Academic literature on the topic 'Azide Functional Polymers'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Azide Functional Polymers.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Azide Functional Polymers"

1

Zhou, Xinyan, Wei Wei, Xiaojian Hou, Gang Tang, Yunjun Luo, and Xiaoyu Li. "Poly(glycidyl azide) as Photo-Crosslinker for Polymers." Polymers 14, no. 24 (2022): 5451. http://dx.doi.org/10.3390/polym14245451.

Full text
Abstract:
Crosslinking polymers to form networks is a universal and routinely applied strategy to improve their stability and endow them with solvent resistance, adhesion properties, etc. However, the chemical crosslinking of common commercial polymers, especially for those without functional groups, cannot be achieved readily. In this study, we utilized low-molecular weight poly(glycidyl azide) (GAP) as polymeric crosslinkers to crosslink various commercial polymers via simple ultraviolet light irradiation. The azide groups were shown to decompose upon photo-irradiation and be converted to highly reactive nitrene species, which are able to insert into carbon-hydrogen bonds and thus crosslink the polymeric matrices. This strategy was demonstrated successfully in several commercial polymers. In particular, it was found that the crosslinking is highly localized, which could endow the polymeric matrices with a decent degree of crosslinking without significantly influencing other properties, suggesting a novel and robust method to crosslink polymeric materials.
APA, Harvard, Vancouver, ISO, and other styles
2

Carsí, Marta, Maria Sanchis, Saul Vallejos, Félix García, and José García. "Molecular Dynamics of Functional Azide-Containing Acrylic Films." Polymers 10, no. 8 (2018): 859. http://dx.doi.org/10.3390/polym10080859.

Full text
Abstract:
A report on the syntheses, thermal, mechanical and dielectric characterizations of two novel polymeric acrylic materials with azide groups in their pendant structures is presented. Having the same general structure, these polymers differ in length of oxyethylene units in the pendant chain [-CONH-CH2CH2-(O-CH2CH2)nN3], where n is 1 (poly(N-(2-(2-azidoethoxy)ethyl)methacrylamide), PAzMa1) or 2 (poly(N-2-(2-(2-azidoethoxy)ethoxy)ethyl)methacrylamide), PAzMa2), leading with changes in their dynamics. As the thermal decomposition of the azide group is observed above 100 °C, dielectric analysis was carried out in the temperature range of −120 °C to 100 °C. Dielectric spectra of both polymers exhibit in the glassy state two relaxations labelled in increasing order of temperature as γ- and β-processes, respectively. At high temperatures and low frequencies, the spectra are dominated by ohmic conductivity and interfacial polarization effects. Both, dipolar and conductive processes were characterized by using different models. Comparison of the dielectric activity obtained for PAzMa1 and PAzMa2 with those reported for crosslinked poly(2-ethoxyethylmethacrylate) (CEOEMA) was performed. The analysis of the length of oxyethylene pendant chain and the effect of the methacrylate or methacrylamide nature on the dynamic mobility was analysed.
APA, Harvard, Vancouver, ISO, and other styles
3

Hu, Rongrong, Ben Tang, Liguo Xu, and Kou Yang. "Multicomponent Polymerization of Alkynes, Sulfonyl Azide, and Iminophosphorane at Room Temperature for the Synthesis of Hyperbranched Poly(phosphorus amidine)s." Synlett 29, no. 19 (2018): 2523–28. http://dx.doi.org/10.1055/s-0037-1610275.

Full text
Abstract:
The construction of functional hyperbranched polymers with unique topological structures and distinct properties remains a great challenge. Multicomponent polymerization, as a fascinating polymer synthetic approach, has proved to be a powerful tool for the synthesis of polymers with diverse structures and multifunctionalities, which is a great advantage for the preparation of hyperbranched polymers. In this work, a multicomponent polymerization of alkynes, sulfonyl azide, and iminophosphorane is utilized for the construction of heteroatom-rich hyperbranched poly(phosphorus amidine)s with different topological structures and fluorescence response toward platinum group metal ions.
APA, Harvard, Vancouver, ISO, and other styles
4

Keita, H., B. Guzelturk, J. Pennakalathil, T. Erdem, H. V. Demir, and D. Tuncel. "Construction of multi-layered white emitting organic nanoparticles by clicking polymers." Journal of Materials Chemistry C 3, no. 39 (2015): 10277–84. http://dx.doi.org/10.1039/c5tc01445j.

Full text
Abstract:
A series of blue, green and red emitting polymers that are appropriately functionalized with alkyne and azide functional groups have been prepared and clicked together to construct bi-layered and tri-layered white emitting core–shell type nanoparticles.
APA, Harvard, Vancouver, ISO, and other styles
5

Zhao, Guangkuo, Tongtong Ge, Yunfeng Yan, Qi Shuai, and Wei-Ke Su. "Highly Efficient Modular Construction of Functional Drug Delivery Platform Based on Amphiphilic Biodegradable Polymers via Click Chemistry." International Journal of Molecular Sciences 22, no. 19 (2021): 10407. http://dx.doi.org/10.3390/ijms221910407.

Full text
Abstract:
Amphiphilic copolymers with pendant functional groups in polyester segments are widely used in nanomedicine. These enriched functionalities are designed to form covalent conjugates with payloads or provide additional stabilization effects for encapsulated drugs. A general method is successfully developed for the efficient preparation of functional biodegradable PEG-polyester copolymers via click chemistry. Firstly, in the presence of mPEG as initiator, Sn(Oct)2-catalyzed ring-opening polymerization of the α-alkynyl functionalized lactone with D,L-lactide or ε-caprolactone afforded linear mPEG-polyesters bearing multiple pendant alkynyl groups. Kinetic studies indicated the formation of random copolymers. Through copper-catalyzed azide-alkyne cycloaddition reaction, various small azido molecules with different functionalities to polyester segments are efficiently grafted. The molecular weights, polydispersities and grafting efficiencies of azido molecules of these copolymers were investigated by NMR and GPC. Secondly, it is demonstrated that the resulting amphiphilic functional copolymers with low CMC values could self-assemble to form nanoparticles in aqueous media. In addition, the in vitro degradation study and cytotoxicity assays indicated the excellent biodegradability and low cytotoxicity of these copolymers. This work provides a general approach toward the preparation of functional PEG-polyester copolymers in a quite efficient way, which may further facilitate the application of functional PEG-polyesters as drug delivery materials.
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Shuo, Thu Vi, Kai Luo, and Jeffrey T. Koberstein. "Kinetics of Polymer Interfacial Reactions: Polymer Brush Formation by Click Reactions of Alkyne End-Functional Polymers with Azide-Functional Substrates." Macromolecules 49, no. 15 (2016): 5461–74. http://dx.doi.org/10.1021/acs.macromol.6b01220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

De, Ranjit, Minhyuk Jung, and Hohjai Lee. "Designing Microparticle-Impregnated Polyelectrolyte Composite: The Combination of ATRP, Fast Azidation, and Click Reaction Using a Single-Catalyst, Single-Pot Strategy." International Journal of Molecular Sciences 20, no. 22 (2019): 5582. http://dx.doi.org/10.3390/ijms20225582.

Full text
Abstract:
Polystyrene microparticles were covalently impregnated into the networks of functional polyelectrolyte chains designed via a tandem run of three reactions: (i) synthesis of water-soluble polyelectrolyte, (ii) fast azidation and (iii) a ‘click’ reaction, using the single-catalyst, single-pot strategy at room temperature in mild aqueous media. The model polyelectrolyte sodium polystyrenesulfonate (NaPSS) was synthesized via the well-controlled atom transfer radical polymerization (ATRP) whose halogen living-end was transformed to azide and subsequently coupled with an alkyne carboxylic acid through a ‘click’ reaction using the same ATRP catalyst, throughout. Halogen to azide transformation was fast and followed the radical pathway, which was explained through a plausible mechanism. Finally, the success of microparticle impregnation into the NaPSS network was evaluated through Kaiser assay and imaging. This versatile synthetic procedure, having a reduced number of discrete reaction steps and eliminated intermediate work-ups, has established a fast and simple pathway to design functional polymers required to fabricate stable polymer-particle composites where the particles are impregnated covalently and controllably.
APA, Harvard, Vancouver, ISO, and other styles
8

Albuszis, Marco, Peter J. Roth, Franziska Exnowitz, Doris Locsin Wong, Werner Pauer, and Hans-Ulrich Moritz. "Synthesis and in-depth characterization of reactive, uniform, crosslinked microparticles based on free radical copolymerization of 4-vinylbenzyl azide." Polymer Chemistry 7, no. 5 (2016): 1168–80. http://dx.doi.org/10.1039/c5py01848j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tamura, Atsushi, Asato Tonegawa, Yoshinori Arisaka, and Nobuhiko Yui. "Versatile synthesis of end-reactive polyrotaxanes applicable to fabrication of supramolecular biomaterials." Beilstein Journal of Organic Chemistry 12 (December 28, 2016): 2883–92. http://dx.doi.org/10.3762/bjoc.12.287.

Full text
Abstract:
Cyclodextrin (CD)-threaded polyrotaxanes (PRXs) with reactive functional groups at the terminals of the axle polymers are attractive candidates for the design of supramolecular materials. Herein, we describe a novel and simple synthetic method for end-reactive PRXs using bis(2-amino-3-phenylpropyl) poly(ethylene glycol) (PEG-Ph-NH2) as an axle polymer and commercially available 4-substituted benzoic acids as capping reagents. The terminal 2-amino-3-phenylpropyl groups of PEG-Ph-NH2 block the dethreading of the α-CDs after capping with 4-substituted benzoic acids. By this method, two series of azide group-terminated polyrotaxanes (benzylazide: PRX-Bn-N3, phenylazide: PRX-Ph-N3,) were synthesized for functionalization via click reactions. The PRX-Bn-N3 and PRX-Ph-N3 reacted quickly and efficiently with p-(tert-butyl)phenylacetylene via copper-catalyzed click reactions. Additionally, the terminal azide groups of the PRX-Bn-N3 could be modified with dibenzylcyclooctyne (DBCO)-conjugated fluorescent molecules via a copper-free click reaction; this fluorescently labeled PRX was utilized for intracellular fluorescence imaging. The method of synthesizing end-reactive PRXs described herein is simple and versatile for the design of diverse functional PRXs and can be applied to the fabrication of PRX-based supramolecular biomaterials.
APA, Harvard, Vancouver, ISO, and other styles
10

Kocaarslan, Azra, Zafer Eroglu, Önder Metin, and Yusuf Yagci. "Exfoliated black phosphorous-mediated CuAAC chemistry for organic and macromolecular synthesis under white LED and near-IR irradiation." Beilstein Journal of Organic Chemistry 17 (September 23, 2021): 2477–87. http://dx.doi.org/10.3762/bjoc.17.164.

Full text
Abstract:
The development of long-wavelength photoinduced copper-catalyzed azide–alkyne click (CuAAC) reaction routes is attractive for organic and polymer chemistry. In this study, we present a novel synthetic methodology for the photoinduced CuAAC reaction utilizing exfoliated two-dimensional (2D) few-layer black phosphorus nanosheets (BPNs) as photocatalysts under white LED and near-IR (NIR) light irradiation. Upon irradiation, BPNs generated excited electrons and holes on its conduction (CB) and valence band (VB), respectively. The excited electrons thus formed were then transferred to the CuII ions to produce active CuI catalysts. The ability of BPNs to initiate the CuAAC reaction was investigated by studying the reaction between various low molar mass alkyne and azide derivatives under both white LED and NIR light irradiation. Due to its deeper penetration of NIR light, the possibility of synthesizing different macromolecular structures such as functional polymers, cross-linked networks and block copolymer has also been demonstrated. The structural and molecular properties of the intermediates and final products were evaluated by spectral and chromatographic analyses.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Azide Functional Polymers"

1

Reshmi, S. "Investigations on Azide Functional Polymers as Binders for Solid Propellants." Thesis, 2014. http://etd.iisc.ac.in/handle/2005/3506.

Full text
Abstract:
This thesis contains investigations in the area of polymers herein propellants binders are modified functionally to meet the requirements of future energetic propellants. Chapter 1 contains a broad introduction to the area of recent advances in solid propellants and the numerous applications of ‘Click Chemistry’. Chapters 2 details the materials, characterization tools and the experimental techniques employed for the studies. This is followed by Chapter 3, 4, and 5 which deals with functional modification of various propellants binders, their characterisation and evaluation in propellant formulations. Chapter 6 details with the thermal decomposition of diazides and its reaction with alkenes. The advent of modern rockets has opened a new era in the history of space exploration as well as defence applications. The driving force of the rocket emanates from the propellant – either solid or liquid. Composite solid propellants find an indispensable place, in today’s rockets and launch vehicles because of the inherent advantages such as high reliability, easy manufacturing, high thrust etc. The composite propellant consisting of inorganic oxidiser like ammonium perchlorate, (AP), ammonium nitrate (AN) etc), metallic fuel (aluminium powder, boron etc) and polymeric fuel binder (hydroxyl terminated polybutadiene-HTPB, polybutadiene-acrylic acid-acrylonitrile PBAN, glycidyl azide polymer (GAP), polyteramethylene oxide (PTMO) etc. is used in igniters, boosters, upper stage motors and special purpose motors in large launch vehicles. Large composite solid propellant grains or rocket motors in particular, demand adequate mechanical properties to enable them to withstand the stresses imposed during operation, handling, transportation and motor firing. They should also have a reasonably long ‘potlife’ to provide sufficient window for processing operations such as mixing and casting which makes the selection of binder with appropriate cure chemistry more challenging. In all composite solid propellants currently in use, polymers perform the role of a binder for the oxidiser, metallic fuel and other additives. It performs the dual role of imparting dimensional stability to the composite, provides structural integrity and good mechanical properties to the propellant besides acting as a fuel to impart the required energetics. Conventionally, the terminal hydroxyl groups in the binders like GAP, PTMO and HTPB are reacted with diisocyanates to form a polyurethane network, to impart the necessary mechanical properties to the propellant. A wide range of diisocyantes such as tolylene diisocyanate (TDI) and isophorone diisocyanate (IPDI) are used for curing of these binders. However, the incompatability of isocyanates with energetic oxidisers like ammonium dinitramide (ADN), hydrazinium nitroformate (HNF), short ‘potlife’ of the propellant slurry and undesirable side reactions with moisture are limiting factors which adversely affect the mechanical properties of curing binders through this route. The objective of the present study is to evolve an alternate approach of curing these binders is to make use of the 1,3 dipolar addition reactions between azide and alkyne groups which is a part of ‘Click chemistry’. This can be accomplished by the reaction of azide groups of GAP with triple bonds of alkynes and reactions of functionally modified HTPB/PTMO (azide/alkyne) to yield 1,2,3 -triazole based products. This offers an alternate route for processing of solid propellants wherein, the cured resins that have improved mechanical properties, better thermal stability and improved ballistic properties in view of the higher heat of decomposition resulting from the decomposition of the triazole groups. GAP is an azide containing energetic polymer. The azide groups can undergo reaction with alkynes to yield triazoles. In, Chapter 3 the synthesis and characterisation of various alkynyl compounds including bis propargyl succinate (BPS), bis propargyl adipate (BPA), bis propargyl sebacate (BPSc.) and bis propargyl oxy bisphenol A (BPB) for curing of GAP to yield triazoles networks are studied. The mechanism of the curing reaction of GAP with these alkynyl compounds was elucidated using a model compound viz. 2-azidoethoxyethane (AEE). The reaction mechanism has been analysed using Density Functional Theory (DFT) method. DFT based theoretical calculations implied marginal preference for 1, 5 addition over the 1, 4 addition for the uncatalysed cycloaddition reaction between azide and alkyne group. The detailed characterisation of these systems with respect to the cure kinetics, mechanical properties, dynamic mechanical behaviour and thermal decomposition characteristics were done and correlated to the structure of the network. The glass transition temperature (Tg), tensile strength and modulus of the system increased with crosslink density which in turn is, controlled by the azide to alkyne molar stoichiometry. Thermogravimetic analysis (TGA) showed better thermal stability for the GAP-triazole compared to GAP based urethanes. Though there have been a few reports on curing of GAP with alkynes, it is for the first time that a detailed characterisation of this system with respect to the cure kinetics, mechanical, dynamic mechanical, thermal decomposition mechanism of the polymer is being reported. To extent the concept of curing binders through 1,3 dipolar addition reaction, the binder HTPB as chemically transformed to propargyloxy carbonyl amine terminated polybutadiene (PrTPB) with azidoethoxy carbonyl amine terminated polybutadiene (AzTPB) and propargyloxy polybutadiene (PTPB). Similarly, PTMO was convnerted to propargyloxy polytetramethylene oxide (PTMP). Triazole-triazoline networks were derived by the reaction of the binders with alkyne/azide containing curing agents. The cure characteristics of these polymers (PrTPB with AzTPB, PTPB with GAP and PTMP with GAP) were studied by DSC. The detailed characterisations of the cured polymers for were done with respect to the, mechanical, dynamic mechanical behaviour and thermal decomposition characteristics were done. Propellant level studies were done using the triazoles derived from GAP, PrTPB-AzTPB, PTPB and PTMP as binder, in combination with ammonium perchlorate as oxidiser. The propellants were characterised with respect to rheological, mechanical, safety, as well as ballistic properties. From the studies, propellant formulations with improved energetics, safety characteristics, processability and mechanical properties as well defect free propellants could be developed using novel triazole crosslinked based binders. Chapter 6, is aimed at understanding the mechanism of thermal decomposition of diazido compounds in the first section. For this, synthesis and characterisation of a diazido ester 1,6 –bis (azidoacetoyloxy) hexane (HDBAA) was done. There have been no reports on the thermal decomposition mechanism of diazido compounds, where one azide group may influence the decomposition of the other. The thermal decomposition mechanism of the diazido ester were theoretically predicted by DFT method and corroborated by pyrolysis-GC-MS studies. In the second section of this chapter, the cure reaction of the diazido ester with the double bonds of HTPB has been investigated. The chapter 6B reports the mechanism of Cu (I) catalysed azide-alkene reaction validated using density functional theory (DFT) calculations in isomers of hexene (cis-3-hexene, trans-3-hexene and 2-methy pentene: model compound of HTPB) using HDBAA. This the first report on an isocyanate free curing of HTPB using an azide. Chapter 7 of the thesis summarizes the work carried out, the highlights and important findings of this work. The scope for future work such as development of high performance eco-friendly propellants based on triazoles in conjunction with chlorine-free oxidizer like ADN, synthesis of compatible plasticisers and suitable crosslinkers have been described. This work has given rise to one patent, three international publications and four papers in international conferences in the domain.
APA, Harvard, Vancouver, ISO, and other styles
2

Reshmi, S. "Investigations on Azide Functional Polymers as Binders for Solid Propellants." Thesis, 2014. http://etd.iisc.ernet.in/2005/3506.

Full text
Abstract:
This thesis contains investigations in the area of polymers herein propellants binders are modified functionally to meet the requirements of future energetic propellants. Chapter 1 contains a broad introduction to the area of recent advances in solid propellants and the numerous applications of ‘Click Chemistry’. Chapters 2 details the materials, characterization tools and the experimental techniques employed for the studies. This is followed by Chapter 3, 4, and 5 which deals with functional modification of various propellants binders, their characterisation and evaluation in propellant formulations. Chapter 6 details with the thermal decomposition of diazides and its reaction with alkenes. The advent of modern rockets has opened a new era in the history of space exploration as well as defence applications. The driving force of the rocket emanates from the propellant – either solid or liquid. Composite solid propellants find an indispensable place, in today’s rockets and launch vehicles because of the inherent advantages such as high reliability, easy manufacturing, high thrust etc. The composite propellant consisting of inorganic oxidiser like ammonium perchlorate, (AP), ammonium nitrate (AN) etc), metallic fuel (aluminium powder, boron etc) and polymeric fuel binder (hydroxyl terminated polybutadiene-HTPB, polybutadiene-acrylic acid-acrylonitrile PBAN, glycidyl azide polymer (GAP), polyteramethylene oxide (PTMO) etc. is used in igniters, boosters, upper stage motors and special purpose motors in large launch vehicles. Large composite solid propellant grains or rocket motors in particular, demand adequate mechanical properties to enable them to withstand the stresses imposed during operation, handling, transportation and motor firing. They should also have a reasonably long ‘potlife’ to provide sufficient window for processing operations such as mixing and casting which makes the selection of binder with appropriate cure chemistry more challenging. In all composite solid propellants currently in use, polymers perform the role of a binder for the oxidiser, metallic fuel and other additives. It performs the dual role of imparting dimensional stability to the composite, provides structural integrity and good mechanical properties to the propellant besides acting as a fuel to impart the required energetics. Conventionally, the terminal hydroxyl groups in the binders like GAP, PTMO and HTPB are reacted with diisocyanates to form a polyurethane network, to impart the necessary mechanical properties to the propellant. A wide range of diisocyantes such as tolylene diisocyanate (TDI) and isophorone diisocyanate (IPDI) are used for curing of these binders. However, the incompatability of isocyanates with energetic oxidisers like ammonium dinitramide (ADN), hydrazinium nitroformate (HNF), short ‘potlife’ of the propellant slurry and undesirable side reactions with moisture are limiting factors which adversely affect the mechanical properties of curing binders through this route. The objective of the present study is to evolve an alternate approach of curing these binders is to make use of the 1,3 dipolar addition reactions between azide and alkyne groups which is a part of ‘Click chemistry’. This can be accomplished by the reaction of azide groups of GAP with triple bonds of alkynes and reactions of functionally modified HTPB/PTMO (azide/alkyne) to yield 1,2,3 -triazole based products. This offers an alternate route for processing of solid propellants wherein, the cured resins that have improved mechanical properties, better thermal stability and improved ballistic properties in view of the higher heat of decomposition resulting from the decomposition of the triazole groups. GAP is an azide containing energetic polymer. The azide groups can undergo reaction with alkynes to yield triazoles. In, Chapter 3 the synthesis and characterisation of various alkynyl compounds including bis propargyl succinate (BPS), bis propargyl adipate (BPA), bis propargyl sebacate (BPSc.) and bis propargyl oxy bisphenol A (BPB) for curing of GAP to yield triazoles networks are studied. The mechanism of the curing reaction of GAP with these alkynyl compounds was elucidated using a model compound viz. 2-azidoethoxyethane (AEE). The reaction mechanism has been analysed using Density Functional Theory (DFT) method. DFT based theoretical calculations implied marginal preference for 1, 5 addition over the 1, 4 addition for the uncatalysed cycloaddition reaction between azide and alkyne group. The detailed characterisation of these systems with respect to the cure kinetics, mechanical properties, dynamic mechanical behaviour and thermal decomposition characteristics were done and correlated to the structure of the network. The glass transition temperature (Tg), tensile strength and modulus of the system increased with crosslink density which in turn is, controlled by the azide to alkyne molar stoichiometry. Thermogravimetic analysis (TGA) showed better thermal stability for the GAP-triazole compared to GAP based urethanes. Though there have been a few reports on curing of GAP with alkynes, it is for the first time that a detailed characterisation of this system with respect to the cure kinetics, mechanical, dynamic mechanical, thermal decomposition mechanism of the polymer is being reported. To extent the concept of curing binders through 1,3 dipolar addition reaction, the binder HTPB as chemically transformed to propargyloxy carbonyl amine terminated polybutadiene (PrTPB) with azidoethoxy carbonyl amine terminated polybutadiene (AzTPB) and propargyloxy polybutadiene (PTPB). Similarly, PTMO was convnerted to propargyloxy polytetramethylene oxide (PTMP). Triazole-triazoline networks were derived by the reaction of the binders with alkyne/azide containing curing agents. The cure characteristics of these polymers (PrTPB with AzTPB, PTPB with GAP and PTMP with GAP) were studied by DSC. The detailed characterisations of the cured polymers for were done with respect to the, mechanical, dynamic mechanical behaviour and thermal decomposition characteristics were done. Propellant level studies were done using the triazoles derived from GAP, PrTPB-AzTPB, PTPB and PTMP as binder, in combination with ammonium perchlorate as oxidiser. The propellants were characterised with respect to rheological, mechanical, safety, as well as ballistic properties. From the studies, propellant formulations with improved energetics, safety characteristics, processability and mechanical properties as well defect free propellants could be developed using novel triazole crosslinked based binders. Chapter 6, is aimed at understanding the mechanism of thermal decomposition of diazido compounds in the first section. For this, synthesis and characterisation of a diazido ester 1,6 –bis (azidoacetoyloxy) hexane (HDBAA) was done. There have been no reports on the thermal decomposition mechanism of diazido compounds, where one azide group may influence the decomposition of the other. The thermal decomposition mechanism of the diazido ester were theoretically predicted by DFT method and corroborated by pyrolysis-GC-MS studies. In the second section of this chapter, the cure reaction of the diazido ester with the double bonds of HTPB has been investigated. The chapter 6B reports the mechanism of Cu (I) catalysed azide-alkene reaction validated using density functional theory (DFT) calculations in isomers of hexene (cis-3-hexene, trans-3-hexene and 2-methy pentene: model compound of HTPB) using HDBAA. This the first report on an isocyanate free curing of HTPB using an azide. Chapter 7 of the thesis summarizes the work carried out, the highlights and important findings of this work. The scope for future work such as development of high performance eco-friendly propellants based on triazoles in conjunction with chlorine-free oxidizer like ADN, synthesis of compatible plasticisers and suitable crosslinkers have been described. This work has given rise to one patent, three international publications and four papers in international conferences in the domain.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Azide Functional Polymers"

1

Arkenberg, Matthew R., Min Hee Kim, and Chien-Chi Lin. "Click Hydrogels for Biomedical Applications." In Multicomponent Hydrogels. The Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/bk9781837670055-00155.

Full text
Abstract:
Hydrogels crosslinked by homopolymerization of single component acrylate/methacrylate terminated polymers (e.g., poly(ethylene glycol) diacrylate, or PEGDA) were once the dominant biomaterials in biomedical applications, including the encapsulation of therapeutic agents and biological molecules. However, accumulating evidence has revealed many disadvantages of homopolymerized hydrogels, including heterogeneity of the crosslinking that adversely impacted the bioactivity of the encapsulated molecules. As such, recent years have witnessed the expansive use of modular click chemistry for the crosslinking of multicomponent hydrogels, typically consisting of two or more functionally distinct macromolecular building blocks. This chapter provides an overview of the crosslinking and applications of multicomponent hydrogels, focusing on those crosslinked by strain-promoted alkyne–azide cycloaddition (SPAAC), Michael-type addition, Diels–Alder (DA) reactions, inverse electron-demand Diels–Alder (iEDDA), thiol–ene polymerizations, and imine/hydrazone/oxime click reactions. This chapter also summarizes information regarding the characteristics, advantages, and limitations of commonly used synthetic (e.g., PEG, poly(acrylate), poly(vinyl alcohol), etc.) and naturally-derived macromers (e.g., gelatin, hyaluronic acid, etc.) for forming multicomponent hydrogels. Finally, an overview is given on the applications of multicomponent hydrogels in drug delivery, biofabrication, and 3D/4D cell culture.
APA, Harvard, Vancouver, ISO, and other styles
2

Ma, Jusha, Qinyuan Niu, and Wenhui Wu. "Preparation of Functional Polymer-Grafted Cellulose through Azide Alkyne Cycloaddition or C–C Cross-Coupling." In Cellulose-Based Graft Copolymers. CRC Press, 2015. http://dx.doi.org/10.1201/b18390-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"Preparation of Functional Polymer-Grafted Cellulose through Azide Alkyne Cycloaddition or C–C Cross-Coupling." In Cellulose-Based Graft Copolymers. CRC Press, 2015. http://dx.doi.org/10.1201/b18390-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!