Academic literature on the topic 'B4GALNT3'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'B4GALNT3.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "B4GALNT3"
Kremer, Jennifer, Cornelia Brendel, Elisabeth Karin Maria Mack, and Hildegard Isolde Dietlinde Mack. "Expression of β-1,4-galactosyltransferases during Aging in Caenorhabditis elegans." Gerontology 66, no. 6 (2020): 571–81. http://dx.doi.org/10.1159/000510722.
Full textMthembu, Yolanda H., Chunsheng Jin, Médea Padra, Jining Liu, Johan Olofsson Edlund, Hanyue Ma, Janos Padra, et al. "Recombinant mucin-type proteins carrying LacdiNAc on different O-glycan core chains fail to support H. pylori binding." Molecular Omics 16, no. 3 (2020): 243–57. http://dx.doi.org/10.1039/c9mo00175a.
Full textHsu, Wen-Ming, Mei-Ieng Che, Yung-Feng Liao, Hsiu-Hao Chang, Chia-Hua Chen, Yu-Ming Huang, Yung-Ming Jeng, et al. "B4GALNT3 Expression Predicts a Favorable Prognosis and Suppresses Cell Migration and Invasion via β1 Integrin Signaling in Neuroblastoma." American Journal of Pathology 179, no. 3 (September 2011): 1394–404. http://dx.doi.org/10.1016/j.ajpath.2011.05.025.
Full textShauchuk, Auhen, Bożena Szulc, Dorota Maszczak-Seneczko, Wojciech Wiertelak, Edyta Skurska, and Mariusz Olczak. "N-glycosylation of the human β1,4-galactosyltransferase 4 is crucial for its activity and Golgi localization." Glycoconjugate Journal 37, no. 5 (August 22, 2020): 577–88. http://dx.doi.org/10.1007/s10719-020-09941-z.
Full textFan, Jingyi, and Huaijun Zhou. "Comprehensive Analysis of GDF10 Methylation Site-Associated Genes as Prognostic Markers for Endometrial Cancer." Journal of Oncology 2022 (October 10, 2022): 1–13. http://dx.doi.org/10.1155/2022/7117083.
Full textYi, Hang, Yiwen Lin, Yutong Li, Yeqi Guo, Ligong Yuan, and Yousheng Mao. "Pan-Cancer Analysis of B4GALNT1 as a Potential Prognostic and Immunological Biomarker." Journal of Immunology Research 2022 (July 28, 2022): 1–28. http://dx.doi.org/10.1155/2022/4355890.
Full textPucci, Michela, Inês Gomes Ferreira, Martina Orlandani, Nadia Malagolini, Manuela Ferracin, and Fabio Dall’Olio. "High Expression of the Sda Synthase B4GALNT2 Associates with Good Prognosis and Attenuates Stemness in Colon Cancer." Cells 9, no. 4 (April 11, 2020): 948. http://dx.doi.org/10.3390/cells9040948.
Full textPucci, Michela, Nadia Malagolini, and Fabio Dall’Olio. "Glycosyltransferase B4GALNT2 as a Predictor of Good Prognosis in Colon Cancer: Lessons from Databases." International Journal of Molecular Sciences 22, no. 9 (April 21, 2021): 4331. http://dx.doi.org/10.3390/ijms22094331.
Full textCogez, Virginie, Dorothée Vicogne, Céline Schulz, Lucie Portier, Giulia Venturi, Jérôme de Ruyck, Mathieu Decloquement, et al. "N-Glycan on the Non-Consensus N-X-C Glycosylation Site Impacts Activity, Stability, and Localization of the Sda Synthase B4GALNT2." International Journal of Molecular Sciences 24, no. 4 (February 18, 2023): 4139. http://dx.doi.org/10.3390/ijms24044139.
Full textGuo, Xiaofei, Xiangyu Wang, Benmeng Liang, Ran Di, Qiuyue Liu, Wenping Hu, Xiaoyun He, Jinlong Zhang, Xiaosheng Zhang, and Mingxing Chu. "Molecular Cloning of the B4GALNT2 Gene and Its Single Nucleotide Polymorphisms Association with Litter Size in Small Tail Han Sheep." Animals 8, no. 10 (September 20, 2018): 160. http://dx.doi.org/10.3390/ani8100160.
Full textDissertations / Theses on the topic "B4GALNT3"
Esposito, Roberta. "Identification of new genetic alterations and potential biomarkers in papillary thyroid carcinoma." Doctoral thesis, Universita degli studi di Salerno, 2016. http://hdl.handle.net/10556/2475.
Full textPapillary thyroid carcinoma (PTC) is the most frequent thyroid malignant neoplasia. Oncogene activation occurs in more than 70% of the cases. BRAF mutations occur in about 40% of PTCs, whereas RET rearrangements (RET/PTC oncogenes) are present in about 20% of cases. Finally, RAS mutations and TRK and PPARG rearrangements account for about 5% each of these malignancies. However, despite the presence of tumor-initiating driver events, cancer results from the progressive accumulation of mutations in genes that confer growth advantage over surrounding cells. A better understanding of molecular alterations of PTC will provide important insights into cancer etiology. It will also lead to advance in their diagnosis, possibly opening the way for developing novel molecular therapies. Thus, the aim of this PhD project is to deeply explore the transcriptome of PTC in order to identify new driver events in this type of cancer. In the first part of this study, we used RNA-Sequencing in a discovery cohort of 18 patients with papillary thyroid carcinoma to identify fusion transcripts and expressed mutations in cancer driver genes. Furthermore, we used targeted sequencing on the DNA of these same patients to validate identified mutations. We extended the screening to thyroids of 50 PTC patients and of 30 healthy individuals. Using this approach we identified new somatic mutations in CBL, NOTCH1, PIK3R4 and SMARCA4 genes. We also found mutations in DICER, MET and VHL genes, previously found mutated in other tumors, but not described yet in PTC. We also identified a new chimeric transcript generated by the fusion of lysine deficient protein kinase 1 (WNK1) and beta-1,4-N-acetylgalactosaminyl transferase 3 (B4GALNT3) genes and correlated with an overexpression of B4GALNT3 gene. Moreover, although protein coding genes play a leading role in cancer genetics, in recent years, many studies focused on a novel class of non coding RNAs, long non coding RNAs (lncRNAs), which regulate the expression levels of protein coding genes. Since deregulated expression of lncRNAs has been reported in many cancers, it suggests that that they may act as potential oncogene or tumorsuppressor. Thus, to assess if lncRNAs can exert a tumorigenic role in thyroid, in the second part of my PhD project I systematically quantified lncRNAs’ expression in PTC vs healthy thyroids using our RNA-Seq data. Combining ab initio reconstruction to a custom computational pipeline we found that novel and known lncRNAs are significantly altered in PTC, and some of them are possibly associated with cancer driver genes. Then we extensively focused on an unannotated lncRNA transcribed antisense to MET oncogene, named in this study MET-AS. Both genes are significantly up-regulated in a sub-class of PTCs - i.e. patients with BRAF gene mutations and RET gene rearrangements, compared to other PTCs and "non-tumor" thyroid biopsies. Preliminary data indicate that MET-AS knockdown induces down-regulation of MET, and induces a changes in cell cycle in a PTC cell line, suggesting the novel lncRNA might be a new MET regulator. Further studies should be conducted to demonstrate detailed mechanism of our findings. Finally, our data confirmed the genetic heterogeneity of papillary thyroid carcinoma revealing that gene expression correlates more with the mutation pattern than with tumor staging. Overall, this study provides new information about PTC genetic alterations, suggesting potential pharmacological adjuvant therapies in PTC. [edited by author]
Il carcinoma papillare tiroideo (PTC) costituisce circa l’80% di tutti i tumori maligni della tiroide. Ad oggi, sono state identificate mutazioni a carico del gene BRAF in circa il 40% di casi, mentre riarrangiamenti che coinvolgono il gene RET (RET/PTC) sono presenti in circa il 20% dei casi. Infine, mutazioni nei geni RAS e riarrangiamenti dei geni TRK e PPARG occorrono in circa il 5% dei casi ciascuno. Tuttavia, nonostante la presenza di alterazioni genetiche che possano dare inizio al processo canceroso, il tumore è il risultato del progressivo accumulo di mutazioni in geni che conferiscono un vantaggio di crescita sulle cellule circostanti. Pertanto, una conoscenza più approfondita delle alterazioni molecolari del carcinoma papillare tiroideo è fondamentale per migliorare gli aspetti diagnostici e prognostici, e la risposta individuale ai trattamenti farmacologici. Alla luce di ciò, il mio progetto di dottorato ha avuto come obiettivo principale l’analisi del trascrittoma del PTC al fine di individuare nuovi eventi molecolari che possano essere implicati in questo tipo di cancro. La prima parte di questo progetto è stata focalizzata sul sequenziamento - mediante RNA-Seq – di 22 RNA isolati da biopsie di tiroide (18 tiroidi affette da carcinoma papillare tiroideo, 4 tiroidi non tumorali) per identificare trascritti di fusione e mutazioni somatiche in geni espressi. I risultati sono stati validati sul DNA dei medesimi pazienti mediante sequenziamento diretto di Sanger. Inoltre, l’analisi mutazionale è stata estesa ad ulteriori 50 pazienti affetti da carcinoma papillare tiroideo e 30 individui sani. Mediante quest’approccio sono state identificate nuove mutazioni puntiformi nei geni CBL, NOTCH1, PIK3R4 e SMARCA4. Inoltre, l’analisi ha rivelato la presenza di mutazioni somatiche nei geni DICER1, MET e VHL, già note nella patogenesi in altri tipi di cancro, ma ad oggi non note nel PTC. Inoltre, è stato individuato un nuovo evento di fusione intra-cromosomico generato dalla fusione tra il primo esone del gene WNK1 (lysine deficient protein kinase 1) e il secondo esone del gene B4GALNT3 (beta-1,4-N-acetyl-galactosaminyl transferase 3). I geni codificanti rivestono un ruolo di primo piano nella genetica del cancro, ma negli ultimi anni, molti studi si sono concentrati su una nuova classe di RNA non codificanti, i long non coding RNA (lncRNAs), che regolano l’espressione dei geni codificanti. I livelli di espressione dei lncRNA sono spesso alterati in diversi tipi di tumori, suggerendo che essi possano agire sia da oncogeni sia da oncosoppressori. Al fine di valutare il loro potenziale ruolo nella tumorigenesi del PTC, la seconda parte di questo progetto è stata focalizzata sull’analisi computazionale dei lncRNA, sia nuovi che annotati, nei nostri dataset di RNASeq. Attraverso l’utilizzo di approcci per la ricostruzione ab initio del trascrittoma e di una pipeline computazionale sono stati indentificati i lncRNA significativamente deregolati nei campioni tumorali. Inoltre, per individuare i lncRNA che potessero regolare l’espressione genica in cis, alcuni di essi sono stati associati - per vicinanza al TSS (transcription start site) - a geni driver in diversi tipi di cancro. Infine, mi sono focalizzata su un lncRNA non annotato nei database pubblici, associato all’oncogene MET, ma trascritto dal filamento opposto. Si tratta pertanto di un lncRNA antisenso al gene MET, chiamato in questo lavoro di tesi MET-AS. Entrambi i geni sono significativamente sovraespressi in una sotto-classe di PTC - vale a dire i pazienti con mutazioni del gene BRAF e riarrangiamenti dell’oncogene RET – chiamati BRAF-like-, rispetto ai campioni tumorali PTC, con profilo trascrizionale simile ai campioni mutati nei geni RAS – chiamati RAS-like - e campioni di tiroide "non-tumorali". Esperimenti preliminari condotti in vitro su una linea cellulare di carcinoma papillare tiroideo, TPC-1, indicano che il silenziamento del lncRNA MET-AS induce una down-regolazione dell’oncogene MET, e induce un blocco del ciclo cellulare in fase G1, suggerendo che il lncRNA potrebbe essere un nuovo regolatore dell’oncogene MET. In conclusione, i risultati ottenuti in questo lavoro di tesi confermano l'eterogeneità genetica del carcinoma papillare della tiroide rivelando che l'espressione genica correla più con il profilo mutazionale dei pazienti che con la stadiazione del tumore. Inoltre, questo studio fornisce nuove informazioni sulle alterazioni genetiche del PTC, suggerendo potenziali terapie adiuvanti farmacologiche per questo tipo di cancro. [a cura dell'autore]
XIV n.s.
Mansanet, Camille. "Contrôle génétique et physiologique de la prolificité en race ovine lacaune : caractérisation de la mutation causale et role fonctionnel du gene FECL." Thesis, Tours, 2013. http://www.theses.fr/2013TOUR4038/document.
Full textThe aim of this thesis was to identify a mutation called FecLL affecting ovulation rate and prolificacy of Lacaune sheep and to study its physiological consequences. By combining genetics and functional highthroughput biology approaches such as Roche 454 sequencing and mass spectrometry, I evidenced the FecLL mutation as a 2 SNP haplotype present in non-coding regions of a 194.6 kb locus on ovine chromosome 11. This mutation induces ectopic overexpression and ovarian activity of the B4GALNT2 (beta-1,4-N-acetylgalactosaminyl transferase 2) gene encoding a glycosylation enzyme capable of transferring a N-acetylgalactosamine sugar on target glycoproteins. Among those targets, I highlighted inhibin A, an important hormone in ovarian function. The consequences of this atypical glycosylation lead to impaired production of inhibin A in Lacaune mutated sheep proposed as an initiator mechanism of their hyper- prolificacy
Linnenbrink, Miriam [Verfasser]. "Population genetic and functional analysis of the B4galnt2 gene in the genus Mus (Rodentia; Muridae) / Miriam Linnenbrink." Kiel : Universitätsbibliothek Kiel, 2012. http://d-nb.info/1053683189/34.
Full textVallier, Marie [Verfasser], John [Akademischer Betreuer] Baines, and Hinrich [Gutachter] Schulenburg. "Characterization of Pathogen-Driven Selection at B4galnt2 in House Mice / Marie Vallier ; Gutachter: Hinrich Schulenburg ; Betreuer: John Baines." Kiel : Universitätsbibliothek Kiel, 2017. http://d-nb.info/1236287630/34.
Full textWavelet, Cindy. "Contrôle génétique de la biosynthèse des déterminants antigéniques glucidiques Sda et sLex dans le côlon humain : Etude de la régulation transcriptionnelle du gène B4GALNT2." Thesis, Lille 1, 2016. http://www.theses.fr/2016LIL10219.
Full textThe B4GALNT2 gene encodes the β1,4-N-acetylgalactosaminyltransferase II enzyme that controls expression of the histo blood group antigen Sda (GalNAcβ1,4[Neu5Acα2-3]Galβ1-4GlcNAc-R). This carbohydrate antigen is detected in human tissues primarily in the gastrointestinal tract. It is expressed in healthy colon and tends to disappear in colon cancer, whereas the sLex antigen (Neu5Acα2-3Galβ1-4[Fucα1-3]GlcNAc-R) normally absent in healthy colon appears in colic cancer cells. However, molecular mechanisms underpinning expression of sLex tumor antigen at the expense of Sda antigen remain largely unknown. The B4GALNT2 gene drives the expression of several transcripts with alternative first exon named E1S (Short) and E1L (Long) arising from the use of two different transcriptional start sites located 200 bp apart from each other. To understand the transcriptional mechanisms that govern B4GALNT2 gene expression in colon, we have established the B4GALNT2 transcript expression profile in various cell lines and tissues using Q-PCR and we have undertaken an identification of essential regulatory genomic regions of the B4GALNT2 gene. The relative quantification of each transcript indicated that the short transcript variant of B4GALNT2 is the major transcript expressed in colic cells, and in colon and stomach, and is dramatically reduced in cancer colon. We report on the delineation of a minimal promoter region using transient cell expression of genomic deletion constructs harboring the luciferase reporter gene in healthy colic (or not) and gastriccell lines. Electrophoretic Mobility Shift Assay experiences allowed us to highlight protein-nucleic acid interactions in this minimal promoter region. Transcription factor binding sites were determined by bioinformatics analysis of the minimal promoter region. Mutation of these sites by directed mutagenesis allowed us to determine their implication in the regulation of the B4GALNT2 gene. Finally, in cellulo fixation of these transcription factors to the minimal promoter region of the B4GALNT2 gene was confirmed by chromatin immunoprecipitation. Our data further suggest that the short B4GALNT2 transcript is predominantly expressed in healthy colon and is regulated by a combination of various transcription factors such as Ets-1, DMP1 or Sp1
Pucci, Michela <1991>. "Impact of Glycosyltransferases on the Phenotype, Signaling and Transcriptome of Colorectal Cancer Cell Lines. Focus on the role of glycosyltransferases B4GALNT2 and FUT6 and their cognate Sda and sLex antigens." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amsdottorato.unibo.it/9907/1/Pucci%20Michela.pdf.
Full textWu, Yi-Ling, and 吳易玲. "Functional Roles of B4GALT3 in Colon Cancer Cells." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/39782301489455786609.
Full text臺灣大學
解剖學暨生物細胞學研究所
98
β-1,4-galactosyltransferases (B4GALTs) catalyze the transfer of UDP-galactose to an N-acetylglucosamine via β-1,4-linkage and are responsible for the biosynthesis of N-acetyllactosamine. Poly-N-acetyllactosamines are composed of repeating units of N-acetyllactosamine. In the present study, we elucidate the function of B4GALT3 in HCT116 colon cancer cells. Overexpression of B4GALT3 promotes cell proliferation in vitro and tumor growth in vivo, as well as colony formation. Overexpression of B4GALT3 also reduces cell migration and invasion. Interestingly, B4GALT3 increases poly-N-acetyllactosamine structures on both EGFR and β1 integrin. Up-regulation of phosphorylated EGFR (pY845) is found in cells overexpressing B4GALT3 and this may lead to an increase in cell growth. Moreover, B4GALT3 decreases phosphorylation of focal adhesion kinase (FAK) and paxillin, indicating that reduced cell migration may be partly mediated by integrin signaling pathways. Immunohistochemistry shows that B4GALT3 is up-regulated in 64.6% (7/11) of colorectal tumors compared with their normal counterparts, whereas only 40% (4/10) and 44.6% (37/83) detected by Western blotting and QPCR, respectively. This inconsistency may result from the positive staining of some stromal cells in colorectal mucosae.
Book chapters on the topic "B4GALNT3"
Baenziger, Jacques U. "Beta1,4-N-Acetylgalactosaminyltransferase-3 (B4GALNT3) and Beta1,4-N-Acetylgalactosaminyltransferase-4 (B4GALNT4)." In Handbook of Glycosyltransferases and Related Genes, 429–37. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54240-7_121.
Full textRamakrishnan, Boopathy, and Pradman K. Qasba. "UDP-Gal: BetaGlcNAc Beta 1,4-Galactosyltransferase, Polypeptide 1 (B4GALT1)." In Handbook of Glycosyltransferases and Related Genes, 51–62. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54240-7_110.
Full textFurukawa, Kiyoshi, Henrik Clausen, and Takashi Sato. "UDP-Gal: BetaGlcNAc Beta 1,4-Galactosyltransferase, Polypeptide 2-6; Xylosylprotein Beta 1,4-Galactosyltransferase, Polypeptide 7 (Galactosyltransferase I) (B4GALT2-7)." In Handbook of Glycosyltransferases and Related Genes, 63–72. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54240-7_31.
Full textSpranger, Jürgen W., Paula W. Brill, Christine Hall, Gen Nishimura, Andrea Superti-Furga, and Sheila Unger. "Diastrophic Dysplasia and Related Conditions, and Dysplasias with Joint Dislocations." In Bone Dysplasias, 245–306. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190626655.003.0008.
Full textConference papers on the topic "B4GALNT3"
Chen, Po-Da, Ai-An Chang, Yao-Ming Wu, and Min-Chuan Huang. "Abstract 1402: Silencing of B4GALT1 inversely regulates malignant phenotypes of hepatocellular carcinoma cells." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-1402.
Full textAlOBAIDE, MOHAMMED A., Hytham Alobydi, Abdelsalam Abdelsalam, Ruiwen Zhang, and Kalkunte S. Srivenugopal. "Abstract 1075: Multiple alternative promoters and a long non-coding RNA constitute the complex regulatory region of the cancer and drug resistance associated gene B4GALT1." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-1075.
Full text