Academic literature on the topic 'Azeotrope'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Azeotrope.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Azeotrope"
Tien Thi, Luot. "ENTRAINER SELECTION FOR SEPARATION OF AZEOTROPIC MIXTURES BY DISTILLATION METHODS." Vietnam Journal of Science and Technology 56, no. 4A (October 19, 2018): 89. http://dx.doi.org/10.15625/2525-2518/56/4a/12952.
Full textValentini, Federica, and Luigi Vaccaro. "Azeotropes as Powerful Tool for Waste Minimization in Industry and Chemical Processes." Molecules 25, no. 22 (November 12, 2020): 5264. http://dx.doi.org/10.3390/molecules25225264.
Full textMahdi, Taha, Arshad Ahmad, Mohamed M. Nasef, and Adnan Ripin. "Simulation and Analysis of Process Behavior of Ultrasonic Distillation System for Separation Azeotropic Mixtures." Applied Mechanics and Materials 625 (September 2014): 677–79. http://dx.doi.org/10.4028/www.scientific.net/amm.625.677.
Full textPlatt, Gustavo Mendes, Marcelo Escobar Aragão, Fernanda Cabral Borges, and Douglas Alves Goulart. "Evaluation of a New Multimodal Optimization Algorithm in Fluid Phase Equilibrium Problems." Ingeniería e Investigación 40, no. 1 (January 1, 2020): 27–33. http://dx.doi.org/10.15446/ing.investig.v40n1.78822.
Full textMahdi, Taha, Arshad Ahmad, Adnan Ripin, Mohamed Mahmoud Nasef, and Olagoke Oladokun. "Aspen Plus Simulation of Ultrasound Assisted Distillation for Separating Azeotropic Mixture." Advanced Materials Research 1113 (July 2015): 710–14. http://dx.doi.org/10.4028/www.scientific.net/amr.1113.710.
Full textFan, Zhi Dong, Xu Bin Zhang, Lu Yang Zhao, Wang Feng Cai, and Fu Min Wang. "Study on the Separation of Azeotrope of Tetrahydrofuran-Water Using a Combined Method of Extractive and General Distillation." Advanced Materials Research 803 (September 2013): 149–52. http://dx.doi.org/10.4028/www.scientific.net/amr.803.149.
Full textWang, Xue Hui, Tian Nian Zhou, Q. P. Chen, Jin Fei Zhao, Chao Ding, and Jian Wang. "Burning Characteristics of Azeotropic Binary Blended Fuel Pool Fire." Key Engineering Materials 775 (August 2018): 365–70. http://dx.doi.org/10.4028/www.scientific.net/kem.775.365.
Full textMilojevic, Svetomir. "Separation processes, I: Azeotropic rectification." Chemical Industry 59, no. 5-6 (2005): 141–50. http://dx.doi.org/10.2298/hemind0506141m.
Full textZhang, Wen Lin, Nan Meng, Ru Yi Sun, and Chun Li Li. "Isobaric Vapor-Liquid Equilibria of Hexamethyl Disiloxane + Ethyl Acetate System at Normal Pressure." Advanced Materials Research 396-398 (November 2011): 968–72. http://dx.doi.org/10.4028/www.scientific.net/amr.396-398.968.
Full textKim, Y. J., and K. H. Simmrock. "AZEOPERT: An expert system for the prediction of azeotrope formation—I. Binary azeotropes." Computers & Chemical Engineering 21, no. 1 (September 1997): 93–111. http://dx.doi.org/10.1016/0098-1354(95)00249-9.
Full textDissertations / Theses on the topic "Azeotrope"
Jaimes, Figueroa Jaiver Efren 1986. "Análise e otimização do processo de obtenção de etanol anidro, empregando líquidos iônicos." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/266843.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química
Made available in DSpace on 2018-08-18T13:50:07Z (GMT). No. of bitstreams: 1 JaimesFigueroa_JaiverEfren_M.pdf: 4284661 bytes, checksum: 5b7383def90a5143160bc892b406c75c (MD5) Previous issue date: 2011
Resumo: A produção de etanol a partir da cana de açúcar é uma tecnologia dominada completamente pelo Brasil porém, encontra-se na etapa de intensificação, otimização e inovação. O etanol pode ser produzido como hidratado ou anidro, sendo necessário, para produção deste último, um processo posterior de desidratação. Existem inúmeros processos de desidratação, dentre dos quais a destilação extrativa é um dos mais simples de realizar. A destilação extrativa usa um solvente para modificar o equilíbrio líquido-vapor, permitindo quebrar o azeótropo etanol/água que impede que a desidratação seja feita por destilação convencional. O solvente de extração é de grande importância, dele depende a facilidade com que vai ser feita a separação, a quantidade a ser utilizada e o requerimento energético do processo. Nesse contexto, aparecem os líquidos iônicos, que são apresentados como ótimos solventes potenciais de extração; um líquido iônico (LI) é um sal composto por um cátion orgânico com pelo menos uma carga deslocada e um ânion inorgânico; sua estrutura evita que se forme uma rede cristalina estável, resultando em solventes líquidos altamente iônicos com temperaturas de fusão inferiores a 100 °C e com insignificante pressão de vapor. Os LI são principalmente usados em substituição aos solventes convencionais, podendo ser uma alternativa para diminuir a poluição ambiental, evitando a emissão de componentes orgânicos voláteis ao meio ambiente. Com a justificativa anterior, o objetivo desta dissertação foi analisar e otimizar o processo de obtenção de etanol anidro a partir da mistura etanol + água de composição pré-azeotrópica, empregando líquidos iônicos (LI), visando avaliar seu potencial; os LI estudados foram: 1-butil-3-metilimidazólio cloreto, 1-butil-3-metilimidazólio metilsulfato, 1-butil-3-metilimidazólio acetato, 1-butil-3-metilimidazólio tetrafluoroborato, 1-butil-3-metilimidazólio dicianamida, 1-etil-3-metilimidazólio cloreto, 1-etil-3-metilimidazólio tetrafluoroborato, 1-hexil-3-metilimidazólio cloreto. Neste trabalho foi encontrado o requerimento energético e a quantidade de LI a ser empregado para obter os valores máximos de pureza e porcentagens de recuperação de etanol e água. A influência das condições de operação e desenho utilizadas, tais como fração de etanol na alimentação, relação LI:alimentação, temperatura da alimentação e do LI de reposição, quantidade de estágios, relação molar de refluxo, estágio de alimentação e vazão molar de destilado da coluna de recuperação de etanol e de purificação de LI, foram analisadas empregando o simulador comercial Aspen Plus e, otimizadas empregando a técnica de delineamento de experimentos. Todos os LI estudados apresentaram capacidade de desidratar o etanol, elevando sua concentração de pré até pós-azeotropia, obtendo-se pureza de etanol maiores que 0,995 em massa. Além disso, dependendo do LI utilizado, o processo atinge porcentagens de recuperação de etanol e água, em média, de 98% e 74%, respectivamente. Na definição do modelo para o coeficiente de atividade do equilíbrio ternário líquido vapor da mistura etanol + água + LI foram testados o NRTL e UNIQUAC, chegando-se à conclusão de que o equilíbrio representado pelo modelo de NRTL é o mais adequado
Abstract: The production of ethanol from sugar cane is a technology led and dominated by Brazil. However, it is still in a stage of optimization and innovation. Ethanol can be produced in a hydrated or dehydrated state, but the latter requires an additional process to the conventional distillation. There are numerous dehydration processes that can be implemented, but the extractive distillation is one of the most simple. Extractive distillation uses a solvent that modifies the liquid-vapor equilibrium and eliminates the presence of the ethanol-water azeotrope that prevents the use of conventional distillation for the dehydration process. The solvent for the extraction is of great importance since it dictates the degree of separation and the energy requirements for the process. In this context, ionic liquids are considered since they have been presented as excellent solvents for extraction. An ionic liquid (IL) is a salt formed by an organic cation with at least one delocalized charge, and an inorganic anion. The structure of the ionic liquids prevents the formation of a stable crystalline net, resulting in highly ionic liquid solvents that have melting points below 100 ºC and negligible vapor pressures. With those characteristics, ionic liquids can be a replacement for conventional solvents offering alternatives for the decrease of the environmental impact by preventing the emissions of volatile compounds to the environment. With the previous justification, the objective of this master dissertation was to analyze and optimize the process of obtaining anhydrous ethanol from a mixture ethanol + water with pre-azeotropic composition by using ionic liquids; and also to evaluate their performance in this application to evaluate its potential. Ionic liquids were studied: 1-butyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium methylsulfate, 1-butyl-3-methylimidazolium acetate, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium dicyanamide, 1-ethyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-hexil-3-methylimidazolium chloride. In this work, the minimum energy requirement and the amount of ionic liquid needed to obtain maximum ethanol purity and maximum recovery of ethanol and water exiting the process were found. The influence of the design and operation conditions used, such as the ethanol composition in the feed, the IL/feed ratio, the temperature of the feed and the IL, the number of plates, the reflux molar ratio and the distilled flux in the columns of purification of ethanol and recovery of ionic liquids were studied using the commercial simulator ASPEN PLUS, and optimized by utilization of the design of experiments (DOE) technique. All the ionic liquids used were able to dehydrate the ethanol, increasing its concentration from pre to post azeotrope, generating ethanol with purity above 0.995 in mass. In addition to that, depending on the ionic liquid used, the process reached average water and ethanol recoveries of 98% and 74% respectively. In the definition of the model for the activity coefficient in the ternary vapor-liquid equilibrium of the ethanol-water-IL mixtures, the models NRTL and UNIQUAC were studied concluding that the NRTL model was the most adequate
Mestrado
Desenvolvimento de Processos Químicos
Mestre em Engenharia Química
Izadi, Homa. "A novel pseudo-azeotrope mosquito repellent mixture." Thesis, University of Pretoria, 2016. http://hdl.handle.net/2263/81873.
Full textThesis (PhD (Chemical Technology))--University of Pretoria, 2016.
English
PhD (Chemical Technology)
Unrestricted
Yan, Youchun. "Enzymatic production of sugar fatty acid esters." [S.l. : s.n.], 2001. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB9102241.
Full textDion, Ngute Miles Ndika. "Comparison of Multieffect Distillation and Extractive Distillation Systems for Corn-Based Ethanol Plants." Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/76981.
Full textMaster of Science
Reis, Miria Hespanhol Miranda. "Desenvolvimento de modelagens de não equilibrio para caracterização e aplicação em simulação de colunas de destilação complexas." [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/266328.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica
Made available in DSpace on 2018-08-06T15:22:51Z (GMT). No. of bitstreams: 1 Reis_MiriaHespanholMiranda_D.pdf: 3186781 bytes, checksum: ed9c594aabf9a348666496468982cf5b (MD5) Previous issue date: 2006
Resumo: A destilação é, certamente, o processo mais aplicado na separação de misturas líquidas. Embora esta seja uma operação unitária conhecida de longa data, ainda, nos dias de hoje persistem algumas dificuldades na proposição de esquemas de destilação apropriados. Sendo assim, o objetivo deste trabalho de tese foi aplicar modelos mais realistas na caracterização de misturas e na simulação de processos de destilação, em regimes estacionários e dinâmicos. Para tanto, foram avaliados dois softawes, desenvolvidos no Laboratório de Desenvolvimentos de Processos de Separação, para simulações de colunas de destilação considerando os modelos de estágios de equilíbrio e de não equilíbrio. Os resultados obtidos mostraram que, geralmente, os perfis obtidos com as duas modelagens são diferentes, em ambos os regimes. A modelagem de estágios de não equilíbrio foi aplicada também para a caracterização de sistemas, utilizando mapas de curvas residuais. Avaliou-se, ainda, a influência das correlações de eficiência de Barros & Wolf em mapas de curvas residuais. Os perfis obtidos com as correlações de eficiência de Barros & Wolf mostram grande concordância com os calculados pelo modelo de estágios de não equilíbrio. Com os mapas de curvas residuais calculados concluiu-se que as trajetórias líquidas de composição não cruzam as fronteiras de destilação, sendo esta um questão de polêmica na atualidade, no entanto, nossos resultados mostram os perfis corretos. Além disso, desenvolveu-se, neste trabalho de tese, um programa computacional para a caracterização de sistemas reativos. A vantagem do novo algoritmo proposto está, principalmente, no fato do programa não depender de estimativas inicias e ser de fácil convergência. O programa é, também, capaz de predizer todos os azeótropos presentes na mistura, quando existam um ou mais de um, ou ainda de afirmar que a mistura é zeotrópica. Os resultados obtidos são concordantes com valores experimentais ou calculados por outros métodos. Na linha do processo de destilação reativa, sendo este um processo inovador, foi proposta a separação da mistura fenol + água. A separação desta mistura é de grande interesse, por questões econômicas e ambientais. Preliminarmente, fez-se um estudo na busca de uma reação apropriada para o consumo de fenol. O processo proposto atende completamente às questões ambientais, visto que gera somente correntes limpas e é, portanto, uma nova alternativa para o tratamento de correntes fenólicas. Por fim, desenvolveu-se neste trabalho um conjunto completo para caracterização de sistemas e simulação de processos, envolvendo desde o modelo de estágios de equilíbrio até o modelo de estágios de não equilíbrio. Propôs-se, ainda, um eficiente processo para o tratamento de águas fenólicas
Abstract: Distillation is, certainly, the most applied process in the separation of liquid mixtures. Although this is a very known unit operation, still nowadays some difficulties persist in the proposal of appropriate distillation schemes. Thus, the objective of this work was to apply more realistic models in the characterization of mixtures and in the simulation of distillation process in, both, steady state and dynamic regime. In this way, two softwares developed in the Laboratory of Separation Processes Development were evaluated. These softwares consider the equilibrium and the nonequilibrium stage models in steady state and dynamic regime. The results show that, generally, the profiles obtained with the two models are different, in both regimes. The nonequilibrium stage model was also applied for the systems characterization, in residue curve maps. It was evaluated, still, the influence of Barros & Wolf correlations for efficiencies on residue curve maps. The profiles obtained with the Barros & Wolf correlations show good agreement with the calculated with the nonequilibrium stage model. The calculated residue curve maps showed that residue curves do not cross distillation boundaries. Nowadays, this is a question of controversy, however our results show the correct behavior. Moreover, it was developed in this work a computational program for the characterization of reactive systems. The advantage of the new proposed algorithm is mainly because the program does not depend on initial estimates and it is of easy convergence. The program is, also, able to predict all the azeotropes present in the mixture, when one or more than one exist, or still to affirm that the mixture is zeotropic. The obtained results are in agreement with experimental values or values calculated by other methods. Regarding to reactive distillation, being an innovative process, it was proposed the separation of the mixture phenol + water. The separation of this mixture is of great interest, for economic and environmental issues. Preliminarily, it was carried out a study of an appropriate reaction for the phenol consumption. The considered process takes care of environmental questions, since it only generates current clean and it is, therefore, an alternative process for the phenolic wastewater treatment. Finally, in this work, it was developed a complete set for characterization of systems and simulation of processes, involving the equilibrium and the nonequilibrium stage modes, in steady state and dynamic regime. It was considered, still, an efficient process for the phenolic wastewater treatment
Doutorado
Desenvolvimento de Processos Químicos
Doutor em Engenharia Química
kahwaji, janho michel E. "FORMULATION AND USE OF A PERVAPORATION MATHEMATICAL MODEL." Cleveland State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=csu1432111781.
Full textSilva, Camila de Souza. "Equil?brio l?quido-vapor do sistema tern?rio etanol + ?gua + 1-etil-3-metil imidaz?lio cloreto: experimental e modelagem termodin?mica." Universidade Federal Rural do Rio de Janeiro, 2016. https://tede.ufrrj.br/jspui/handle/jspui/1784.
Full textMade available in DSpace on 2017-06-14T14:33:49Z (GMT). No. of bitstreams: 1 2016 - Camila de Souza Silva.pdf: 1802766 bytes, checksum: 154ae702e6dbdd0afdc13fb202a08682 (MD5) Previous issue date: 2016-08-02
Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPES
Equilibrium data at low and high pressures are important to correct establish conditions of temperature and pressure for separation processes, and to supply the capacity of the solvent, the compositions of the phases and the selectivity of the solvent. The separation of ethanol-water system is of great importance for the industry due to numerous applications of anhydrous ethanol. In all of these applications, ethanol must be free of water and it is necessary to add a third component in the distillation to break the azeotrope. It can be add different solvents, as benzene, hexane, ethyleneglycol, salts, and, in the last years, many studies have been done with ionic liquids. So, the purpose of this work is to use an ionic liquid (1-ethyl-3-methylimidazolium chloride) as the third component, looking for the ethanol dehydration. Because of that, it was done a study to evaluate the effect of this ionic liquid in the liquid-vapor equilibrium behavior between water and ethanol. Experimental data were measured, in triplicate, under normal pressure, in an Othmer-type ebulliometer (300 mL of volume), with two condensers, and made of borosilicate glass. The sample analysis was done in a digital densimeter. The ionic liquid used was recovered from one solution to another, just by adding the required amount to complete each mass fraction. Experimental data was measured with ethanol-water solutions varying the molar concentrations from 0.2 to 0.99, and ionic liquid weight fraction masses from 5 to 60%, to evaluate the behavior of the equilibrium data of the ethanol+water+[emim][Cl] system. The experiments showed that [emim][Cl] with a minimum mass fraction of 20% is a promising solvent because it could ?break? the azeotrope between water and ethanol, and higher mass fraction of ionic liquid were better to enrich the vapor phase in ethanol. NRTL model was used to correlate experimental vapor-liquid equilibrium of the ternary system, estimating the binary parameters, applying the bubble point methodology. The deviations of temperature and vapor phase composition were 0.147 ?C and 0.049, respectively. The relative volatility was greater than 1 for the mass fractions from 20%. The activity coefficients decrease with the increase in the molar concentration of ethanol. Values of the excess Gibbs free energy show a positive deviation for all mass fractions worked, and the experimental data were consistent thermodynamically
Os dados de equil?brio a press?es baixas e elevadas s?o importantes para estabelecer as condi??es corretas de press?o e temperatura para os processos de separa??o e para fornecer a capacidade do solvente, as composi??es das fases e a seletividade do solvente. A separa??o do sistema etanol-?gua ? de grande import?ncia para a ind?stria devido a numerosas aplica??es do etanol anidro. Em todas essas aplica??es, o etanol deve ser livre de ?gua e, para isso, ? necess?rio adicionar um terceiro componente na destila??o para quebrar o aze?tropo. Podem ser adicionados diferentes solventes como o benzeno, hexano, etilenoglicol, sais e, nos ?ltimos anos, tem-se visto muitos estudos com l?quidos i?nicos. Com isso, o objetivo deste trabalho ? a utiliza??o de um l?quido i?nico (1-etil-3-metil imidaz?lio cloreto) como terceiro componente, visando a desidrata??o do etanol, al?m da avalia??o do efeito deste l?quido i?nico no comportamento do equil?brio l?quido-vapor entre a ?gua e o etanol. Os dados experimentais foram medidos, em triplicata, sob press?o normal, em um ebuli?metro tipo Othmer (300 mL de volume), com dois condensadores, feitos de vidro de borosilicato. As determina??es das amostras foram feitas em um dens?metro digital. Os dados foram medidos com solu??es de etanol-?gua em diferentes concentra??es molares (0,2 a 0,95), variando a fra??o m?ssica de l?quido i?nico de 0,05 a 0,60, para avaliar o comportamento dos dados de equil?brio do sistema etanol-?gua-[emim][Cl].Os resultados mostraram que o [emim][Cl] ? um solvente promissor, pois "quebra" o aze?tropo entre a ?gua e etanol a partir de 20% de l?quido i?nico, e a concentra??o de etanol na fase vapor foi maior com o aumento da fra??o m?ssica de LI.O modelo NRTL foi utilizado para correlacionar os dados experimentais de equil?brio, estimando-se os par?metros bin?rios, aplicando-se a metodologia do ponto de bolha. Os desvios em rela??o ? temperatura e a composi??o molar da fase vapor foram 0,147 ?C e 0,049, respectivamente. O l?quido i?nico, recuperado de uma solu??o para outra, passou por uma an?lise de RMN para avaliar se n?o houve altera??o na sua estrutura e, constatou-se que, ap?s ser recuperado, e novamente reutilizado, o solvente n?o perdeu as caracter?sticas originais. As volatilidades relativas foram superiores a 1 para as fra??es m?ssicas a partir de 20%, confirmando a quebra do aze?tropo. A energia livre de Gibbs em excesso apresentou valores que mostram um desvio positivo para todas as fra??es m?ssicas trabalhadas e os dados experimentais foram consistentes termodinamicamente
Schmitz, Jones Erni. "Calculos de estabilidade e divisão de fases por meio de redes neurais artificiais." [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/267568.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica
Made available in DSpace on 2018-08-07T19:04:30Z (GMT). No. of bitstreams: 1 Schmitz_JonesErni_D.pdf: 1427141 bytes, checksum: 5c994ce371331fd4c3ac0f3e3861f49b (MD5) Previous issue date: 2006
Resumo: A simulação de processos é um componente fundamental de uma grande variedade de atividades de Engenharia de Processos, tais como a Otimização Online, o controle em Tempo Real, a Identificação, etc. O cálculo de Equilíbrio de Fases é uma atividade fundamental em qualquer simulação de processos de separação. O elevado tempo computacional deste cálculo provocado pela sua natureza iterativa pode criar incompatibilidades entre a atividade de simulação e as aplicações em tempo real que ela integra. O objetivo deste trabalho foi desenvolver um método alternativo simples, mas suficientemente preciso, para realizar os cálculos de equilíbrio de fases na simulação de processos de separação de sistemas complexos. Entende-se por tal, sistemas que apresentam problemas de Equilíbrio Líquido-Líquido e de Equilíbrio Líquido-Líquido-Vapor, como é o caso dos que possuem um Azeótropo Heterogêneo. Pelas suas propriedades, as Redes Neurais Artificiais surgem naturalmente como candidatas alternativas para esta tarefa. Como objeto de aplicação foram escolhidos dois sistemas que apresentam um azeótropo heterogêneo, o sistema binário acetato de etila - água e o sistema ternário etanol - acetato de etila - água. Para gerar os dados usados no treinamento das redes foi implementado um método convencional de cálculo de equilíbrio de fases, adequado à complexidade dos sistemas escolhidos, o método de Pham & Doherty. Para a resolução do problema da estabilidade de fases, a primeira etapa do cálculo do equilíbrio de fases, foram testados dois tipos de redes neurais artificiais (RNAs), as Redes Neurais Artificiais Probabilísticas (RNAPs) e os Perceptrons. Com os perceptrons foram encontradas dificuldades para atingir a precisão desejada, sendo necessário recorrer a perceptrons com várias camadas escondidas. Já as RNAPs apresentaram uma excelente precisão, embora a sua simulação seja mais lenta. Perceptrons simples de uma só camada escondida foram usados com êxito na solução da segunda etapa do cálculo de equilíbrio de fases, o problema da divisão de fases. Combinando as redes desenvolvidas para cada uma das etapas foi criada uma ferramenta que permite resolver qualquer problema de equilíbrio de fases para os sistemas estudados. A precisão dos resultados fornecidos pelas redes neurais é comparável à dos apresentados pelos métodos tradicionais, mas os cálculos do equilíbrio de fases feitos usando redes neurais foram mais rápidos. Pode-se concluir que as redes neurais artificiais constituem uma alternativa válida aos métodos tradicionais do cálculo do equilíbrio de fases baseados em equações de estado para sistemas complexos como os avaliados
Abstract: Process simulation is a basic component of different Process Engineering activities such as On-line Optimization, Model Predictive Control, Identification, etc. The calculation of Phase Equilibrium appears as a fundamental task in any simulation of a separation process. However, the high computational time due to the iterative nature of this calculation makes it oft unsuitable for use with real time process analysis and synthesis strategies. The objective of this work is to develop a simple but accurate method to perform the phase equilibrium calculations required to the study of the behavior of complex systems. As such we mind those systems who present liquid-liquid and vapor-liquid-liquid phase equilibrium problems, such as systems with a heterogeneous azeotrope do. Given their inherent ability to learn and recognize non-linear and highly complex relationships, artificial neural networks (ANNs) appear to be well suited for such a task. Two chemical systems, the binary ethyl acetate ¿ water and the ternary ethanol ¿ ethyl acetate ¿ water were chosen; both systems present a miscibility gap and a heterogeneous azeotrope. The data sets used to train the ANNs were computed using the method of Pham & Doherty. Two kinds of neural networks were tried to solve the phase stability problem, namely the probabilistic neural networks (PNNs) and the perceptrons. In order to attain an acceptable precision perceptrons had to be trained with several hidden layers. Even though, PNNs got slightly better results than the perceptrons. Simple perceptrons were able to deliver the required precision when trained to predict the compositions of phases in equilibrium. Coupling the ANNs trained for phase stability with those trained for phase division a tool was obtained that can solve any phase equilibrium problem for the two chosen systems. Predictions made with the use of neural networks were faster than those made using the traditional methods, and delivered comparable precision
Doutorado
Sistemas de Processos Quimicos e Informatica
Doutor em Engenharia Química
Oprisiu, Ioana. "Modélisation QSPR de mélanges binaires non-additifs : application au comportement azéotropique." Phd thesis, Université de Strasbourg, 2012. http://tel.archives-ouvertes.fr/tel-00862598.
Full textLuna, Fabio. "Drying of Multicomponent Liquid Films." Doctoral thesis, KTH, Chemical Engineering and Technology, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3778.
Full textThe convective drying of thin layers of multicomponentliquid mixtures into an inert gas, and the influence ofdifferent process controlling mechanisms on drying selectivityis studied. Drying experiments under gas-phase-controlledconditions are performed by low intensity evaporation, fromfree liquid surfaces, of ternary mixtures without non-volatilesolutes. Liquid-side-controlled experiments are carried out bydrying a multicomponent polymeric solution containing twovolatile components, one non-volatile polymer and an optionalnonvolatile softening substance.
Mathematical models to describe gas- andliquid-side-controlled drying based on interactive diffusion inboth liquid and gas phases as the main mechanisms for masstransfer are developed. For gas-phase-controlled drying, astability analysis of the ordinary differential equations thatdescribes the evaporation process is performed. Isothermal andnon-isothermal drying processes are considered in batch andcontinuous modes. The mathematical model to describe thecomposition profiles during batch drying of the polymeric film,considering liquid resistance, is solved numerically. Due tothe lack of experimental data, properties for this polymericsystem are estimated by using established methods. Ananalytical solution of the diffusion equation, by assuming anisothermal drying process and a constant matrix ofmulticomponent diffusion coefficients is developed. For thecontinuous case, liquid-side resistance is studied by modellingevaporation of a multicomponent falling liquid film into aninert gas including indirect heating.
The results of the gas-phase-controlled model are in goodagreement with experimental results. For the polymeric film,the agreement is only qualitative since the model does notaccount for a membrane that develops on the film surface. Thestability analysis permits the prediction of trajectories andfinal state of a liquid mixture in a gas-phase-controlleddrying process. For isothermal evaporation of ternary mixturesinto pure gas, the solutions are trajectories in the phaseplane represented by a triangular diagram of compositions. Thepredicted ternary dynamic azeotropic points are unstable orsaddle. On the other hand, binary azeotropes are stable whenthe combination of the selectivities of the correspondingcomponents is negative. In addition, pure component singularpoints are stable when they are contained within theirrespective isolated negative selectivity zones. Undernon-isothermal conditions, maximum temperature valuescharacterise stable azeotropes. Incremental loading of the gaswith one or more of the components leads to a node-saddlebifurcation, where a saddle azeotrope and a stable azeotropecoalesce and disappear. For continuous drying, the singularpoints are infinite and represent dynamic equilibrium pointswhose stability is mainly dependent on the ratio of inletgas-to-liquid flow rates. As long as the process isgas-phasecontrolled, these results also apply to a porous solidcontaining a liquid mixture.
In general, liquid-side control makes the drying processless selective but it is difficult to maintain this conditionduring the whole process. Under the influence of its owndynamics, a process starting as liquid-side-controlled tendstowards a gas-phase-controlled process. The presence ofnon-volatile components and indirect heating may delay thisdevelopment. Considering the evolution of the processcontrolling steps and its influence on selectivity, a modelaimed at describing the complete trajectory of a drying orevaporation process must include the coexistence of allrelevant mechanisms.
Keywords:ternary mixture, falling film, diffusionequation, gas-phase control, liquid-phase control, selectivity,stability analysis, polymeric solution, evaporation, azeotrope,batch drying, continuous drying.
Books on the topic "Azeotrope"
Królikowski, Lechosław J. Rejony wykonalnych rozdziałów homogenicznych mieszanin trójskładnikowych. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej, 2010.
Find full text1955-, Chien I.-Lung, ed. Design and control of distillation systems for separating azeotropes. Hoboken, N.J: Wiley, 2010.
Find full textCastillo, F. J. L. Synthesis of homogeneous azeotropic distillation sequences. Manchester: UMIST, 1997.
Find full textStephan, K. Recommended data of selected compounds and binary mixtures. [Frankfurt am Main]: DECHEMA, 1987.
Find full textLuyben, William L. Design and control of distillation systems for separating azeotropes. Hoboken, N.J: Wiley, 2010.
Find full textMunir, A. Alcohols recovery and purification by azeotropic distillation. Manchester: UMIST, 1997.
Find full textGeorgoulaki, A. Simulation of heterogeneous azeotropic distillation-equilibriumand matrix calculations for ternary mixtures. Manchester: UMIST, 1994.
Find full textDomanski, Piotr. Modeling of a heat pump charged with a non-azeotropic refrigerant mixture. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1986.
Find full textDomański, Piotr. Modeling of a heat pump charged with a non-azeotropic refrigerant mixture. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1986.
Find full textDomański, Piotr. Modeling of a heat pump charged with a non-azeotropic refrigerant mixture. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1986.
Find full textBook chapters on the topic "Azeotrope"
Gooch, Jan W. "Azeotrope." In Encyclopedic Dictionary of Polymers, 58. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_935.
Full textBlankschtein, Daniel. "Application of the Gibbs Phase Rule, Azeotrope, and Sample Problem." In Lectures in Classical Thermodynamics with an Introduction to Statistical Mechanics, 291–94. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49198-7_28.
Full textHübel, M., V. Definti, M. Büchli, R. Müller, Chr Dandois, and J. Saner. "Destillation azeotroper Gemische." In Laborpraxis 3 Trennungsmethoden, 149–58. Basel: Birkhäuser Basel, 1996. http://dx.doi.org/10.1007/978-3-0348-7556-1_10.
Full textCriscuoli, Alessandra. "Azeotropic Distillation." In Encyclopedia of Membranes, 132–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_40.
Full textCriscuoli, Alessandra. "Azeotropic Distillation." In Encyclopedia of Membranes, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40872-4_40-3.
Full textGooch, Jan W. "Azeotropic Copolymer." In Encyclopedic Dictionary of Polymers, 58. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_936.
Full textFloudas, Christodoulos A. "Locating All Homogeneous Azeotropes." In Nonconvex Optimization and Its Applications, 667–98. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4757-4949-6_24.
Full textNitsche, Manfred. "Extraktiv- und Azeotrop-Destillation." In Kolonnen-Fibel, 159–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41919-5_5.
Full textNitsche, M., and R. Gbadamosi. "Extractive and Azeotropic Distillation." In Practical Column Design Guide, 153–64. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51688-2_5.
Full textMokhtari-Nejad, E., and W. Schneider. "Industrial Separation of Azeotropic Mixtures by Pervaporation." In Membranes and Membrane Processes, 573–79. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4899-2019-5_56.
Full textConference papers on the topic "Azeotrope"
Banerjee, Sneha, Pankaj Mandal, and Sohini Sarkar. "STRUCTURAL FLUCTUATIONS IN AN AZEOTROPE: UNDERSTANDING THE BENZENE-METHANOL AZEOTROPE." In 2020 International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2020. http://dx.doi.org/10.15278/isms.2020.fb11.
Full textLI, CHUNSHAN, XIANGPING ZHANG, LONG YAN, QUANQING XU, and SUOJIANG ZHANG. "SYNTHESIS OF AZEOTROPE SEPARATION BASED ON GREEN CHEMICAL PRINCIPLES." In Proceedings of the 4th International Conference. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702623_0172.
Full textPutra, Ilham Ardatul, Yani Faozani Alli, and Didin Mujahidin. "Esterification of polioxy-based surfactant utilizing azeotrope technique for chemical flooding application." In INTERNATIONAL CONFERENCE ON EMERGING APPLICATIONS IN MATERIAL SCIENCE AND TECHNOLOGY: ICEAMST 2020. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0002729.
Full textAziz, Azharin Shah Abd, Suhaila Abdullah, Abdul Hadi Abdullah, Amri Hj Mohammed, and Ismi Safia Adila Ibrahim. "Azeotrope ethanol-water mixture dehydration using water adsorbent synthesized from spent bleaching clay." In 3RD INTERNATIONAL CONFERENCE ON CHEMISTRY, CHEMICAL PROCESS AND ENGINEERING (IC3PE). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0062244.
Full textCatalano, Tristan, Douglas R. Schaub, Oliver Lockwood, Nicholas DiFrancesco, Hanna Nekvasil, and Donald Lindsley. "CONSTRAINING THE DEPTHS AT WHICH AN AZEOTROPE CONTROLS THE COMPOSITIONAL EVOLUTION OF CALCIC PLAGIOCLASE." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-305312.
Full textSchaub, Douglas R., Tristan Catalano, Oliver Lockwood, Hanna Nekvasil, and Donald Lindsley. "CRYSTALLIZATION OF ANORTHITIC PLAGIOCLASE: IMPACT OF MG# ON THE PSEUDO-AZEOTROPE IN THE OLIVINE-PLAGIOCLASE SYSTEM." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-306315.
Full textNekvasil, Hanna, Donald Lindsley, Douglas R. Schaub, and Tristan Catalano. "ANORTHITE IN MID-OCEAN RIDGE BASALTS: IMPLICATIONS OF THE PSEUDO-AZEOTROPE IN THE PLAGIOCLASE-OLIVINE SYSTEM." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-305165.
Full textLupo, Giandomenico, and Christophe Duwig. "A Numerical Study of Ethanol-Water Droplet Evaporation." In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-64420.
Full textBurke, Stephen, Robert Rhoads, Matthew Ratcliff, Robert McCormick, and Bret Windom. "Measured and Predicted Vapor Liquid Equilibrium of Ethanol-Gasoline Fuels with Insight on the Influence of Azeotrope Interactions on Aromatic Species Enrichment and Particulate Matter Formation in Spark Ignition Engines." In WCX World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2018. http://dx.doi.org/10.4271/2018-01-0361.
Full textRossetti, Ilenia, Cesare Biffi, Lucio Forni, Gian Franco Tantardini, Giuseppe Faita, Mario Raimondi, Edoardo Vitto, and Davide Alberti. "Integrated 5 kWe + 5 kWt PEM-FC Generator From Bioethanol: A Demonstrative Project." In ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33049.
Full textReports on the topic "Azeotrope"
Baker, R. W. Separation of organic azeotropic mixtures by pervaporation. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/5926894.
Full textBaker, R. W. Separation of organic azeotropic mixtures by pervaporation. Final technical report. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/10114332.
Full textByrne, J. J., M. W. Abel, and A. M. Gbur. Methods development for organic contaminant determination in fluorocarbon refrigerant azeotropes and blends. Final report. Office of Scientific and Technical Information (OSTI), March 1998. http://dx.doi.org/10.2172/565628.
Full textDoma*nski, Piotr. Modeling of a heat pump charged with a non-azeotropic refrigerant mixture. Gaithersburg, MD: National Bureau of Standards, 1985. http://dx.doi.org/10.6028/nbs.tn.1218.
Full textKim, Min Soo, Graham Morrison, William J. Mulroy, and David A. Didion. A study to determine the existence of an Azeotropic R-22 'Drop-In' substitute. Gaithersburg, MD: National Institute of Standards and Technology, 1996. http://dx.doi.org/10.6028/nist.ir.5784.
Full text