Academic literature on the topic 'Azeotropes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Azeotropes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Azeotropes"
Taipabu, Muhammad Ikhsan, Wei Wu, Karthickeyan Viswanathana, Nikmans Hattu, Ervina Rumpakwakra, and Micky Kololu. "SEPARATION OF ETHANOL-WATER AZEOTROPE MIXTURES USING EXTRACTIVE DISTILLATION METHOD." ALE Proceeding 6 (November 1, 2023): 198–203. http://dx.doi.org/10.30598/ale.6.2023.198-203.
Full textValentini, Federica, and Luigi Vaccaro. "Azeotropes as Powerful Tool for Waste Minimization in Industry and Chemical Processes." Molecules 25, no. 22 (November 12, 2020): 5264. http://dx.doi.org/10.3390/molecules25225264.
Full textMahdi, Taha, Arshad Ahmad, Mohamed M. Nasef, and Adnan Ripin. "Simulation and Analysis of Process Behavior of Ultrasonic Distillation System for Separation Azeotropic Mixtures." Applied Mechanics and Materials 625 (September 2014): 677–79. http://dx.doi.org/10.4028/www.scientific.net/amm.625.677.
Full textPlatt, Gustavo Mendes, Marcelo Escobar Aragão, Fernanda Cabral Borges, and Douglas Alves Goulart. "Evaluation of a New Multimodal Optimization Algorithm in Fluid Phase Equilibrium Problems." Ingeniería e Investigación 40, no. 1 (January 1, 2020): 27–33. http://dx.doi.org/10.15446/ing.investig.v40n1.78822.
Full textHu, Xianbing, Lingjie Sun, Chengyang Yuan, Man Li, Hongsheng Dong, Lunxiang Zhang, Lei Yang, Jiafei Zhao, and Yongchen Song. "Principle and Feasibility Study of Proposed Hydrate-Based Cyclopentane Purification Technology." Energies 16, no. 12 (June 13, 2023): 4681. http://dx.doi.org/10.3390/en16124681.
Full textVillalta-Cerdas, Adrian, Gregory D. Smith, Megan Carrison DeSmit, and John V. Goodpaster. "Room Temperature Evaporation Behavior of Homogeneous Azeotropes Used in Art Conservation Cleaning Treatments." Applied Sciences 13, no. 21 (November 2, 2023): 11962. http://dx.doi.org/10.3390/app132111962.
Full textKameshkov, Alexey V., Alexander A. Gaile, Vasily N. Klementyev, and Sofya D. Usanova. "FORMATION OF AZEOTROPIC MIXTURES OF N-METHYLPYRROLIDONE WITH HYDROCARBONS." Bulletin of the Saint Petersburg State Institute of Technology (Technical University) 56 (2021): 12–16. http://dx.doi.org/10.36807/1998-9849-2020-56-82-12-16.
Full textSchlünder, E. U. "Azeotropes and pseudo-azeotropes." Fluid Phase Equilibria 51 (November 1989): 71–85. http://dx.doi.org/10.1016/0378-3812(89)80355-3.
Full textMahdi, Taha, Arshad Ahmad, Adnan Ripin, Mohamed Mahmoud Nasef, and Olagoke Oladokun. "Aspen Plus Simulation of Ultrasound Assisted Distillation for Separating Azeotropic Mixture." Advanced Materials Research 1113 (July 2015): 710–14. http://dx.doi.org/10.4028/www.scientific.net/amr.1113.710.
Full textMaranas, C. D., C. M. McDonald, S. T. Harding, and C. A. Floudas. "Locating all azeotropes in homogeneous azeotropic systems." Computers & Chemical Engineering 20 (January 1996): S413—S418. http://dx.doi.org/10.1016/0098-1354(96)00079-8.
Full textDissertations / Theses on the topic "Azeotropes"
Brüggemann, Stefan. "Rapid screening of conceptual design alternatives for distillation processes /." Düsseldorf : VDI-Verl, 2005. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=013342941&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Full textCairns, Brett P. (Brett Peter). "Three phase azeotropic distillation." Phd thesis, Department of Chemical Engineering, 1988. http://hdl.handle.net/2123/5908.
Full textEbrahimzadeh, Edris. "Mitigating Transients and Azeotropes During Natural Gas Processing." BYU ScholarsArchive, 2016. https://scholarsarchive.byu.edu/etd/5880.
Full textSchmitz, Jones Erni. "Calculos de estabilidade e divisão de fases por meio de redes neurais artificiais." [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/267568.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica
Made available in DSpace on 2018-08-07T19:04:30Z (GMT). No. of bitstreams: 1 Schmitz_JonesErni_D.pdf: 1427141 bytes, checksum: 5c994ce371331fd4c3ac0f3e3861f49b (MD5) Previous issue date: 2006
Resumo: A simulação de processos é um componente fundamental de uma grande variedade de atividades de Engenharia de Processos, tais como a Otimização Online, o controle em Tempo Real, a Identificação, etc. O cálculo de Equilíbrio de Fases é uma atividade fundamental em qualquer simulação de processos de separação. O elevado tempo computacional deste cálculo provocado pela sua natureza iterativa pode criar incompatibilidades entre a atividade de simulação e as aplicações em tempo real que ela integra. O objetivo deste trabalho foi desenvolver um método alternativo simples, mas suficientemente preciso, para realizar os cálculos de equilíbrio de fases na simulação de processos de separação de sistemas complexos. Entende-se por tal, sistemas que apresentam problemas de Equilíbrio Líquido-Líquido e de Equilíbrio Líquido-Líquido-Vapor, como é o caso dos que possuem um Azeótropo Heterogêneo. Pelas suas propriedades, as Redes Neurais Artificiais surgem naturalmente como candidatas alternativas para esta tarefa. Como objeto de aplicação foram escolhidos dois sistemas que apresentam um azeótropo heterogêneo, o sistema binário acetato de etila - água e o sistema ternário etanol - acetato de etila - água. Para gerar os dados usados no treinamento das redes foi implementado um método convencional de cálculo de equilíbrio de fases, adequado à complexidade dos sistemas escolhidos, o método de Pham & Doherty. Para a resolução do problema da estabilidade de fases, a primeira etapa do cálculo do equilíbrio de fases, foram testados dois tipos de redes neurais artificiais (RNAs), as Redes Neurais Artificiais Probabilísticas (RNAPs) e os Perceptrons. Com os perceptrons foram encontradas dificuldades para atingir a precisão desejada, sendo necessário recorrer a perceptrons com várias camadas escondidas. Já as RNAPs apresentaram uma excelente precisão, embora a sua simulação seja mais lenta. Perceptrons simples de uma só camada escondida foram usados com êxito na solução da segunda etapa do cálculo de equilíbrio de fases, o problema da divisão de fases. Combinando as redes desenvolvidas para cada uma das etapas foi criada uma ferramenta que permite resolver qualquer problema de equilíbrio de fases para os sistemas estudados. A precisão dos resultados fornecidos pelas redes neurais é comparável à dos apresentados pelos métodos tradicionais, mas os cálculos do equilíbrio de fases feitos usando redes neurais foram mais rápidos. Pode-se concluir que as redes neurais artificiais constituem uma alternativa válida aos métodos tradicionais do cálculo do equilíbrio de fases baseados em equações de estado para sistemas complexos como os avaliados
Abstract: Process simulation is a basic component of different Process Engineering activities such as On-line Optimization, Model Predictive Control, Identification, etc. The calculation of Phase Equilibrium appears as a fundamental task in any simulation of a separation process. However, the high computational time due to the iterative nature of this calculation makes it oft unsuitable for use with real time process analysis and synthesis strategies. The objective of this work is to develop a simple but accurate method to perform the phase equilibrium calculations required to the study of the behavior of complex systems. As such we mind those systems who present liquid-liquid and vapor-liquid-liquid phase equilibrium problems, such as systems with a heterogeneous azeotrope do. Given their inherent ability to learn and recognize non-linear and highly complex relationships, artificial neural networks (ANNs) appear to be well suited for such a task. Two chemical systems, the binary ethyl acetate ¿ water and the ternary ethanol ¿ ethyl acetate ¿ water were chosen; both systems present a miscibility gap and a heterogeneous azeotrope. The data sets used to train the ANNs were computed using the method of Pham & Doherty. Two kinds of neural networks were tried to solve the phase stability problem, namely the probabilistic neural networks (PNNs) and the perceptrons. In order to attain an acceptable precision perceptrons had to be trained with several hidden layers. Even though, PNNs got slightly better results than the perceptrons. Simple perceptrons were able to deliver the required precision when trained to predict the compositions of phases in equilibrium. Coupling the ANNs trained for phase stability with those trained for phase division a tool was obtained that can solve any phase equilibrium problem for the two chosen systems. Predictions made with the use of neural networks were faster than those made using the traditional methods, and delivered comparable precision
Doutorado
Sistemas de Processos Quimicos e Informatica
Doutor em Engenharia Química
Brits, Leanne. "Vapour-liquid-liquid equilibria measurements for the dehydration of low molecular weight alcohols via heterogeneous azeotropic distillation." Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/96850.
Full textENGLISH ABSTRACT: The operation and optimisation of a distillation train directly effects the total energy consumption of a typical processing plant. With this in mind, the efficient separation of low molecular weight alcohol azeotropes, using heterogeneous azeotropic distillation, is of great economic and environmental importance. Heterogeneous azeotropic distillation involves the addition of an extraneous component, known as an entrainer, to the mixture to facilitate separation. Benzene has long been replaced as the entrainer of choice, due to its carcinogenic nature, and research into finding a more suitable entrainer has commenced. To determine if an entrainer is suitable for a particular separation, detailed phase behaviour information of the ternary alcohol/entrainer/water system is required; vapour-liquid (VLE), vapour-liquid-liquid (VLLE) equilibria data and the composition of all azeotropes present. This is complicated by the fact that thermodynamic models (like the nonrandom two-liquid (NRTL), universal functional (UNIFAC) and universal quasichemical (UNIQUAC) activity coefficient models) often fail to predict the phase equilibria of ternary systems. The lack of available experimental phase equilibria data, and the inability of thermodynamic models to predict phase equilibria data, has fueled the need for the experimental determination of accurate, repeatable isobaric VLE, VLLE and azeotropic data. With this in mind, this research is focused on the experimental determination of VLE, VLLE and azeotropic data for three low molecular weight alcohol/entrainer/water systems at 101.3 kPa. Following an extensive literature study on azeotropes, applicable separation techniques and available VLE and VLLE data in literature, the ethanol/2-butanone/water, n-propanol/2-butanone/water and iso-propanol/2-butanone/water systems were chosen for experimental investigation. The experimental determination was carried out in a Gillespie type still, equipped with an ultrasonic homogenizer. The temperature and pressure accuracies of the equipment were found to be 0.03°C and 2mbar respectively. The chosen experimental methodology was verified, and its repeatability tested, through the measurement of isobaric VLE and VLLE data of ethanol/isooctane, ethanol/n-butanol/water and n-propanol/isooctane/water systems at 101.3 kPa and subsequent comparison of the measured data with literature data. The compositional error reported, taking into account experimental and analysis effects, is ±0.014 mole fraction. All experimentally determined data sets, verification and new data, were tested for thermodynamic consistency by using the Wisniak modification of the Herrington test, the L/W consistency test, as well as the McDermott-Ellis consistency test, and found to be consistent. The Othmer-Tobias correlation was used to ensure the measured LLE data followed a steady trend, with all R-values larger than 0.910. For all three of the new systems chosen, the absence of ternary heterogeneous azeotropes was noted. The presence of a ternary homogeneous azeotrope was found for both the ethanol/2-butanone/water and iso-propanol/2-butanone/water systems. No ternary azeotropes are present for the n-propanol/2-butanone/water system. Suitable entrainers were compared to 2-butanone (MEK) by plotting measured data and literature information of five similar alcohol/entrainer/water systems on a ternary phase diagram. It was found that MEK could not be considered as a suitable entrainer for heterogeneous azeotropic distillation of ethanol, n-propanol and IPA. This is due to the absence of a ternary heterogeneous azeotrope for the aforementioned alcohol/MEK/water systems. Finally, the ability of thermodynamic models (NRTL, UNIFAC and UNIQUAC) to predict experimental data was determined both visually and through descriptive statistics. This entailed the inspection of ternary phase diagrams and the calculation and evaluation of average absolute deviation (AAD) and and average absolute relative deviation (AARD%) values. The measured data were modelled in Aspen Plus®. It was found that none of the models could predict the ternary systems with acceptable accuracy and the data were regressed. In general, the regressed parameters for the NRTL, UNIFAC and UNIQAC models improved the model predictions when compared to the built-in Aspen parameters. The UNIFAC model predicted the ethanol/MEK/water and n-propanol/MEK/water systems most accurately while none of the models could predict the IPA/MEK/water systems with acceptable accuracy.
AFRIKAANSE OPSOMMING: Die ontwerp en optimering van 'n distillasietrein het ‘n duidelike effek op die totale energieverbruik van ‘n tipiese prosesaanleg. Met dit in gedagte, is ‘n meer doeltreffende skeiding van lae molekulêre massa alkohol aseotrope, met behulp van heterogene aseotropiese distillasie, voordelig vir die ekonomie en die omgewing. Heterogene aseotropiese distillasie behels die toevoeging van 'n eksterne komponent, wat bekend staan as 'n skeidingsagent, om uiteindelik die skeiding te fasiliteer deur die komponente se dampdrukke te verander. Benseen was in die verlede ‘n gewilde skeidingsagent, maar dit is a.g.v. sy karsenogeniese eienskappe nie meer aanvaarbaar om te gebruik nie. Nuwe navorsing in hierdie veld fokus dus onder andere op die identifisering van meer geskikte skeidingsagente. Om te bepaal of 'n skeidingsagent geskik is, word indiepte fasegedrag inligting benodig, i.e. damp-vloeistof en damp-vloeistof-vloeistof ewewigsdata en die samestelling van alle aseotrope teenwoordig. Ongelukkig kan termodinamiese modelle dikwels nie die fasegedrag van ternêre stelsels voorspel nie. Dit, sowel as die beperkte beskikbaarheid van eksperimentele ewewigsdata in die literatuur, het dus hierdie navorsing aangevuur. Die projek het gefokus op die experimentele bepaling van damp-vloeistof en damp-vloeistof-vloeistof ewewigsdata en aseotropiese data vir drie alkohol/skeidingsagent/water-stelsels by 101.3 kPa. Na ‘n indiepte literatuurstudie van aseotrope, gepaste skeidingstegnieke en beskikbare damp-vloeistof en damp-vloeistof-vloeistof ewewigsdata, is 2-butanone (MEK) gekies as ‘n moontlike skeidingsagent en die etanol/MEK/water-, n-propanol/MEK/water- en iso-propanol/MEK/water-stelsels gekies vir eksperimentele ondersoek. Die data is met ‘n dinamiese Gillespie eenheid gemeet, toegerus met ‘n ultrasoniese homogeniseerder om vloeistof-vloeistof skeiding te voorkom. Die akkuraatheidsbande van temperatuur- en druk meetinstrumente was 0,03°C en 2 mbar, onderskeidelik. Die eksperimentele metode en die herhaalbaarheid van metings is bevesting, deur die isobariese damp-vloeistof en damp-vloeistof-vloeistof ewewigsdata van etanol/iso-oktaan, etanol/n-butanol/water en n-propanol/iso-oktaan/water te vergelyk met onafhanklike stelle ooreenstemmende data uit die literatuur. Die gesamentlike eksperimentele en analitiese fout wat gemaak kon word tydens bepaling van molfraksie samestellings was ±0.014 molfraksie. Alle gemete eksperimentele data is getoets vir termodinamiese samehang deur middel van beide die L/W en McDermott-Ellis konsekwentheidstoetse. Die Othmer-Tobias korrelasie is gebruik om seker te maak dat die gemete LLE data ‘n konstante tendens volg, met alle R-waardes groter as 0.910. Vir al drie van die nuwe stelsels wat gekies is, was ‘n drieledige heterogene aseotroop afwesig. Die teenwoordigheid van drieledige homogene aseotrope is egter waargeneem vir die etanol/MEK/water- en IPA/MEK/water-stelsels. Geen drieledige aseotrope is vir die n-propanol/MEK/water-sisteem gevind nie. Alle gemete data, asook literatuur inligting van vyf soortgelyke alkohol/skeidingsagent/water sisteme, is op ‘n drieledige fase diagram voorgestel om die skeidingsagente met mekaar te vergelyk. Hiervolgens word dit getoon dat MEK nie as ‘n gepaste skeidingsagent vir heterogene aseotropiese distillase beskou kan word nie a.g.v. die afwesigheid van ‘n drieledige heterogene aseotroop in die voorgenoemde alkohol/MEK/waterstelsels. Die vermoë van die termodinamiese modelle (NRTL, UNIFAC en UNIQUAC) om die eksperimentele data te voorspel is visueel (per grafiek) sowel as deur beskrywende statistiek bepaal. Dit behels die inspeksie van drieledige fasediagrame en die berekening en evaluasie van die gemiddelde absolute afwyking en gemiddelde absolute relatiewe afwykingswaardes. Hierdie teoretiese data is met Aspen Plus® bepaal. Nie een van die modelle kon die drieledige stelsels se fasegedrag met aanvaarbare akkuraatheid voorspel nie. Die parameters vir die NRTL-,UNIFAC- en UNIQUAC-modelle kan verbeter word deur middel van regressie, in vergelyking met die ingeboude Aspen parameters. Dit is bevind dat die UNIFAC model die etanol/MEK/water- en n-propanol/MEK/water-stelsel die beste kan voorspel. Nie een van die bogenoemde modelle kon egter die fasegedrag van die IPA/MEK/water-stelsel voorspel nie.
Cranford, Richard John 1960. "Characterization and azeotropic distillation of crude wood oil." Thesis, The University of Arizona, 1989. http://hdl.handle.net/10150/277197.
Full textGrützner, Thomas. "Entwicklung eines destillationsbasierten Verfahrens zur Herstellung von Trioxan." Berlin Logos-Verl, 2007. http://deposit.d-nb.de/cgi-bin/dokserv?id=2976791&prov=M&dok_var=1&dok_ext=htm.
Full textOttenbacher, Markus. "Heteroazeotropdestillation als Verfahren zur Trennung thermisch empfindlicher Substanzen." Berlin Logos-Verl, 2007. http://deposit.d-nb.de/cgi-bin/dokserv?id=2965578&prov=M&dok_var=1&dok_ext=htm.
Full textHegely, Laszlo. "Improvement of Batch Distillation Separation of Azeotropic Mixtures." Phd thesis, Toulouse, INPT, 2013. http://oatao.univ-toulouse.fr/10671/1/hegely.pdf.
Full textJaimes, Figueroa Jaiver Efren 1986. "Análise e otimização do processo de obtenção de etanol anidro, empregando líquidos iônicos." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/266843.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química
Made available in DSpace on 2018-08-18T13:50:07Z (GMT). No. of bitstreams: 1 JaimesFigueroa_JaiverEfren_M.pdf: 4284661 bytes, checksum: 5b7383def90a5143160bc892b406c75c (MD5) Previous issue date: 2011
Resumo: A produção de etanol a partir da cana de açúcar é uma tecnologia dominada completamente pelo Brasil porém, encontra-se na etapa de intensificação, otimização e inovação. O etanol pode ser produzido como hidratado ou anidro, sendo necessário, para produção deste último, um processo posterior de desidratação. Existem inúmeros processos de desidratação, dentre dos quais a destilação extrativa é um dos mais simples de realizar. A destilação extrativa usa um solvente para modificar o equilíbrio líquido-vapor, permitindo quebrar o azeótropo etanol/água que impede que a desidratação seja feita por destilação convencional. O solvente de extração é de grande importância, dele depende a facilidade com que vai ser feita a separação, a quantidade a ser utilizada e o requerimento energético do processo. Nesse contexto, aparecem os líquidos iônicos, que são apresentados como ótimos solventes potenciais de extração; um líquido iônico (LI) é um sal composto por um cátion orgânico com pelo menos uma carga deslocada e um ânion inorgânico; sua estrutura evita que se forme uma rede cristalina estável, resultando em solventes líquidos altamente iônicos com temperaturas de fusão inferiores a 100 °C e com insignificante pressão de vapor. Os LI são principalmente usados em substituição aos solventes convencionais, podendo ser uma alternativa para diminuir a poluição ambiental, evitando a emissão de componentes orgânicos voláteis ao meio ambiente. Com a justificativa anterior, o objetivo desta dissertação foi analisar e otimizar o processo de obtenção de etanol anidro a partir da mistura etanol + água de composição pré-azeotrópica, empregando líquidos iônicos (LI), visando avaliar seu potencial; os LI estudados foram: 1-butil-3-metilimidazólio cloreto, 1-butil-3-metilimidazólio metilsulfato, 1-butil-3-metilimidazólio acetato, 1-butil-3-metilimidazólio tetrafluoroborato, 1-butil-3-metilimidazólio dicianamida, 1-etil-3-metilimidazólio cloreto, 1-etil-3-metilimidazólio tetrafluoroborato, 1-hexil-3-metilimidazólio cloreto. Neste trabalho foi encontrado o requerimento energético e a quantidade de LI a ser empregado para obter os valores máximos de pureza e porcentagens de recuperação de etanol e água. A influência das condições de operação e desenho utilizadas, tais como fração de etanol na alimentação, relação LI:alimentação, temperatura da alimentação e do LI de reposição, quantidade de estágios, relação molar de refluxo, estágio de alimentação e vazão molar de destilado da coluna de recuperação de etanol e de purificação de LI, foram analisadas empregando o simulador comercial Aspen Plus e, otimizadas empregando a técnica de delineamento de experimentos. Todos os LI estudados apresentaram capacidade de desidratar o etanol, elevando sua concentração de pré até pós-azeotropia, obtendo-se pureza de etanol maiores que 0,995 em massa. Além disso, dependendo do LI utilizado, o processo atinge porcentagens de recuperação de etanol e água, em média, de 98% e 74%, respectivamente. Na definição do modelo para o coeficiente de atividade do equilíbrio ternário líquido vapor da mistura etanol + água + LI foram testados o NRTL e UNIQUAC, chegando-se à conclusão de que o equilíbrio representado pelo modelo de NRTL é o mais adequado
Abstract: The production of ethanol from sugar cane is a technology led and dominated by Brazil. However, it is still in a stage of optimization and innovation. Ethanol can be produced in a hydrated or dehydrated state, but the latter requires an additional process to the conventional distillation. There are numerous dehydration processes that can be implemented, but the extractive distillation is one of the most simple. Extractive distillation uses a solvent that modifies the liquid-vapor equilibrium and eliminates the presence of the ethanol-water azeotrope that prevents the use of conventional distillation for the dehydration process. The solvent for the extraction is of great importance since it dictates the degree of separation and the energy requirements for the process. In this context, ionic liquids are considered since they have been presented as excellent solvents for extraction. An ionic liquid (IL) is a salt formed by an organic cation with at least one delocalized charge, and an inorganic anion. The structure of the ionic liquids prevents the formation of a stable crystalline net, resulting in highly ionic liquid solvents that have melting points below 100 ºC and negligible vapor pressures. With those characteristics, ionic liquids can be a replacement for conventional solvents offering alternatives for the decrease of the environmental impact by preventing the emissions of volatile compounds to the environment. With the previous justification, the objective of this master dissertation was to analyze and optimize the process of obtaining anhydrous ethanol from a mixture ethanol + water with pre-azeotropic composition by using ionic liquids; and also to evaluate their performance in this application to evaluate its potential. Ionic liquids were studied: 1-butyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium methylsulfate, 1-butyl-3-methylimidazolium acetate, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium dicyanamide, 1-ethyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-hexil-3-methylimidazolium chloride. In this work, the minimum energy requirement and the amount of ionic liquid needed to obtain maximum ethanol purity and maximum recovery of ethanol and water exiting the process were found. The influence of the design and operation conditions used, such as the ethanol composition in the feed, the IL/feed ratio, the temperature of the feed and the IL, the number of plates, the reflux molar ratio and the distilled flux in the columns of purification of ethanol and recovery of ionic liquids were studied using the commercial simulator ASPEN PLUS, and optimized by utilization of the design of experiments (DOE) technique. All the ionic liquids used were able to dehydrate the ethanol, increasing its concentration from pre to post azeotrope, generating ethanol with purity above 0.995 in mass. In addition to that, depending on the ionic liquid used, the process reached average water and ethanol recoveries of 98% and 74% respectively. In the definition of the model for the activity coefficient in the ternary vapor-liquid equilibrium of the ethanol-water-IL mixtures, the models NRTL and UNIQUAC were studied concluding that the NRTL model was the most adequate
Mestrado
Desenvolvimento de Processos Químicos
Mestre em Engenharia Química
Books on the topic "Azeotropes"
Królikowski, Lechosław J. Rejony wykonalnych rozdziałów homogenicznych mieszanin trójskładnikowych. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej, 2010.
Find full text1955-, Chien I.-Lung, ed. Design and control of distillation systems for separating azeotropes. Hoboken, N.J: Wiley, 2010.
Find full textStephan, K. Recommended data of selected compounds and binary mixtures. [Frankfurt am Main]: DECHEMA, 1987.
Find full textLuyben, William L. Design and control of distillation systems for separating azeotropes. Hoboken, N.J: Wiley, 2010.
Find full textCastillo, F. J. L. Synthesis of homogeneous azeotropic distillation sequences. Manchester: UMIST, 1997.
Find full textMunir, A. Alcohols recovery and purification by azeotropic distillation. Manchester: UMIST, 1997.
Find full textGeorgoulaki, A. Simulation of heterogeneous azeotropic distillation-equilibriumand matrix calculations for ternary mixtures. Manchester: UMIST, 1994.
Find full textDomański, Piotr. Modeling of a heat pump charged with a non-azeotropic refrigerant mixture. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1986.
Find full textBook chapters on the topic "Azeotropes"
Floudas, Christodoulos A. "Locating All Homogeneous Azeotropes." In Nonconvex Optimization and Its Applications, 667–98. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4757-4949-6_24.
Full textGooch, Jan W. "Azeotrope." In Encyclopedic Dictionary of Polymers, 58. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_935.
Full textHübel, M., V. Definti, M. Büchli, R. Müller, Chr Dandois, and J. Saner. "Destillation azeotroper Gemische." In Laborpraxis 3 Trennungsmethoden, 149–58. Basel: Birkhäuser Basel, 1996. http://dx.doi.org/10.1007/978-3-0348-7556-1_10.
Full textCriscuoli, Alessandra. "Azeotropic Distillation." In Encyclopedia of Membranes, 132–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_40.
Full textGooch, Jan W. "Azeotropic Copolymer." In Encyclopedic Dictionary of Polymers, 58. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_936.
Full textCriscuoli, Alessandra. "Azeotropic Distillation." In Encyclopedia of Membranes, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40872-4_40-3.
Full textNitsche, M., and R. Gbadamosi. "Extractive and Azeotropic Distillation." In Practical Column Design Guide, 153–64. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51688-2_5.
Full textNitsche, Manfred. "Extraktiv- und Azeotrop-Destillation." In Kolonnen-Fibel, 159–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41919-5_5.
Full textMokhtari-Nejad, E., and W. Schneider. "Industrial Separation of Azeotropic Mixtures by Pervaporation." In Membranes and Membrane Processes, 573–79. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4899-2019-5_56.
Full textBlankschtein, Daniel. "Application of the Gibbs Phase Rule, Azeotrope, and Sample Problem." In Lectures in Classical Thermodynamics with an Introduction to Statistical Mechanics, 291–94. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49198-7_28.
Full textConference papers on the topic "Azeotropes"
Liu, Guilian, and Lijun Wang. "Study on the volatility order of systems with two maximum azeotropes." In 2011 International Conference on System Science, Engineering Design and Manufacturing Informatization (ICSEM). IEEE, 2011. http://dx.doi.org/10.1109/icssem.2011.6081326.
Full textLupachev, Egor V., Andrei V. Polkovnichenko, and Nikolai N. Kulov. "Purification of organic fluorine alcohols from azeotropic mixtures with non-fluorinated alcohols using extractive distillation." In INTERNATIONAL SCIENTIFIC-TECHNICAL SYMPOSIUM (ISTS) «IMPROVING ENERGY AND RESOURCE-EFFICIENT AND ENVIRONMENTAL SAFETY OF PROCESSES AND DEVICES IN CHEMICAL AND RELATED INDUSTRIES». The Kosygin State University of Russia, 2021. http://dx.doi.org/10.37816/eeste-2021-1-239-241.
Full textGeng, Pat, Aron Butler, William Studzinski, John Salyers, and Jeff Jetter. "Gasoline Simulated Distillation Profiles of U.S. Market Gasoline and Impacts on Vehicle Particulate Emissions." In Energy & Propulsion Conference & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-1632.
Full textBanerjee, Sneha, Pankaj Mandal, and Sohini Sarkar. "STRUCTURAL FLUCTUATIONS IN AN AZEOTROPE: UNDERSTANDING THE BENZENE-METHANOL AZEOTROPE." In 2020 International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2020. http://dx.doi.org/10.15278/isms.2020.fb11.
Full textBanerjee, Sneha, Pankaj Mandal, and Sohini Sarkar. "STRUCTURAL FLUCTUATIONS IN AN AZEOTROPE: UNDERSTANDING THE BENZENE-METHANOL AZEOTROPE." In 2021 International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2021. http://dx.doi.org/10.15278/isms.2021.tc03.
Full textLI, CHUNSHAN, XIANGPING ZHANG, LONG YAN, QUANQING XU, and SUOJIANG ZHANG. "SYNTHESIS OF AZEOTROPE SEPARATION BASED ON GREEN CHEMICAL PRINCIPLES." In Proceedings of the 4th International Conference. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702623_0172.
Full textIbrahim, Osama M., and Douglas G. Arnold. "The Maximum Power Cycle: A Model for New Cycles and New Working Fluids." In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0833.
Full textShlyakhtina, A. V., and Young-Jei Oh. "Transparent Silica Aerogels through Ternary Azeotropic Mixture." In 2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems. IEEE, 2007. http://dx.doi.org/10.1109/nems.2007.352037.
Full textBekiaris, Nikolaos, George A. Meski, Cristian M. Radu, and Manfred Morari. "Multiple Steady States in Homogeneous Azeotropic Distillation." In 1993 American Control Conference. IEEE, 1993. http://dx.doi.org/10.23919/acc.1993.4793437.
Full textMezentseva, N. N., K. P. Zakharov, and A. V. Cherkasova. "Non-azeotropic binary mixtures for heat pumps." In THERMOPHYSICAL BASIS OF ENERGY TECHNOLOGIES (TBET 2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0000995.
Full textReports on the topic "Azeotropes"
Byrne, J. J., M. W. Abel, and A. M. Gbur. Methods development for organic contaminant determination in fluorocarbon refrigerant azeotropes and blends. Final report. Office of Scientific and Technical Information (OSTI), March 1998. http://dx.doi.org/10.2172/565628.
Full textBaker, R. W. Separation of organic azeotropic mixtures by pervaporation. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/5926894.
Full textBaker, R. W. Separation of organic azeotropic mixtures by pervaporation. Final technical report. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/10114332.
Full textDoma*nski, Piotr. Modeling of a heat pump charged with a non-azeotropic refrigerant mixture. Gaithersburg, MD: National Bureau of Standards, 1985. http://dx.doi.org/10.6028/nbs.tn.1218.
Full textKim, Min Soo, Graham Morrison, William J. Mulroy, and David A. Didion. A study to determine the existence of an Azeotropic R-22 'Drop-In' substitute. Gaithersburg, MD: National Institute of Standards and Technology, 1996. http://dx.doi.org/10.6028/nist.ir.5784.
Full text