOGSE, SPOGSE, SWOGSE, respectively) for axon radius mapping in the corpus callosum of a rat, ex-vivo. Our results suggest improvements in pore size estimates from OGSE over PGSE, with greatest improvement from SWOGSE, supporting theoretical results from [5] and other studies [7-9].
APA, Harvard, Vancouver, ISO, and other styles
2

Siow, Bernard, Ivana Drobnjak, Andrada Ianus, Isabel N. Christie, Mark F. Lythgoe, and Daniel C. Alexander. "Axon radius estimation with Oscillating Gradient Spin Echo (OGSE) diffusion MRI." Diffusion fundamentals 18 (2013) 1, S. 1-6, 2013. https://ul.qucosa.de/id/qucosa%3A13707.

Full text
Abstract:
The estimation of axon radius provides insights into brain function [1] and could provide progression and classification biomarkers for a number of white matter diseases [2-4]. A recent in silico study [5] has shown that optimised gradient waveforms (GEN) and oscillating gradient waveform spin echo (OGSE) have increased sensitivity to small axon radius compared to pulsed gradient spin echo (PGSE) diffusion MR sequences. In a follow-up study [6], experiments with glass capillaries show the practical feasibility of GEN sequences and verify improved pore-size estimates. Here, we compare PGSE with sine, sine with arbitrary phase, and square wave OGSE (SNOGSE, SPOGSE, SWOGSE, respectively) for axon radius mapping in the corpus callosum of a rat, ex-vivo. Our results suggest improvements in pore size estimates from OGSE over PGSE, with greatest improvement from SWOGSE, supporting theoretical results from [5] and other studies [7-9].
APA, Harvard, Vancouver, ISO, and other styles
3

Connor, Robin M. "Mechanisms of axon growth and guidance in the vertebrate nervous system /." [St. Lucia, Qld.], 2002. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17183.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Foss, Susan J. "Modeling the Aggregation of Interacting Neurofilaments in the Axon." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1431078489.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Toy, Jonathan Andrew. "A Nonlocal Model for the Segregation of Axonal Microtubules and Neurofilaments in Neurodegenerative Diseases." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1461080485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Johnson, Christopher M. "Investigating the Slow Axonal Transport of Neurofilaments: A Precursor for Optimal Neuronal Signaling." Ohio University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1452018547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Moutaux, Eve. "Régulation du transport axonal par l'activité neuronale : Implication pour le développement des réseaux neuronaux Neuronal activity recruits an axon-resident pool of secretory vesicles to regulate axon branching Reconstituting Corticostriatal Network on-a-Chip Reveals the Contribution of the Presynaptic Compartment to Huntington’s Disease Neuronal network maturation differently affects secretory vesicles and mitochondria transport in axons ALG-2 interacting protein-X (Alix) is required for activity-dependent bulk endocytosis at brain synapses An integrated microfluidic/microelectrode array for the study of activity-dependent intracellular dynamics in neuronal networks." Thesis, Université Grenoble Alpes, 2020. https://thares.univ-grenoble-alpes.fr/2020GRALV024.pdf.

Full text
Abstract:
Pendant le développement, les projections axonales à longue distance se ramifient pour se connecter à leurs cibles. L’établissement et le remodelage de ces connexions est notamment régulé par l’activité neuronale. L’adaptation de la morphologie de l’axone nécessite alors des quantités importantes de matériel sécrétoire et de facteur trophiques comme le BDNF (brain derived neurotrophic factor). Ce matériel est transporté dans des vésicules le long de l’axone depuis le corps cellulaire où il est synthétisé, vers les sites actifs à l’extrémité de l’axone. Si le relargage de vésicules sécrétoires à la synapse est bien étudié, les mécanismes régulant le transport axonal par l’activité sont encore méconnus.Dans ce travail de thèse, nous avons dans un premier temps développé des outils permettant d’étudier les dynamiques intracellulaires dans des réseaux neuronaux. Nous avons ainsi développé une chambre microfluidique permettant de reconstruire in vitro des réseaux neuronaux physiologiques et compatibles avec de la vidéomicroscopie à haute résolution. Nous avons caractérisé l’établissement et la maturation du réseau et validé l’intérêt de ce dispositif microfluidique dans le contexte de la maladie de Huntington. Nous avons ensuite étudié l’évolution des dynamiques intracellulaires avec la maturation du réseau. Nous avons notamment observé une augmentation du transport axonal de vésicules sécrétoires en fonction de l'état de maturation du réseau neuronal. Ces premières observations ont renforcé l’hypothèse d’une régulation directe du transport axonal de vésicules sécrétoires par l’activité neuronale au cours du développement du réseau.Nous avons ainsi fait évoluer la plateforme microfluidique par l’ajout d’un réseau d’électrodes (MEA) qui permet d'étudier les dynamiques intracellulaires tout en contrôlant l’activité neuronale. A l’aide de ce système, nous avons identifié un groupe de vésicules sécrétoires ancré le long de l’axone et recruté en réponse à une haute activité neuronale en direction des sites présynaptiques actifs. Nous avons alors identifié les acteurs impliqués dans ce mécanisme dépendant de l’activité. Nous avons montré que la myosine Va permettait l’attachement des vésicules le long de l’axone dans des structures d’actine dynamique. L’activité neuronale induit une augmentation de calcium le long de l’axone, via l’activation des canaux calciques dépendant du voltage, qui régule la myosine Va et entraine le recrutement des vésicules stockées dans l’axone sur les microtubules. Une fois les acteurs identifiés, nous avons pu mettre en évidence le rôle de ce mécanisme dépendant de l’activité dans la formation de branches axonales pendant le développement. Enfin, nous avons confirmé l’existence de ce groupe de vésicules dépendant de l’activité et résidant dans l’axone in vivo grâce à la mise au point d'un système d’étude du transport axonal sur tranches aigües de cerveau en microscopie biphotonique.L’ensemble de ce travail propose de nouveaux outils in vitro et in vivo pour comprendre les régulations des dynamiques intracellulaires dans des réseaux neuronaux physiologiques. Grâce à ces outils, nous avons identifié un mécanisme de régulation local qui permet l'adressage rapide de facteurs trophiques vers les branches en développement en réponse à l’activité neuronale
During postnatal development, long-distance axonal projections form branches to connect with their targets. Establishment and remodeling of these projections are tightly regulated by neuronal activity and require a large amount of secretory material and trophic factors, such as brain derived neurotrophic factor (BDNF). Axonal transport is responsible for addressing trophic factors packed into vesicles to high demand sites where mechanisms of secretion are well-known. However, mechanisms controlling the preferential targeting of axonal vesicles to active sites in response to neuronal activity are unknown.In this work, we first developed tools to study intracellular dynamics in neuronal networks. We thus developed a microfluidic chamber to reconstruct physiologically-relevant networks in vitro which is compatible with high resolution videomicroscopy. We characterized the formation and maturation of reconstructed networks and we validated the relevance of the microfluidic platform in the context of Huntington’s disease. We then studied the evolution of intracellular dynamics with the maturation of reconstructed neuronal networks in microfluidic chambers. We observed an increase of anterograde axonal transport of secretory vesicles during maturation. These first results lead us to think that neuronal activity could regulate axonal transport of secretory vesicles over maturation of the network.Therefore, we improved the in vitro microfluidic system with a designed microelectrode array (MEA) substrate allowing us to record intracellular dynamics while controlling neuronal activity. Using this system, we identified an axon-resident reserve pool of secretory vesicles recruited upon neuronal activity to rapidly distribute secretory materials to presynaptic sites. We identified the activity-dependent mechanism of recruitment of this axonal pool of vesicles along the axon shaft. We showed that Myosin Va ensures the tethering of vesicles in the axon shaft in axonal actin structures. Specifically, neuronal activity induces a calcium increase after activation of Voltage Gated Calcium Channels along the axon, which regulates Myosin Va and triggers the recruitment of tethered vesicles on microtubules. We then showed the involvement of this activity-dependent pool for axon branches formation during axon development. By developing 2-photon live microscopy of axonal transport in acute slices, we finally confirmed that a pool of axon-resident static vesicles is recruited by neuronal activity in vivo with a similar kinetic.Altogether, this work provides new in vitro and in vivo tools to study intracellular dynamics in physiological networks. Using these tools, we identified the existence of a local mechanism of axonal transport regulation along the axon shaft, allowing rapid supply of trophic factors to developing branches
APA, Harvard, Vancouver, ISO, and other styles
8

Wilson, Gina Nicole. "PRE-DEGENERATIVE CHANGES IN THE RETINOFUGAL PROJECTION OF DBA/2J GLAUCOMATOUS MICE." Kent State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=kent1501466545809801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Coats, Charles Jason. "Development of primary neuronal culture of embryonic rabbit dorsal root ganglia for microfluidic chamber analysis of axon mediated neuronal spread of Bovine Herpesvirus type 1." Thesis, Manhattan, Kan. : Kansas State University, 2010. http://hdl.handle.net/2097/4115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rodrigues, Joana Nogueira. "Dissecting the role of adducin in the axonal cytoskeleton." Master's thesis, Universidade de Aveiro, 2015. http://hdl.handle.net/10773/14771.

Full text
Abstract:
Mestrado em Biologia Molecular e Celular
The neuronal cytoskeleton is an interconnected network of filamentous polymers, having in its constitution three major components: actin, microtubules and intermediate filaments. Up to the discovery of axon actin rings, the neuronal actin cytoskeleton has gained relevance. Still, the molecular details of the regulation of the actin cytoskeleton in neurons are largely unknown. Helping in the actin cytoskeleton regulation and maintenance, there is adducin. Adducin is organized in heterotetamers of heterodimers which comprises α/β and α/γ subunits. In the nervous system, the depletion of α subunit results in an almost complete absence of functional adducin. Given this, α-adducin KO mice arose as relevant models to study the role of this protein in actin cytoskeleton. Results from our group showed that α-adducin KO mice develop progressive axon enlargement and degeneration. As defects in axonal transport have been related to axon enlargement, we determined the importance of adducin in the axonal cytoskeleton and, more specifically, in axonal transport. Although no differences were found in the retrograde transport of CTB in the optic nerve, the lack of adducin resulted in a decreased speed of axonal transport of mitochondria and lysosomes. Several neurodegenerative disorders have been associated with axonal transport deficits and, consequently, with alterations in MT-based transport. Although no differences were found in the levels of acetylated and de-tyrosinated tubulin, the levels of tyrosinated tubulin were significantly decreased in α-adducin KO brains, suggesting a less dynamic status of the MT cytoskeleton in the absence of adducin. Besides differential PTMs of tubulin the decreased axonal transport speed may result from the decreased levels of dynein and kinesin in α-adducin KO mice. Lastly, we hypothesized that adducin might be involved in the organization and/or plasticity of the AIS that requires actin dynamics. In α-adducin KO animals, although the AIS forms normally, neurons do not have the ability to relocate it in response to chronic depolarization. Still, the specific role of actin and its associated proteins, like adducin, in this process remains unclear. In sum, with this Thesis we contributed to understand the relevance of the actin in cytoskeleton, more specifically, of the actin-binding protein adducin in neuron biology.
O citoesqueleto neuronal é maioritariamente constituído por três componentes: actina, microtúbulos e filamentos intermédios. Com a descoberta dos anéis de actina presentes no axónio, o citoesqueleto neuronal de actina tem vindo a ganhar bastante relevância. Contudo, os mecanismos moleculares envolvidos na regulação da actina no citoesqueleto continuam por esclarecer. Nesta tese focámo-nos no estudo da importância da aducina, uma proteína de ligação à actina, na regulação do citoesqueleto neuronal. A aducina é uma proteína constituída por heterotetrameros de heterodímeros das subunidades α/β e α/γ, sendo que no sistema nervoso, a depleção da subunidade α resulta numa completa ausência da proteína no seu estado funcional. Assim, murganhos KO para α-aducina demonstraram ser um modelo animal relevante para o estudo do papel desta proteína no citoesqueleto de actina. Resultados do nosso grupo demonstraram que murganhos KO para α-aducina desenvolvem uma degeneração progressiva e um aumento do calibre do axónio. Uma vez que defeitos no transporte axonal têm vindo a ser relacionados com o alargamento axonal, tornou-se importante determinar o papel da aducina no citoesqueleto axonal, mais especificamente no transporte ao longo do axónio. Apesar de não terem sido encontradas diferenças no transporte da toxina da cólera no nervo óptico, a ausência da aducina resultou num decréscimo significativo na velocidade de transporte axonal de mitocôndrias e lisossomas. Diversos distúrbios neurodegenerativos têm sido associados com deficiências no transporte axonal consequentes de alterações na maquinaria de transporte incluindo microtúbulos e proteínas relacionadas. Apesar de não terem sido encontradas diferenças nos níveis de acetilação e de-tirosinação da tubulina em amostras de cérebro α-aducina KO, os níveis de tirosinação da tubulina estão significativamente diminuídos quando comparados com aqueles encontrados em amostras WT, sugerindo uma menor dinâmica dos microtúbulos na ausência de aducina. Além das modificações da tubulina, a diminuição da velocidade de transporte axonal poderá resultar também do decréscimo dos níveis de ambos os motores moleculares dineina e cinesina nos murganhos α-aducina KO. Por fim, sugere-se que a aducina poderá também estar envolvida na organização e/ou plasticidade do segmento inicial do axónio dada a sua ligação ao citoesqueleto de actina, importante para a sua função e organização. Nos murganhos KO para α-aducina, foi verificado que apesar da formação do segmento inicial ser normal, as células não têm a capacidade para o relocalizar após uma depolarização crónica. Porém, o papel específico da actina e das suas proteínas associadas, tal como a aducina, neste processo deverá ser investigado com maior detalhe. Sumariamente, com esta tese, foi possível contribuir para uma melhor compreensão da relevância da actina, mais especificamente, da proteína de ligação à actina aducina, na biologia de um neurónio.
APA, Harvard, Vancouver, ISO, and other styles
11

Reuter, Miriam [Verfasser], Thomas [Akademischer Betreuer] Misgeld, and Arthur [Akademischer Betreuer] Konnerth. "Mitochondrial transport during axon loss in a model of motor neuron disease and at the developing neuromuscular junction / Miriam Reuter. Gutachter: Arthur Konnerth ; Thomas Misgeld. Betreuer: Thomas Misgeld." München : Universitätsbibliothek der TU München, 2013. http://d-nb.info/1042803803/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Atkins, Melody. "Explorer le lien entre microtubules et formation des circuits moteurs par l’analyse de l’interactome de la Fidgetin-like 1." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS562.

Full text
Abstract:
Lors du développement du système nerveux, la formation de circuits fonctionnels dépend de la capacité des axones à traduire les signaux de guidage perçus dans l’environnement en un remodelage morphologique du cône de croissance, afin qu’il atteigne les bonnes cibles synaptiques. Différentes machineries cellulaires sous-tendent ce remodelage, tels que le trafic membranaire et le cytosquelette. Mon équipe de thèse a identifié l’ATPase Fidgetin-like 1 (Fignl1) comme un acteur phare de la navigation axonale des neurones moteurs spinaux de poisson zèbre, par sa régulation de la dynamique des microtubules. Ma thèse a consisté à préciser les mécanismes cellulaires et moléculaires par lesquels la Fignl1 régule la navigation axonale, en initiant l’analyse de l’interactome de cette ATPase. Une approche gêne candidat, basée sur Rad51 – le seul partenaire d’interaction publié de Fignl1 –, a ainsi pu révéler le rôle de cette recombinase dans la navigation axonale des neurones moteurs spinaux du téléoste, et son association potentielle avec Fignl1 lors de ce processus. D’autre part, l’analyse d’un crible double hybride m’a conduite à identifier un nouveau mécanisme impliquant la Fignl1 en tant que régulateur clé du trafic vésiculaire rétrograde au sein d’axones en développement. Enfin, en me concentrant sur la voie de signalisation netrin 1/DCC, j’ai initié la caractérisation des signalisations de guidage régulant le comportement giratoire du cône de croissance par le biais de la Fignl1. Mes travaux de thèse établissent ainsi le rôle central de la Fignl1 dans la navigation axonale, par ses fonctions multiples dans le remodelage du cytosquelette et la régulation du trafic membranaire
During nervous system development, the wiring of functional circuits requires developing axons to accurately sense and translate environmental guidance signals into morphological changes of the growth cone, enabling it to reach the right synaptic targets. This growth cone remodelling is mediated by the concerted action of different intracellular machineries, such as membrane trafficking and the cytoskeleton. My PhD team has recently identified the Fidgetin-like 1 ATPase (Fignl1) as a critical player of zebrafish spinal motor axon navigation, via its regulation of microtubule dynamics. The aim of my PhD was to further unravel the cellular and molecular mechanisms by which Fignl1 regulates axon navigation, via the analysis of the Fignl1 interactome. A candidate gene approach, focused on the sole published Fignl1 binding partner – Rad51 – first revealed a role for this recombinase in zebrafish motor axon pathfinding, and its potential association with Fignl1 in this process. Additionally, a global approach – based on a yeast two-hybrid screen – led to the identification of a new mechanism involving Fignl1 as a key regulator of retrograde vesicular trafficking in navigating axons. Finally, using the netrin-1/DCC candidate pathway, I have initiated the characterisation of upstream signalling cascades converging onto Fignl1 to regulate axon navigation. Taken together, my PhD results highlight the multifaceted role of Fignl1 in axon pathfinding, via its multiple functions in the regulation of cytoskeletal dynamics and membrane trafficking
APA, Harvard, Vancouver, ISO, and other styles
13

Ackerley, Steven. "Neurofilament transport and phosphorylation." Thesis, King's College London (University of London), 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.289881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Nguyen, Tung Le. "Computational Modeling of Slow Neurofilament Transport along Axons." Ohio University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1547036394834075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Malek, Sameh A. "Aberrant chloride transport contributes to anoxic injury in central myelinated axons." Thesis, University of Ottawa (Canada), 2003. http://hdl.handle.net/10393/26419.

Full text
Abstract:
Rundown of ionic gradients is a central feature of white matter anoxic injury. However little is known about the contribution of anions such as Cl -. Previous studies have shown that Na+-blockade during anoxia was in adequate in preserving K+-loss. We hypothesized that run down of the K+-gradient during anoxia/Na+-channel inhibition proceeds in conjunction with an anion and more specifically Cl -. We used the in vitro rat optic nerve to study the role of aberrant Cl- transport in anoxia/ischemia. After 30 min of anoxia (NaN3 2mM), axonal membrane potential (V m) decreased to 42 +/- 11% of control, and to 73 +/- 11% in the presence of TTX (1 muM). TTX + DIDS 500muM (a broad spectrum anion transport blocker) abolished anoxic depolarization (95 +/- 8%). Inhibition of the K-Cl cotransporter (KCC) (furosemide 100muM) together with TTX was also more effective than TTX alone (84 +/- 14%). Compound action potential (CAP) area recovered to 26 +/- 6% of control after 1 h anoxia. KCC blockade (furosemide 10muM) improved outcome (40 +/- 4%) and TTX (100nM) was even more effective (74 +/- 12%). In contrast, the Cl- channel blocker niflumic acid (50 muM) worsened injury (6 +/- 1%). Co-application of TTX (100 nM) + furosemide (10 muM) was more effective than either agent alone (91 +/- 9%). Furosemide was also very effective at normalizing the shape of the CAPs. The KCC3a isoform was localized to astrocytes. KCC3 and weaker KCC3a was detected in myelin of larger axons. KCC2 was seen in oligodendrocytes and within axon cylinders. Cl- gradients contribute to resting optic nerve membrane potential, and transporter and channel-mediated Cl- fluxes of during anoxia contribute to injury, possibly due cellular volume changes and disruption of axo-glial integrity, leading to propagation failure and distortion of fiber conduction velocities.
APA, Harvard, Vancouver, ISO, and other styles
16

Garcez, Palha Inês. "mRNA Transport and Translation in the Developing Axons of the Zebrafish Embryo." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066260.

Full text
Abstract:
Au cours des dernières années, la synthèse des protéines axonales a été établie comme un mécanisme important pour réguler correctement la réactivité spatiale et temporelle des neurones aux variations de leur microenvironnement, en particulier lors du développement axonal et de la régénération. Pour cela, les transcrits d'ARNm doivent être localisés dans les axones afin d'être traduits. De fait, plusieurs populations d'ARNm ont été identifiées le long des axones de divers types de neurones vertébrés. Le transport approprié des ARNm du corps cellulaire vers le compartiment axonal nécessite des séquences ou des structures spécifiques, généralement trouvées dans le 3'UTR du transcrit. Seules quelques études ont confirmé que le transport et la traduction des ARNm ont lieu dans les axones des vertébrés vivants et que ces mécanismes peuvent être impliqués dans des fonctions neuronales distinctes, comme le maintien de l'homéostasie axonale, le guidage, la croissance et la ramification axonales. Notre laboratoire a précédemment démontré in vivo la présence d'ARNm spécifiques, comme le transcrit de nefma, dans les axones en croissance chez l'embryon de poisson zèbre. En utilisant un système rapporteur développé au sein du laboratoire, il a été démontré que le transport axonal (ou la rétention au corps cellulaire) de plusieurs transcrits dépendait de leur 3'UTR. Se basant sur ces résultats importants, dans une première partie de ce travail, nous avons cherché à étudier la fonction du transcrit nefma transporté dans les axones en développement de l'embryon de poisson zèbre. En effet, Nefma est une protéine cytosquelette propre aux neurones, dont l'expression est déclenchée lors de la différenciation neuronale. Nous avons montré que l’immunoréactivité 3A10 est réduite à mesure que la concentration de MO augmente et que ce marquage est utile pour tester l'efficacité du MO, suggérant que l'anticorps 3A10 pourrait reconnaître nefma. Nous avons également démontré que les neurones de Mauthner se différencient au bon moment et au bon endroit chez les morphants. De plus, nous avons constaté que le « zigzagging » des axones morphants augmente avec la concentration de MO et que la protéine mbp s'accumule inégalement autour des faisceaux axonaux dans les morphants nefma. Cependant, les défauts de perte de fonction de nefma ne sont pas totalement pénétrants et difficiles à quantifier. En outre, dans une deuxième partie de la présente étude, nous avons mis au point une technique de détection de la traduction axonale d'ARNm spécifiques dans le même modèle in vivo. Pour cela, nous avons développé un système inspiré de la technique «TimeSTAMP» développée par l'équipe de Roger Tsien, qui nous permet d'identifier les sites de traduction en étiquetant de manière ingénieuse les protéines nouvellement synthétisées
In recent years, axonal protein synthesis has been established as an important mechanism to fine regulate spatial and temporal neuronal responsiveness to the varying microenvironment, especially during axonal development and regeneration. For that, mRNA transcripts have to be localized to the axons in order to be translated. In fact, several mRNA populations have been identified along the axons of diverse vertebrate neuronal types. The proper transport from the cell body to the axonal compartment requires specific sequences or mRNA structures, usually found in the 3’UTR of the transcript. Only a few studies have confirmed that mRNA transport and translation take place in axons of living vertebrates, and that these mechanisms can be involved in distinct neuronal functions, as the maintenance of axonal homeostasis, pathfinding, and axonal growth and branching. Our lab previously demonstrated in vivo the presence of specific mRNAs, as nefma transcript, in growing axons of the zebrafish embryo. Thanking advantage of a reporter system developed in the lab, it was shown that axonal transport (or retention at the cell body) of several transcripts depended on their 3’UTR.Building upon these important results, in a first part of this work, we sought to investigate the function of the axonally transported nefma in the developing axons of the zebrafish embryo. Indeed, Nefma is a neuron-specific cytoskeletal protein, which expression is triggered during neuronal differentiation. We showed that the 3A10 signal is reduced as the MO concentration increases and this staining is a useful readout for the efficiency of the MO, suggesting that the 3A10 antibody might recognize nefma. We also demonstrated that the Mauthner neurons differentiate at the right time and place in the morphants. Moreover, we saw that the morphant axons zigzagging increases with increasing MO concentrations and that mbp accumulates in patches around axonal bundles in nefma morphants. However, nefma loss-of-function defects are not totally penetrant and difficult to quantify. Furthermore, in a second part of the present study, we aimed at optimizing a technique facilitating the visualization of axonal translation of specific mRNAs in the same in vivo model. For this, we developed a translation reporter system, inspired on the ‘TimeSTAMP’ technique developed by Roger Tsien’s team, which allows the identification of translation sites along the axons by labeling newly synthesized protein in an ingenious fashion
APA, Harvard, Vancouver, ISO, and other styles
17

Müller, Kerstin [Verfasser]. "Localization and transport of ribosomes in axons of the mammalian PNS and CNS / Kerstin Müller." Mainz : Universitätsbibliothek Mainz, 2017. http://d-nb.info/1138948543/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Jones, Danielle N. "A Comparison of Serotonin Transporter-Immunoreactive Axons in the Amygdala Among Macaques." Kent State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=kent152455306697775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Bel, Christophe. "Adressage polarisé de Caspr et Caspr2, molécules d'adhérence axo-gliales." Aix-Marseille 2, 2009. http://www.theses.fr/2009AIX20739.

Full text
Abstract:
Mon travail de thèse s’inscrit de manière générale dans l’étude de l’organisation des noeuds de Ranvier, modèle de ségrégation des protéines membranaires le long de l’axone. La myélinisation est à l’origine de la propagation saltatoire de l’influx. La région des noeuds de Ranvier est composée de trois principaux domaines présentant une composition protéique spécifique. La région nodale est fortement enrichie en canaux Nav voltage dépendants et en canaux Kv de type KCNQ. Elle est caractérisée par des protéines d’adhérence cellulaire (CAMs) spécifiques et un cytosquelette spécialisés impliqué dans la rétention de ces protéines. Accolée à cette région centrale se trouve la région paranodale qui présente des jonctions de type septé. Ce domaine contient un complexe tripartite composé des glycoprotéines membranaires axonales Caspr/Paranodine (Caspr) et F3/Contactine (Contactine) interagissant avec la Neurofascine-155 (NF155) exprimée par la glie. Ce complexe protéique permet l’ancrage des boucles terminales de la myéline à l’axone et joue le rôle de barrière de diffusion latérale. La région juxtaparanodale est caractérisée par une concentration de canaux Kv de type shaker, et par des CAMs spécifiques, Caspr2, glycoprotéine membranaire axonale, et TAG-1, exprimée par l’axone et la cellule gliale, qui permettent la ségrégation de ces canaux via des interactions à un cytosquelette spécialisé. J’ai étudié les mécanismes à l’origine de l’adressage sélectif des glycoprotéines d’adhérence Caspr et Caspr2. L’adressage de Caspr à la surface cellulaire est sous le contrôle des lectines chaperonnes et des N-glycosylations, de plus son adressage est dépendant de la présence et de son interaction avec la Contactine. L’étude de l’adressage de protéines chimériques Caspr/Caspr2 nous a permis de caractériser sur la séquence extracellulaire de Caspr un motif structural de rétention au sein du RE constitué de répétitions des acides aminés PGY. Nous avons également mis en évidence que l’interaction entre la Contactine et NF155 était dépendante de N-glycannes riches en mannoses, spécifiques du complexe membranaire Caspr/Contactine. L’étude de l’expression de Caspr2 dans des cultures d’hippocampe nous a permis de mettre en évidence une expression polarisée de cette protéine se mettant en place lors du développement. Caspr2 présente une forte expression de surface au niveau axonal et est internalisée par un mécanisme d’élimination compartiment spécifique au niveau somato-dendritique. Nous avons caractérisé cette endocytose comme étant dépendante de la clathrine. En effet, Caspr2 internalisé co-localise avec la Transferrine. Nous avons caractérisé le motif à l’origine de cette endocytose dans la séquence intracellulaire au niveau du domaine d’interaction avec la protéine d’échafaudage 4. 1B. Dans la séquence de ce motif d’internalisation, nous avons également isolé une séquence putative de phosphorylation par une PKC de type KGT. La mutation T1292A inhibe très fortement l’endocytose somato-dendritique de Caspr2 et les mêmes résultats sont obtenus en inhibant les PKC par la Calphostine-C. Ces résultats indiquent un rôle important de la phosphorylation par la PKC dans la régulation du trafic de Caspr2 et potentiellement dans la régulation de l’activité des canaux Kv1. 1, Kv1. 2.
APA, Harvard, Vancouver, ISO, and other styles
20

Palomo, Guerrero Marta. "Papel de CPT1C en el desarrollo axonal y en el transporte de los endosomas tardíos." Doctoral thesis, Universitat Internacional de Catalunya, 2018. http://hdl.handle.net/10803/463046.

Full text
Abstract:
La paraplejía espástica hereditaria agrupa un conjunto de desórdenes neurodegenerativos caracterizados por espasticidad y rigidez muscular. Todos ellos están relacionados clínica y patológicamente con problemas en el desarrollo axonal del tracto corticoespinal y las columnas dorsales de la médula espinal. Hasta la fecha se han descrito 77 genes asociados a esta enfermedad. Sus mutaciones afectan a diversas funciones celulares como el transporte intracelular, la función mitocondrial o el metabolismo lipídico, entre otras. Entre estos genes se encuentra CPT1C. CPT1C es una carnitina palmitoil transferasa que se encuentra localizada en el RE de neuronas. A diferencias del resto de CPTs, CPT1C no presenta actividad catalítica pero mantiene la capacidad de unir malonil-CoA. El malonil-CoA es un intermediario en la síntesis de ácidos grasos, y sus niveles varían según el estado energético de la célula. Recientemente se ha sugerido que CPT1C podría ser un sensor de malonil-CoA y regular la función de otras proteínas. Entre las posibles proteínas interactoras de CPT1C se encuentra la protrudina. Se ha descrito el papel de la protrudina en el transporte y desarrollo axonal, pero no cuál es su mecanismo regulador. En esta tesis proponemos que CPT1C podría interaccionar con protrudina y, mediante la unión a malonil-CoA, regular el transporte y desarrollo axonal. Para ello se han realizado dos aproximaciones. En primer lugar se ha estudiado la implicación de CPT1C en el crecimiento axonal y dendrítico en neuronas corticales procedentes de embriones de ratones WT y KO CPT1C. En segundo lugar se ha estudiado la interacción de CPT1C con protrudina y su papel en la localización y transporte de endosomas tardíos en células HeLa. En ambas aproximaciones se ha estudiado la influencia de la unión de malonil-CoA a CPT1C. Los resultados obtenidos demuestran que CPT1C es necesaria para el correcto crecimiento axonal y ramificación dendrítica dependiendo de su unión a malonil-CoA. En este trabajo hemos podido demostrar además la interacción de CPT1C con protrudina, y describir su papel en la regulación de la localización y transporte de LEs, función que se encuentra regulada por la unión de malonil-CoA.
APA, Harvard, Vancouver, ISO, and other styles
21

Hsu, Meng-Tsung, and 許萌琮. "Mechanism underlying Proteasome Transport across Axon Initial Segment." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/24762926340649867003.

Full text
Abstract:
碩士
國立陽明大學
生命科學系暨基因體科學研究所
104
The mega-size, poly-subunit 26S proteasome plays a critical role in the ubiquitin proteasome system (UPS) which controls the majority of cellular protein turnover. Since UPS is involved in many aspects of neuronal development including axon/dendrite polarization and synaptic plasticity, proteasome malfunction leads to various neurodegenerative disorders. Whether and how proteasomes transverse across the diffusion barriers at axon initial segment (AIS) remains unknown. Here we report that proteasome transport across the AIS is attributed to an association between proteasome adaptor Ecm29 and AIS scaffold protein Ankyrin G. We found that the majority population (80%) of moving proteasomes was stopped at proximal axonal region of hippocampal neurons when AIS was formed, in vitro; only the remaining 10% moved across the AIS region. The retention of proteasome in AIS was relieved by down regulating the expression of the membrane adaptor ankyrin G by specific siRNA; nonetheless, no effect was observed in neither actin filament nor microtubule disruption. Interaction domain mapping showed that Ankyrin G associated with Ecm29 and proteasome complexes via death domain and C-terminal domain, suggesting that AIS acts as a regulatory dock for axonal proteasome transport.
APA, Harvard, Vancouver, ISO, and other styles
22

Hsu, Jiun-Min, and 徐均旻. "Regulation of Axon Transport by Tubulins in Caenorhabditis elegans." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/70239098493392407112.

Full text
Abstract:
碩士
國立臺灣大學
分子醫學研究所
100
Microtubules play essential functions in axon transport by serving as tracks for motor proteins and their cargos. They also play a more active role by directing cargo transport through tubulin posttranslational modification. Here we propose yet another level of regulation: specific residues on tubulins directly regulate synaptic vesicle transport by binding motor proteins with differential affinities. The C. elegans gene mec-12 encodes an α-tubulin that is uniquely enriched in the six touch receptor neurons. Complete loss of mec-12 causes loss of synaptic vesicles at synaptic regions and their accumulation in neuronal cell bodies. We identified a missense mutation of mec-12, gm379, which not only prevents synaptic vesicles from reaching synaptic regions, but also redirects them to non-axon compartment of the PLM touch neuron (synaptic vesicle mistargeting). This mutation also triggered extensive axon blebbing in the touch neurons. gm379 alters a conserved C-terminus glycine residue and behaves as a neomorphic gain-of-function mutation, as axon blebbing and synaptic vesicle mistargeting were not seen in the mec-12 null and could be completely abolished by mec-12 RNAi. Immunostaining for various microtubule posttranslational modifications revealed no obvious changes in the gm379 mutant, and synaptic vesicle mistargeting was not seen after RNAi knockdown of genes encoding enzymes for microtubule posttranslational modifications. Interestingly, reducing UNC-104/Kinesin 3/KIF1A functions aggravated vesicle mistargeting, and excess UNC-104 partially rescued it. By contrast, elimination of dynein heavy chain DHC-1 partially suppressed synaptic vesicle defects in gm379, mimicking the effects of UNC-104 overexpression. The glycine residue mutated in gm379 resides in an exposed helix-loop region on the tubulin polymers, which had been shown to be a common binding site for KIF1A and dynein heavy chain. We hypothesize that gm379 switches motor binding affinity of microtubules towards dynein, resulting in transport defects and mistargeting of synaptic vesicles.
APA, Harvard, Vancouver, ISO, and other styles
23

Ahmad, Fridoon Jawad. "Mechanisms for the transport of centrosomal microtubles into the axon." 1998. http://catalog.hathitrust.org/api/volumes/oclc/40736611.html.

Full text
Abstract:
Thesis (Ph. D.)--University of Wisconsin--Madison, 1998.
Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 113-129).
APA, Harvard, Vancouver, ISO, and other styles
24

Sybingco, Stephanie S. "Identification and analysis of novel mutants exhibiting defects in pioneer axon guidance in Caenorhabditis elegans /." 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:MR38831.

Full text
Abstract:
Thesis (M.Sc.)--York University, 2008. Graduate Programme in Biology.
Typescript. Includes bibliographical references (leaves 83-89). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:MR38831
APA, Harvard, Vancouver, ISO, and other styles
25

Stagi, Massimiliano. "Effect of nitric oxide and inflammatory mediators on axonal transport." Doctoral thesis, 2005. http://hdl.handle.net/11858/00-1735-0000-0006-AB9D-B.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Saggu, Sarabjit Kaur. "Aspects of retinal and optic nerve pathology after excitotoxic retinal injury." Thesis, 2011. http://hdl.handle.net/2440/71304.

Full text
Abstract:
A large body of evidence supports the notion that excitotoxicity plays a major role in the pathogenesis of a number of neurological diseases, including central nervous system (CNS) ischaemia, Alzheimer's disease, motor neurone disease, and glaucoma. In the global population 60 years of age and over, these diseases are among the leading causes of mortality and morbidity. Although the site of excitotoxic injury is principally at the level of the cell body (perikaryal), understanding the secondary effects on the neuronal axon is important because axonopathy is a documented early feature of these common neurological conditions; hence, an understanding of the pattern and mechanisms of secondary axonal degeneration after excitotoxic perikaryal injury could provide novel detection and treatment strategies in the early phase of neurological disease. The retina and optic nerve, as approachable regions of the CNS, provide a unique anatomical substrate to investigate axonal degeneration after perikaryal excitotoxic injury. Spatiotemporal changes in the retina and optic nerve were studied after injection of 20nM of Nmethyl-D-Aspartate (NMDA) in the left eye of the rat with the saline-injected right eye serving as the control. Temporal changes in the morphology of retina and optic nerve were studied by light and electron microscopy. Progressive retinal damage beginning at 72 hrs, seen as thinning of the inner retina and cell loss in the ganglion cell layer, showed strong correlation (R= 0.949) with degenerative changes in the optic nerve; the distal optic nerve segment displayed significantly more axon loss, axon swellings and myelin damage than the proximal segment (p<0.05), suggestive of a 'dying-back type degeneration'. Beginning at 24 hrs, electron microscopy demonstrated various features of necrosis in retinal ganglion cells (RGCs): mitochondrial and endoplasmic reticulum swelling, disintegration of polyribosomes, rupture of membranous organelle and formation of myelin bodies. Ultrastructural damage in the optic nerve, which began at 72 hrs, mimicked the changes of Wallerian degeneration, where early nodal-paranodal disturbances were followed by the appearance of three major morphological variants: watery degeneration, dark degeneration, and demyelination. Features suggestive of RGC regeneration in the form of dendritic sprouting after acute excitotoxic injury were also demonstrated at day 7. Immunohistochemistry revealed glial cell responses and changes to the axon transport system. Excitotoxic injury resulted in progressive activation of macroglia (Müller cells and astrocytes) and microglial cells in the retina and optic nerve as demonstrated by increased glial-fibrillary-acidic protein (GFAP) and ED-1 immunolabelling as early as 72 hrs. Interxonal glial cells in the optic nerve also showed increased β-amyloid precursor protein (β-APP) beginning at 72 hrs. Impairment of slow axonal transport at 72 hrs resulted in decrease anterograde transport of neurofilament-light (NF-L) to the axon terminal and hence their accumulation in proximal neuron (seen as NF-L rich spheroids). This fundamental research revealed a pathological picture of Wallerian-like degeneration after perikaryal excitotoxic injury in the CNS. This novel finding is consistent with recent evidence of a labile axonal 'survival' factor, nicotinamide mononucleotide adenylyltransferase 2,(Nmnat2) produced by the neuronal cell body. Further study is required to test the hypothesis that a lack of Nmnat2 is the mechanism by which axons degenerate after excitotoxic perikaryal injury.
Thesis (Ph.D.) -- University of Adelaide, School of Medicine, 2011
APA, Harvard, Vancouver, ISO, and other styles
27

Lin, I.-Ming, and 林義&;#29641. "A Simulation Study on Active Transport of Biomolecules in Axons Using the Michaelis-Menten Mechanism." Thesis, 1999. http://ndltd.ncl.edu.tw/handle/15489035203756624393.

Full text
Abstract:
碩士
國立中興大學
化學工程學系所
98
Intracellular transport is an important mechanism to maintain neural function because of axonal specificity. For example, we found axonal swelling or the formation of spheroid in neurodegenerative diseases, and axonal transport is considered the important factor for neurodegenerative diseases. Axonal transport of biomass is divided into two in neuron. The former is that small molecules diffuse freely in the axon, such as the transport of ATP in cells. The latter is that cargo (organelles or viscles) associated with motor proteins. Motor proteins use the energy generated by ATP hydrolysis, and drag cargo along the cytoskeleton movement. It is called axonal transport, such as neurotransmitter, cytoskeletal polymers and so on. Mathematical model proposed by Smith and Simmons assumes that the velocity of particles is constant. Compared with the previous model, this study adds the continuity equation for species ATP to describe the distribution of ATP concentration, and uses Michaelis-Menten kinetics to derive the velocity of the motor protein. This study simulates distribution of the particles due to the inhibition of kinesin, inhibition of dynein and both. Results are compared with the literatures.
APA, Harvard, Vancouver, ISO, and other styles
28

Bérubé-Carrière, Noémie. "Données nouvelles sur l’innervation à dopamine du striatum et son co-phénotype glutamatergique." Thèse, 2012. http://hdl.handle.net/1866/8369.

Full text
Abstract:
Une sous-population des neurones à dopamine (DA) du mésencéphale ventral du rat et de la souris étant connue pour exprimer l'ARN messager du transporteur vésiculaire 2 du glutamate (VGLUT2), nous avons eu recours à l'immunocytochimie en microscopie électronique, après simple ou double marquage de l'enzyme de synthèse tyrosine hydroxylase (TH) et de VGLUT2, pour déterminer la présence de l'une et/ou l'autre protéine dans les terminaisons (varicosités) axonales de ces neurones et caractériser leur morphologie ultrastructurale dans diverses conditions expérimentales. Dans un premier temps, des rats jeunes (P15) ou adultes (P90), ainsi que des rats des deux âges soumis à l'administration intraventriculaire cérébrale de la cytotoxine 6-hydroxydopamine (6-OHDA) dans les jours suivant la naissance, ont été examinés, afin d'étayer l'hypothèse d'un rôle de VGLUT2 au sein des neurones DA, au cours du développement normal ou pathologique de ces neurones. Chez le jeune rat, ces études ont montré: i) la présence de VGLUT2 dans une fraction importante des varicosités axonales TH immunoréactives du coeur du noyau accumbens ainsi que du néostriatum; ii) une augmentation de la proportion de ces terminaisons doublement marquées dans le noyau accumbens par suite de la lésion 6-OHDA néonatale; iii) le double marquage fréquent des varicosités axonales appartenant à l'innervation DA aberrante (néoinnervation), qui se développe dans la substance noire, par suite de la lésion 6-OHDA néonatale. Des différences significatives ont aussi été notées quant à la dimension des terminaisons axonales marquées pour la TH seulement, VGLUT2 seulement ou TH et VGLUT2. Enfin, à cet âge (P15), toutes les terminaisons doublement marquées sont apparues dotées d'une spécialisation membranaire synaptique, contrairement aux terminaisons marquées pour la TH ou pour VGLUT2 seulement. Dans un deuxième temps, nous avons voulu déterminer le devenir du double phénotype chez le rat adulte (P90) soumis ou non à la lésion 6-OHDA néonatale. Contrairement aux observations recueillies chez le jeune rat, nous avons alors constaté: i) l'absence complète de terminaisons doublement marquées dans le coeur du noyau accumbens et le néostriatum d'animaux intacts, de même que dans les restes de la substance noire des animaux 6-OHDA lésés; ii) une très forte baisse de leurnombre dans le coeur du noyau accumbens des animaux 6-OHDA lésés. Ces observations, suggérant une régression du double phénotype TH/VGLUT2 avec l'âge, sont venues renforcer l'hypothèse d'un rôle particulier d'une co-libération de glutamate par les neurones mésencéphaliques DA au cours du développement. Dans ces conditions, il est apparu des plus intéressants d'examiner l'innervation DA méso-striatale chez deux lignées de souris dont le gène Vglut2 avait été sélectivement invalidé dans les neurones DA du cerveau, ainsi que leurs témoins et des souris sauvages. D'autant que malgré l'utilisation croissante de la souris en neurobiologie, cette innervation DA n'avait jamais fait l'objet d’une caractérisation systématique en microscopie électronique. En raison de possibles différences entre le coeur et la coque du noyau accumbens, l'étude a donc porté sur les deux parties de ce noyau ainsi que le néostriatum et des souris jeunes (P15) et adultes (P70-90) de chaque lignée, préparées pour l'immunocytochimie de la TH, mais aussi pour le double marquage TH et VGLUT2, selon le protocole précédemment utilisé chez le rat. Les résultats ont surpris. Aux deux âges et quel que soit le génotype, les terminaisons axonales TH immunoréactives des trois régions sont apparues comparables quant à leur taille, leur contenu vésiculaire, le pourcentage contenant une mitochondrie et une très faible incidence synaptique (5% des varicosités, en moyenne). Ainsi, chez la souris, la régression du double phénotype pourrait être encore plus précoce que chez le rat, à moins que les deux protéines ne soient très tôt ségréguées dans des varicosités axonales distinctes des mêmes neurones DA. Ces données renforcent aussi l’hypothèse d’une transmission diffuse (volumique) et d’un niveau ambiant de DA comme élément déterminant du fonctionnement du système mésostriatal DA chez la souris comme chez le rat.
Knowing that a subset of rat and mouse mesencephalic dopamine (DA) neurons expresses the mRNA of the vesicular glutamate transporter type 2 (VGLUT2), we used electron microscopic immunocytochemistry, after single or double labeling of the biosynthetic enzyme tyrosine hydroxylase (TH) and of VGLUT2, to determine the presence of one and/or both proteins in axon terminals (varicosities) of these neurons and characterize their ultrastructural morphology under various experimental conditions. At first, young (P15) or adult (P90) rats, subjected or not to cerebro-ventricular administration of the cytotoxin 6-hydroxydopamine (6-OHDA) a few days after birth, were examined in order to investigate the role of VGLUT2 in DA neurons during normal and pathological development of these neurons. In the young rats, these studies revealed: i) the presence of VGLUT2 in a significant fraction of TH immunoreactive varicosities in the core of the nucleus accumbens and the neostriatum; ii) an increase in the proportion of dually labeled terminals in the nucleus accumbens following neonatal 6-OHDA lesion; iii) frequent double labeling of TH varicosities belonging to the aberrant DA innervation (neoinnervation) which develops in the substantia nigra following neonatal 6-OHDA lesion. Significant differences were also noted in the size of the axon terminals labeled for TH only, VGLUT2 only, or TH and VGLUT2. Finally, at this age (P15), all the dually labeled terminals appeared equipped with a synaptic membrane specialization, unlike the terminals labeled for TH or for VGLUT2 only. In a second step, we sought to determine the fate of the dual phenotype in adult rats (P90) subjected or not to the neonatal 6-OHDA lesion. In contrast with the observations made in young rats, we found: i) a complete absence of dually labeled terminals in the core of the nucleus accumbens and striatum of intact animals, as well as in the remains of the substantia nigra after neonatal 6-OHDA lesion; ii) a sharp decline of their number in the core of the nucleus accumbens of 6-OHDA-lesioned animals. These findings, suggesting a regression of the dual TH/VGLUT2 phenotype with age, reinforced the hypothesis of a specific role of the co-release of glutamate from midbrain DA neurons during development. Under these conditions, it was of considerable interest to examine the DA meso-striatal innervation in two strains of mice whose Vglut2 gene has been selectively invalidated in DA neurons, as well as in their control littermates and wild-type mice. This issue was particularly relevant with the increasing use of genetically modified mice in neurobiology; indeed, this DA innervation had never been systematically characterized by electron microscopy. Because of possible differences between the core and shell of the nucleus accumbens, the study included both parts of this nucleux as well as the striatum of young (P15) and adult (P70-90) mice of each strain, prepared for TH immunocytochemistry, and also for double labeling of TH and VGLUT2, according to the protocol previously used in rats. The results were surprising. At both ages, regardless of the genotype, the TH immunoreactive axon terminals of the three regions appeared comparable in size, vesicle content, percent with mitochondria, and exceeding low frequency of synaptic membrane specialization (5% of varicosities, on average). Thus, in mice, the regression of the dual phenotype might be even more precocious than in rats, unless the two proteins are segregated very early in different axon terminals of the same DA neurons. These data also strenghten the hypothesis of a diffuse (volume) transmission and of an ambient level of DA as determinant elements in the functioning of the meso-striatal DA system in mice as well as rats.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography