Academic literature on the topic 'Bacillus (Bacteria) – Genetics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bacillus (Bacteria) – Genetics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Bacillus (Bacteria) – Genetics"

1

Vilas-Bôas, G. T., A. P. S. Peruca, and O. M. N. Arantes. "Biology and taxonomy ofBacillus cereus,Bacillus anthracis, andBacillus thuringiensis." Canadian Journal of Microbiology 53, no. 6 (June 2007): 673–87. http://dx.doi.org/10.1139/w07-029.

Full text
Abstract:
Three species of the Bacillus cereus group (Bacillus cereus, Bacillus anthracis , and Bacillus thuringiensis ) have a marked impact on human activity. Bacillus cereus and B. anthracis are important pathogens of mammals, including humans, and B. thuringiensis is extensively used in the biological control of insects. The microbiological, biochemical, and genetic characteristics of these three species are reviewed, together with a discussion of several genomic studies conducted on strains of B. cereus group. Using bacterial systematic concepts, we speculate that to understand the taxonomic relationship within this group of bacteria, special attention should be devoted also to the ecology and the population genetics of these species.
APA, Harvard, Vancouver, ISO, and other styles
2

Elamary, Rokaia, and Wesam M. Salem. "Optimizing and purifying extracellular amylase from soil bacteria to inhibit clinical biofilm-forming bacteria." PeerJ 8 (November 2, 2020): e10288. http://dx.doi.org/10.7717/peerj.10288.

Full text
Abstract:
Background Bacterial biofilms have become a major threat to human health. The objective of this study was to isolate amylase-producing bacteria from soil to determine the overall inhibition of certain pathogenic bacterial biofilms. Methods We used serial dilution and the streaking method to obtain a total of 75 positive amylase isolates. The starch-agar plate method was used to screen the amylolytic activities of these isolates, and we used morphological and biochemical methods to characterize the isolates. Optimal conditions for amylase production and purification using Sephadex G-200 and SDS-PAGE were monitored. We screened these isolates’ antagonistic activities and the purified amylase against pathogenic and multi-drug-resistant human bacteria using the agar disk diffusion method. Some standard antibiotics were controlled according to their degree of sensitivity. Finally, we used spectrophotometric methods to screen the antibiofilm 24 and 48 h after application of filtering and purifying enzymes in order to determine its efficacy at human pathogenic bacteria. Results The isolated Bacillus species were Bacillus megaterium (26.7%), Bacillus subtilis (16%), Bacillus cereus (13.3%), Bacillus thuringiesis (10.7%), Bacillus lentus (10.7%), Bacillus mycoides (5.3%), Bacillus alvei (5.3%), Bacillus polymyxa (4%), Bacillus circulans (4%), and Micrococcus roseus (4%). Interestingly, all isolates showed a high antagonism to target pathogens. B. alevi had the highest recorded activity (48 mm) and B. polymyxa had the lowest recorded activity (12 mm) against Staphylococcus aureus (MRSA) and Escherichia coli, respectively. On the other hand, we detected no antibacterial activity for purified amylase. The supernatant of the isolated amylase-producing bacteria and its purified amylase showed significant inhibition for biofilm: 93.7% and 78.8%, respectively. This suggests that supernatant and purified amylase may be effective for clinical and environmental biofilm control. Discussion Our results showed that soil bacterial isolates such as Bacillus sp. supernatant and its purified amylase are good antibiofilm tools that can inhibit multidrug-resistant former strains. They could be beneficial for pharmaceutical use. While purified amylase was effective as an antibiofilm, the isolated supernatant showed better results.
APA, Harvard, Vancouver, ISO, and other styles
3

Ngalimat, Mohamad Syazwan, Raja Noor Zaliha Raja Abd. Rahman, Mohd Termizi Yusof, Amir Syahir, and Suriana Sabri. "Characterisation of bacteria isolated from the stingless bee, Heterotrigona itama, honey, bee bread and propolis." PeerJ 7 (August 22, 2019): e7478. http://dx.doi.org/10.7717/peerj.7478.

Full text
Abstract:
Bacteria are present in stingless bee nest products. However, detailed information on their characteristics is scarce. Thus, this study aims to investigate the characteristics of bacterial species isolated from Malaysian stingless bee, Heterotrigona itama, nest products. Honey, bee bread and propolis were collected aseptically from four geographical localities of Malaysia. Total plate count (TPC), bacterial identification, phenotypic profile and enzymatic and antibacterial activities were studied. The results indicated that the number of TPC varies from one location to another. A total of 41 different bacterial isolates from the phyla Firmicutes, Proteobacteria and Actinobacteria were identified. Bacillus species were the major bacteria found. Therein, Bacillus cereus was the most frequently isolated species followed by Bacillus aryabhattai, Bacillus oleronius, Bacillus stratosphericus, Bacillus altitudinis, Bacillus amyloliquefaciens, Bacillus nealsonii, Bacillus toyonensis, Bacillus subtilis, Bacillus safensis, Bacillus pseudomycoides, Enterobacter asburiae, Enterobacter cloacae, Pantoea dispersa and Streptomyces kunmingensis. Phenotypic profile of 15 bacterial isolates using GEN III MicroPlate™ system revealed most of the isolates as capable to utilise carbohydrates as well as amino acids and carboxylic acids and derivatives. Proteolytic, lipolytic and cellulolytic activities as determined by enzymatic assays were detected in Bacillus stratosphericus PD6, Bacillus amyloliquefaciens PD9, Bacillus subtilis BD3 and Bacillus safensis BD9. Bacillus amyloliquefaciens PD9 showed broad-spectrum of antimicrobial activity against Gram-positive and Gram-negative bacteria in vitro. The multienzymes and antimicrobial activities exhibited by the bacterial isolates from H. itama nest products could provide potential sources of enzymes and antimicrobial compounds for biotechnological applications.
APA, Harvard, Vancouver, ISO, and other styles
4

Araújo, Welington L., Walter Maccheroni Jr., Carlos I. Aguilar-Vildoso, Paulo AV Barroso, Halha O. Saridakis, and João Lúcio Azevedo. "Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks." Canadian Journal of Microbiology 47, no. 3 (March 1, 2001): 229–36. http://dx.doi.org/10.1139/w00-146.

Full text
Abstract:
Fungi and bacteria were isolated from surface disinfected leaf tissues of several citrus rootstocks. The principal bacterial species isolated were Alcaligenes sp., Bacillus spp. (including B. cereus, B. lentus, B. megaterium, B. pumilus, and B. subtilis), Burkholderia cepacia, Curtobacterium flaccumfaciens, Enterobacter cloacae, Methylobacterium extorquens, and Pantoea agglomerans, with P. agglomerans and B. pumilus being the most frequently isolated species. The most abundant fungal species were Colletotrichum gloeosporioides, Guignardia citricarpa, and Cladosporium sp. Genetic variability between 36 endophytic bacterial isolates was analysed by the random amplified polymorphic DNA (RAPD) technique, which indicated that B. pumilus isolates were more diverse than P. agglomerans isolates, although genetic diversity was not related to the host plants. In vitro interaction studies between G. citricarpa isolates and the most frequently isolated endophytic bacteria showed that metabolites secreted by G. citricarpa have an inhibitory growth effect on some Bacillus species, and a stimulatory growth effect on P. agglomerans.Key words: endophytes, citrus, fungal-bacterial interaction, RAPD, diversity, Pantoea agglomerans, Bacillus pumilus, Guignardia citricarpa.
APA, Harvard, Vancouver, ISO, and other styles
5

Yuan, Zong-Sheng, Fang Liu, and Guo-Fang Zhang. "Isolation of culturable endophytic bacteria from Moso bamboo (Phyllostachys edulis) and 16S rDNA diversity analysis." Archives of Biological Sciences 67, no. 3 (2015): 1001–8. http://dx.doi.org/10.2298/abs141212063y.

Full text
Abstract:
We analyzed culturable endophytic bacteria from Moso bamboo (Phyllostachys edulis) using traditional bacterial isolation and culture methods and then studied the colony characteristics and diversity with a 16S rDNA sequence analysis. We isolated 82 endophytic bacteria strains belonging to 47 species in 26 genera from the root, rhizome, stem and leaves of Moso bamboo species from populations on Wuyi Mountain, and in the Jiangle and Changting regions. There were significant differences in the composition of the culturable endophytic bacteria isolated from the different areas and from different tissues. The dominant bacteria strains from the Wuyi Mountain samples were Arthrobacter, Staphylococcus, Bacillus and Enterobacter, while the dominant bacteria from the Jiangle samples were Bacillus, Staphylococcus and Curtobacterium, and the dominant bacteria in the Changting samples were Alcaligenes, Pseudomonas, Staphylococcus and Bacillus. Our results demonstrate the abundant diversity of endophytic bacteria in Moso bamboo.
APA, Harvard, Vancouver, ISO, and other styles
6

Hamana, Koei, Teruhiko Akiba, Fuji Uchino, and Shigeru Matsuzaki. "Distribution of spermine in bacilli and lactic acid bacteria." Canadian Journal of Microbiology 35, no. 4 (April 1, 1989): 450–55. http://dx.doi.org/10.1139/m89-069.

Full text
Abstract:
Obligate moderately thermophilic bacilli and obligate moderately thermoacidophilic bacilli contained spermine as the major polyamine in addition to putrescine and spermidine. The identity of spermine was confirmed by thin-layer chromatography and high-performance liquid chromatography before and after treatment with putrescine oxidase. Using these methods, thermospermine and spermine can be separated; thermospermine was not present in these organisms. On the other hand, various facultative thermophiles and mesophilic strains of the genus Bacillus, including alkalophiles and halophiles, lack spermine and other tetraamines. No spermine was detected in several strains of mesophilic or facultative slightly thermophilic lactic acid bacteria, Lactobacillus and Streptococcus.Key words: polyamine, spermine, Bacillus, Lactobacillus, Streptococcus.
APA, Harvard, Vancouver, ISO, and other styles
7

Wagi, Shabana, and Ambreen Ahmed. "Bacillus spp.: potent microfactories of bacterial IAA." PeerJ 7 (July 23, 2019): e7258. http://dx.doi.org/10.7717/peerj.7258.

Full text
Abstract:
Background Auxin production by bacteria is one of the most important direct mechanisms utilized by plant growth-promoting bacteria (PGPB) for the betterment of plants naturally because auxin is a plant friendly secondary metabolite synthesized naturally by bacteria, and hence improves the growth of associated plants. So, the current study focuses on bacterial synthesis of Indole-3-acetic acid (IAA) for plant growth improvement. Methods In the current study, the PGPB were selected on the basis of their auxin production potential and their growth promoting attributes were evaluated. Indole-3-acetic acid producing potential of two selected bacterial isolates was observed by varying different growth conditions i.e., media composition, carbon sources (glucose, sucrose and lactose) and different concentrations of precursor. Influence of various physiological factors (temperature and incubation time period) on IAA production potential was also evaluated. Results Both the bacterial strains Bacillus cereus (So3II) and B. subtilis (Mt3b) showed variable potential for the production of bacterial IAA under different set of growth and environmental conditions. Hence, the IAA production potential of the bacterial isolates can be enhanced by affecting optimum growth conditions for bacterial isolates and can be used for the optimal production of bacterial IAA and its utilization for plant growth improvement can lead to better yield in an eco-friendly manner.
APA, Harvard, Vancouver, ISO, and other styles
8

Pérez-Pérez, J. Abraham, David Espinosa-Victoria, Hilda V. Silva-Rojas, and Lucía López-Reyes. "DIVERSITY OF CULTURABLE BACTERIAL MICROBIOTA OF THE Eisenia foetida DIGESTIVE TRACT." Revista Fitotecnia Mexicana 41, no. 3 (September 5, 2018): 255–64. http://dx.doi.org/10.35196/rfm.2018.3.255-264.

Full text
Abstract:
Bacteria are an unavoidable component of the natural earthworm diet; thus, bacterial diversity in the earthworm gut is directly linked to decomposition of organic matter and development of the surrounding plants. The aim of this research was to isolate and to identify biochemically and molecularly the culturable bacterial microbiota of the digestive tract of Eisenia foetida. Earthworms were sourced from Instituto de Reconversión Productiva y Bioenergética (IRBIO) and Colegio de Postgraduados (COLPOS), México. Bacterial isolation was carried out on plates of Brain Heart Infusion (BHI) culture medium. Fifty six and 44 bacterial isolates were obtained from IRBIO and COLPOS, respectively. The population was composed of 44 Gram-negative and 56 Gram-positive isolates. Over 50 % of the bacterial isolates were rod-shaped cells. The 16S rRNA gene was sequenced and nine genera were identified in worms from IRBIO (Bacillus, Paenibacillus, Solibacillus, Staphylococcus, Arthrobacter, Pantoea, Stenotrophomonas, Acinetobacter and Aeromonas) and six in worms from COLPOS (Bacillus, Paenibacillus, Stenotrophomonas, Staphylococcus, Acinetobacter and Aeromonas). Bacillus was the predominant genus, with eight and six species in the oligochaetes from IRBIO and COLPOS, respectively. The most represented bacteria in the worms from both sites were Bacillus sp. and B. subtilis. The predominance of Bacillus was probably due to spore formation, a reproductive strategy that ensures survival and dispersion in the soil and oligochaetes digestive tract. The gut of E. foetida not only harbored bacterial species of agronomic importance but also species potentially pathogenic for humans (Staphylococcus warneri, Pantoea agglomerans and Stentrophomonas sp.). The larger bacterial diversity in worms from IRBIO could be due to their feeding on cattle manure, which is a rich source of bacteria.
APA, Harvard, Vancouver, ISO, and other styles
9

Zeigler, D. R., and D. H. Dean. "Orientation of genes in the Bacillus subtilis chromosome." Genetics 125, no. 4 (August 1, 1990): 703–8. http://dx.doi.org/10.1093/genetics/125.4.703.

Full text
Abstract:
Abstract The orientation of 96 genes on the Bacillus subtilis chromosome was deduced by the analysis of published data. Of these genes, 91 were found to be oriented so that their promoters were proximal to the chromosomal replication origin and their transcription termini to the replication terminus. Transcription of these genes would therefore be co-directional with replication. This chromosomal organization is consistent with the hypothesis advanced for Escherichia coli that bacteria avoid head-on collisions between RNA polymerase and DNA replication proteins by the appropriate orientation of their transcription units.
APA, Harvard, Vancouver, ISO, and other styles
10

Majewski, Jacek, and Frederick M. Cohan. "DNA Sequence Similarity Requirements for Interspecific Recombination in Bacillus." Genetics 153, no. 4 (December 1, 1999): 1525–33. http://dx.doi.org/10.1093/genetics/153.4.1525.

Full text
Abstract:
Abstract Gene transfer in bacteria is notoriously promiscuous. Genetic material is known to be transferred between groups as distantly related as the Gram positives and Gram negatives. However, the frequency of homologous recombination decreases sharply with the level of relatedness between the donor and recipient. Several studies show that this sexual isolation is an exponential function of DNA sequence divergence between recombining substrates. The two major factors implicated in producing the recombinational barrier are the mismatch repair system and the requirement for a short region of sequence identity to initiate strand exchange. Here we demonstrate that sexual isolation in Bacillus transformation results almost exclusively from the need for regions of identity at both the 5′ and 3′ ends of the donor DNA strand. We show that, by providing the essential identity, we can effectively eliminate sexual isolation between highly divergent sequences. We also present evidence that the potential of a donor sequence to act as a recombinogenic, invasive end is determined by the stability (melting point) of the donor-recipient complex. These results explain the exponential relationship between sexual isolation and sequence divergence observed in bacteria. They also suggest a model for rapid spread of novel adaptations, such as antibiotic resistance genes, among related species.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Bacillus (Bacteria) – Genetics"

1

Johansson, Per. "Genetics of tetrapyrrole synthesis in gram-positive bacteria." Lund : Lund University, 1999. http://catalog.hathitrust.org/api/volumes/oclc/68944808.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

GARVEY, KEVIN JAMES. "DNA SEQUENCE ANALYSIS OF BACILLUS PHAGE PHI29 RIGHT EARLY REGION AND LATE GENES 14, 15 AND 16 (LYSOZYME)." Diss., The University of Arizona, 1986. http://hdl.handle.net/10150/183839.

Full text
Abstract:
The sequence of the rightmost 4,626 bp of the Bacillus phage φ29 genome is presented and analyzed. Nine large open reading frames (ORF's) have been found. Three of these ORF's are correlated with the late genes 14, 15 and 16. The remaining six ORF's are in the right early region. One of these early ORF's has been identified as gene 17 (g17), the only early gene to have been genetically mapped in this region. The remaining ORF's (16.5, 16.6, 16.7, 16.8 and 16.9) were previously unknown. The biological efficacies of some of these putative early ORF's were demonstrated using an in vitro E. coli transcription-translation system. The primary amino acid sequences, molecular weights, translational initiation sequences and genetic organization of these nine genes are presented and discussed. Gene product 15 (gp15) was found to have strong homology with Salmonella phage P22 gp19, a lysozyme. gp15 also has a lesser but possibly significant homology with T4 gene product e (gpe), also a lysozyme. Using a clone containing φ29 g15 it was shown that gp15 can complement T4 gene e (ge) mutant infections, leading to the conclusion that φ29 g15 encodes a lysozyme. Three transcriptional initiation sites (P(E)3, P(EC)3 and B2) were previously mapped in this region. The sequences of the putative P(EC)3 and B2 promoter sites are presented and shown to have homology with the Bacillus σ⁵⁵ concensus sequence. Sequences having homology to a minor Bacillus sigma factor recognition site, σ³², are also presented and discussed. The region between the last late gene (g16) and the last early gene (ORF-16.5) consists of only 30 bp. Analysis of potential secondary structures of transcripts across this region suggests that the same sequences may be involved in the termination of both late and early transcription.
APA, Harvard, Vancouver, ISO, and other styles
3

Ng, Ho-yin Ricky, and 吳浩然. "Identification of anaerobic, non-sporulating, Gram-positive bacilli from blood cultures by 16S rRNA gene sequencing." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B44670424.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pieterse, Anton. "Cloning of a novel esterase gene from Bacillus pumilus and its characterisation in Escherichia coli." Thesis, Stellenbosch : Stellenbosch University, 2000. http://hdl.handle.net/10019.1/51654.

Full text
Abstract:
Thesis (MSc)--University of Stellenbosch, 2000.
ENGLISH ABSTRACT: Esterases play a variety of roles in nearly every aspect of life ranging from cellular metabolism, signal transduction to defence mechanisms in plants. One aspect of esterases that recently is receiving more attention is the role esterases play in the .degradation of plant material. With fossil fuels (coal and oil) estimated to run out in the next 20 to 30 years, renewable sources such as plant biomass are becoming increasingly important. Plant biomass contains hemicellulosic and cellulosic materials that need to be degraded to their different constituents before they can be optimally used for the production of commodities. Although the enzymes needed to hydrolyse the xylan backbone (xylanases and P-xylosidases) are important, enzymes that remove side chains from the polymer are equally important. They facilitate hydrolysis by xylanases and P-xylosidases and will improve the availability of monomeric sugars for utilisation when used in conjunction with other xylanolytic enzymes. Many of these side-chains are esters and they need to be removed through the action of esterases, either directly from the xylan backbone or from shorter xylo-oligomers. An existing genomic DNA library of Bacil/us pumilus in Escherichia coli was screened for the presence of an acetyl esterase encoding gene. Positive clones were identified by the formation of clearing zones on plates containing glucose pentaacetate. Plasmid DNA was isolated from a positive E. coli clone. The DNA insert was sequenced and found to contain two open reading frames, one of which encoded a novel esterase (estA). Using different primers the gene was amplified by polymerase chain reaction and inserted into an inducible expression vector (pKK223- 3) for expression in E. coli. The plasmid was introduced into E coli and the esterase activity determined, using the chromogenic substrate a-naphthyl acetate. Activity levels decreased shortly after induction with IPTG and therefore plasmid pAP4 was used for enzymatic assays. Cultures containing plasmid pAP4 produced extracellular activity of 2.5 nkatal/ml. The pH and temperature optima as well as temperature stability of the enzyme was determined. The enzyme exhibited optimal activity at pH 6 and 60°C and was stable at 60°C after 2 h. Enzyme assays on different substrates yielded activity on methylumbelliferyl butyrate and methylumbelliferyl acetate in addition to the glucose pentaacetate and a-naphthyl acetate. The estA gene was cloned into a yeast expression vector between the PGK promoter and terminator sequences for expression of the gene in Saccharomyces cerevisiae. The estA open reading frame was also fused to the MFa 1 secretion signal for secretion of the protein from S. cerevisiae. The expression vector was successfully transformed into S. cerevisiae, but no extracellular activity was detected. Only low intracellular activity of 0.260 nkatal/ml was detected in S. cerevisiae.
AFRIKAANSE OPSOMMING: Esterases speel 'n verskeidenheid van rolle in feitlik elke aspek van lewe, van sel metabolisme, sein transduksie tot verdedigingsmeganismes in plante. Een aspek van esterases wat al hoe meer aandag geniet, is die rol wat esterases in die afbraak van plant en plantmateriaal speel. Met olie- en steenkoolbronne wat na beraming oor 20 tot 30 jaar tot niet sal gaan, raak die rol wat hernubare bronne speel al hoe belangriker. Plantbiomassa bevat sellulose en hemisellulose wat tot die verskillende komponente afgebreek moet word voordat dit optimaal vir die vervaardiging van produkte aangewend kan word. Alhoewel die ensieme wat vir die hidrolise van die xilaanruggraat benodig word, (xilanases en ~-xulosidases) belangrik is, is die ensieme wat die sygroepe vanaf die polimeer verwyder ewe belangrik aangesien hulle die hidrolise deur xilanases en ~-xulosidases bevorder. Wanneer hulle saam met die ander xilanolitiese ensieme gebruik word, sal hulle die beskikbaarheid van monomeriese suikers vir fermentasie verhoog. Baie van hierdie sygroepe is esters en hulle word deur die aksie van esterases verwyder, of direk van die ruggraat, ofvanafkorter xilo-oligosakkariede. 'n Bestaande genoom DNA biblioteek van Bacillus pumilus in Escherichia coli is vir die teenwoordigheid van 'n asetielesterase-koderende geen gesif. Positiewe klone is deur die vorming van 'n sone op plate wat glukose pentaasetaat bevat, geïdentifiseer. Die DNA-invoeging van die positiewe E. coli-kloon se DNA-volgorde is bepaal en twee oopleesrame is gevind waarvan een vir 'n unieke esterase (estA) kodeer. Met behulp van verskillende inleiers is die geen met die polimerasekettingreaksie (PKR) geamplifiseer en in 'n induseerbare promotor vir uitdrukking in E. coli gekloneer. Die plasmied is getransformeer in E. coli en aktiwiteit is bepaal deur cc-naftielasetaatte gebruik. Vlakke van aktiwiteit het kort na induksie met IPTG weer gedaal en daarom was plasmied pAP4 vir ensiematiese toetse gebruik. E. coli-transformante met plasmied pAP4 het ekstrasellulêre aktiwiteit van 2.5 nkatal/ml gelewer. Die pH en temperatuur optima sowel as die temperatuurstabiliteit van die ensiem was bepaal. Die ensiem toon optimale aktiwiteit by pH 6 en 'n temperatuur van 60°C. Aktiwiteitstoetse op verskillende substrate het aktiwiteit op metielumbelliferielasetaat en metielumbelliferielbutiraat bo-en-behalwe die glukosepentaasetaat en c-naftielasetaar getoon. Die estA geen is in uitdrukkingskasette bevattende die PGKpromotor en-termineerder vir uitdrukking in Saccharomyces cerevisiae gekloneer. Dit is ook agter die MFal-sekresiesein gekoppel vir sekresie vanuit S. cerevisiae. Geen ekstrasellulêre aktiwiteit is gevind nie. Slegs intrasellulêre aktiwiteit van 0.26 nanokatal per mililiter was bepaal.
APA, Harvard, Vancouver, ISO, and other styles
5

Van, Rooyen Ronel 1976. "Cloning of a novel Bacillus pumilus cellobiose-utilising system : functional expression in Escherichia coli." Thesis, Stellenbosch : Stellenbosch University, 2002. http://hdl.handle.net/10019.1/52733.

Full text
Abstract:
Thesis (MScAgric)--University of Stellenbosch, 2002.
ENGLISH ABSTRACT: Cellulose, a ~-1,4-linked polymer of glucose, is the most abundant renewable carbon source on earth. It is well established that efficient degradation of cellulose requires the synergistic action of three categories of enzymes: endoglucanases (EG), cellobiohydrolases (CBH) and ~-glucosidases. ~-Glucosidases are a heterogenous group of enzymes that display broad substrate specificity with respect to hydrolysis of cellobiose and different aryl- and alkyl-ê-u-glucosides. They not only catalyse the final step in the saccharification of cellulose, but also stimulate the extent of cellulose hydrolysis by relieving the cellobiose mediated inhibition of EG and CBH. The ability to utilize cellobiose is widespread among gram-negative, gram-positive, and Archaea bacterial genera. Cellobiose phosphoenolpyruvate- dependent phosphotransferase systems (PTS) have been reported in various bacteria, including: Bacillus species. In this study, we have used a cellobiose chromophore analog, p-nitrophenyl- ~-D-glucopyranoside (pNPG), to screen a Bacillus pumilus genomic library for cellobiose utilization genes that are functionally expressed in Escherichia coli. Cloning and sequencing of the most active clone with subsequent sequence analysis allowed the identification of four adjacent open reading frames. An operon of four genes (celBACH), encoding a cellobiose phosphotransferase system (PTS): enzyme II (encoded by celB, celA and celC) and a ó-phospho-f-glucosidase (encoded by celH) was derived from the sequence data. The amino acid sequence of the celH gene displayed good homology with ~-glucosidases from Bacillus halodurans (74.2%), B. subtilis (72.7%) and Listeria monocytogenes (62.2%). .As implied by sequence alignments, the celH gene product belongs to family 1 of the glycosyl hydrolases, which employ a retaining mechanism of enzymatic bond hydrolysis. In vivo PTS activity assays concluded that the optimal temperature and pH at which the recombinant E. coli strain hydrolysed pNPG were pH 7.5 and 45°C, respectively. Unfortunately, at 45°C the CelBACH-associated activity of the recombinant strain was only stable for 20 minutes. It was also shown that the enzyme complex is very sensitive to glucose. Since active growing cells metabolise glucose very rapidly this feature is not a significant problem. Constitutive expression of the B. pumilus celBACH genes in E. coli enabled the host to efficiently metabolise cellobiose as a carbon source. However, cellobiose utilization was only achievable in the presence ofO.01% glucose. This phenomenon could be explained by the critical role of phosphoenolpyruvate (PEP) as the phosphate donor in PTS-mediated transport. Glucose supplementation induced the glycolytic pathway and subsequently the availability of PEP. Furthermore, it could be concluded that the general PTS components . (enzyme I and HPr) of E. coli must have complemented the CelBACH system from B. pumilus to allow functionality of the celBACH operon, in the recombinant E. coli host.
AFRIKAANSE OPSOMMING: Sellulose (' n polimeer van p-l,4-gekoppelde glukose) is die volopste bron van hernubare koostof in die natuur. Effektiewe afbraak van sellulose word deur die sinnergistiese werking van drie ensiernklasse bewerkstellig: endoglukanases (EG), sellobiohidrolases (CBH) en P-glukosidases. p-Glukosidases behoort tot 'n heterogene groep ensieme met 'n wye substraatspesifisiteit m.b.t. sellobiose en verskeie ariel- and alkiel-ê-n-glukosidiesc verbindings. Alhoewel hierdie ensieme primêr as kataliste vir die omskakeling van sellulose afbraak-produkte funksioneer, stimuleer hulle ook die mate waartoe sellulose hidroliese plaasvind deur eindprodukinhibisie van EG en CBH op te hef. Sellobiose word algemeen deur verskeie genera van die gram-negatiewe, gram-positiewe en Archae bakterieë gemetaboliseer. Die sellobiose-spesifieke fosfoenolpirovaatfosfotransportsisteem (PTS) is reeds is in verskeie bakterië, insluitende die Bacillus spesies, beskryf. In hierdie studie word die sifting van 'n Bacillus pumilus genoombiblioteek m.b.V. 'n chromofoor analoog van sellobiose, p-nitrofeniel-p-o-glukopiranosied (pNPG), vir die teenwoordigheid van gene wat moontlike sellobiose-benutting in Escherichia coli kan bewerkstellig, beskryf. Die DNA-volgorde van die mees aktiewe kloon is bepaal en daaropvolgende analiese van die DNA-volgorde het vier aangrensende oopleesrame geïdentifiseer. 'n Operon (celBACH), bestaande uit vier gene, wat onderskeidelik vir die ensiem II (gekodeer deur celB, celA en celC) en fosfo-B-glukosidase (gekodeer deur celH) van die sellobiose-spesifieke PTS van B. pumilus kodeer, is vanaf die DNA-volgorde afgelei. Die aminosuuropeenvolging van die celH-geen het goeie homologie met P-glukosidases van Bacillus halodurans (74.2%), B. subtilis (72.7%) en Listeria monocytogenes (62.2%) getoon. Belyning van die DNA-volgordes het aangedui dat die celH geenproduk saam met die familie 1 glikosielhidrolases gegroepeer kan word. Hierdie familie gebruik 'n hidrolitiese meganisme waartydens die stoigiometriese posisie van die anomeriese koolstof behou word. PTS-aktiwiteit van die rekombinante E. coli ras, wat die celBACH gene uitdruk, is in vivo bepaal. Die optimale temperatuur en pH waarby die rekombinante ras pNPG hidroliseer, is onderskeidelik pH 7.5 en 45°C. Alhoewel die ensiernkompleks baie sensitief is vir glukose, is dit nie 'n wesenlike probleem nie, omdat aktief groeiende E. coli selle glukose teen 'n baie vinnige tempo benut. Die celBACH operon het onder beheer van 'n konstitiewe promotor in E coli die rekombinante gasheer in staat gestelom sellobiose as 'n koolstofbron te benut. Die benutting van sellobiose word egter aan die teenwoordigheid van 'n lae konsentrasie glukose (0.01 %) gekoppel. Hierdie verskynsel dui op die kritiese rol van fosfoenolpirovaat (PEP) as die fosfaatdonor gedurende PTS-gebaseerde transport. Glukose speel waarskynlik 'n rol in die indusering van glikoliese, en sodoende die produksie van PEP as tussenproduk. Verder kan afgelei word dat die algemene PTS komponente (ensiem I en HPr) van E. coli die B. pumilis CelBACH-sisteem komplementeer en derhalwe funksionering van die celBACH operon in E. coli toelaat.
APA, Harvard, Vancouver, ISO, and other styles
6

Butcher, Bronwyn Gwyneth. "Molecular genetics of arsenic resistance of the biomining bacterium Acidithiobacillus ferrooxidans." Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53503.

Full text
Abstract:
Dissertation (PhD)--Stellenbosch University, 2003.
ENGLISH ABSTRACT: The acidophilic, chemolithoautotrophic bacterium, Acidothiobaci/lus ferrooxidans is one of a consortium of bacteria involved in biornining, including the recovery of gold from arsenopyrite ores. The genes conferring arsenic resistance to At. ferrooxidans were cloned and sequenced and shown to be chromosomally located. Homologues to the arsB (membrane located arsenite efflux pump), arsC (arsenate reductase) and arsH (unknown function) genes from known arsenic resistance (ars) operons were identified. A fourth gene was found to have weak homology to the ArsR-family of regulators. The arsenic resistance genes of At. ferrooxidans are arranged in an unusual manner, with the arsRC and arsBH genes divergently transcribed. This divergent arrangement was found to be conserved in all four of the At. ferrooxidans strains we tested. All of the At. ferrooxidans ars genes were expressed in Escherichia coli and the arsB and arsC genes conferred arsenite (and antimonite) and arsenate resistance, respectively, to an E. coli ars mutant (AW311 0). Analysis of the putative amino acid sequences of these ars genes revealed that the ArsB from At. ferrooxidans is closely related to the ArsB proteins from other Gram-negative bacteria. However, the ArsC protein is more closely related to the ArsC proteins from Gram-positive bacteria. Furthermore, a functional thioredoxin (trxA) gene was required for ArsC-mediated arsenate resistance in E. coli. This suggests that reduction of arsenate by At. ferrooxidans has a similar reaction mechanism as that by Gram-positive ArsC proteins. While arsH was expressed in an E. coli-derived in vitro transcription-translation system, the presence of this gene was not required for, nor enhanced, arsenite or arsenate resistance in E. coli. We predict that the function provided by this gene is not required in E. coli. While the putative ArsR from At. ferrooxidans does contain a potential DNA-binding helix-turn-helix (HTH) domain, it does not contain the arsenite binding motif (ELCVCDL), required for response to the presence of inducer. Instead, the ArsR-like protein from At. ferrooxidans is related to a group of unstudied ArsR-like proteins that have been associated with other ars-like genes identified during genome sequencing projects. Using arsB-lacZ, arsC-lacZ, and arsR-lacZ fusions, it has been shown that this atypical ArsR protein from At. ferrooxidans did repress expression from the arsBH and arsRC promoters and that this repression was relieved by the presence of either arsenite or arsenate. Deletion of 19 amino acids from the C-terminus of the ArsR protein did not affect regulation, while deletion of a further 28 amino acids inactivated ArsR. Northern blot hybridization confirmed that expression of the arsRC and arsBH transcripts is increased in the presence of either arsenite or arsenate. This study is the first to show that the ars genes from the acidophilic biorning bacterium At. ferrooxidans are able to be studied in the neutrophilic bacterium, E. coli. We have also shown that the atypical ArsR found in this ars operon is able to regulate expression of these genes in response to arsenic, despite not containing the arsenite binding domain, suggesting that this protein senses arsenic by a different mechanism to that used by the ArsR family members already studied.
AFRIKAANSE OPSOMMING: Acidothiobacillus ferrooxidans, 'n asidofiliese, chemolitotrofiese bakterium, is een van 'n konsortium bakterieë betrokke by biologiese ontgunnig ("biomining") asook by die herwinning van goud uit arsenopiriet erts. Die gene wat aan At. ferrooxidans weerstandbiedendheid teen arseen verleen, is gekloneer. Die DNA-volgorde van hierdie gene is bepaal en daar is bewys dat die gene op die chromosoom geleë is. Homoloë van die arsB (membraan geleë pomp wat arseniet uitpomp), arsC (arsenaat reduktase) en die arsH (funksie onbekend) gene is in bekende arseenweerstanbiedheidsoperons (arsoperons) geïdentifiseer. Verder is daar 'n vierde geen geïdentifiseer wat lae homologie met die ArsR-familie van reguleerders toon. At. ferrooxidans se ars gene is op 'n ongewone manier gerangskik met twee van die gene, arsRC en arsBH wat lil teenoorgestelde rigtings getranskribeer word. Hierdie rangskikking van gene IS waargeneem in al vier die At. ferrooxidans rasse wat getoets is. Al die At. ferrooxidans ars gene is in Escherichia coli uitgedruk. Die arsB en arsC gene het aan 'n E. coli ars mutant (AW311 0) weerstandbiedendheid teen aseniet, antimoniet en arseen verleen. Analiese van die afgeleide aminosuurvolgorde van die ars proteïene het getoon dat die At. ferrooxidans ArsB naby verwant aan die ArsB-proteïene van ander Gram negatiewe bakterieë is. In teenstelling hiermee, is gevind dat die ArsC-proteïene nader verwant aan die ArsC-proteïene van Gram positiewe bakterieë is. Daar is ook gevind dat 'n funksionele tioredoksien (trxA) geen vir ArsC-bemiddelde arsenaat weerstandbiedendheid in E.coli benodig word. Dit dui daarop dat die meganisme van arsenaatreduksie deur At. ferrooxidans soortgelyk is aan die ArsC-proteïen-meganisme van Gram positiewe bakteriee. In vitro studies met behulp van 'n E. coli gebaseerde transkripsie-translasie sisteem het getoon dat arsH nie nodig is vir arsenaat of aseniet weerstanbiedendheid in sensitiewe E.coli rasse nie en ook nie help om weerstand in hierdie rasse te verhoog nie. Daarom kan daar aangeneem word dat die funskie van die arsH geen nie deur E. coli benodig word nie. Die vermeende ArsR van At. ferrooxidans bevat 'n potensiële DNA-binding heliks-draaiheliks motief, maar nie die arsiniet binding motief (ELCVCDL) wat nodig is vir reaksie in die teenwoordigheid van 'n induseerder nie. Die ArsA-proteïen van At. ferrooxidans is soortgelyk aan 'n groep ArsA-proteïene wat tydens genoom DNA- volgordebepalingsprojekte geïdentifiseer is. Hierdie groep gene is egter nog nie verder bestudeer nie. Deur gebruik te maak van 'n stel fusie gene, arsB-IacZ, arsC-IacZ en arsRlacZ kon daar bewys word dat die ongewone ArsH-proteïen van At. ferrooxidans uitdrukking van arsBH en arsRC onderdruk en dat die onderdrukking deur arseniet of arsenaat opgehef kan word. Delesie van die eerste 19 aminosure vanaf die C-terminus van die ArsA-proteïen het geen uitwerking op die regulering van die proteïen nie, maar delesie van 'n vedere 28 aminosure het ArsR geïnaktiveer. Verhoogde vlakke van transkripsie van arsRC en arsBH in die teenwoordigheid van arseniet en arsenaat is met behulp van Noordelike kladanalise bewys. Hierdie is die eerste studie waarin daar bewys word dat die ars gene van die asidofiliese bakterium Atferrooxidans in die neutrofiliese bacterium E. coli bestudeer kan word. Daar is ook bewys dat ten spyte daarvan dat die ArsR in die ars operon nie 'n arseniet bindingsdomein het nie, dit die uitdrukking van die gene in hierdie operon reguleer in reaksie op arseen. Dit dui dus daarop dat hierdie proteïen op arseen in die omgewing reageer met behulp van 'n meganisme wat verskil van die ArsR-proteïene wat tot dusver bestudeer is.
APA, Harvard, Vancouver, ISO, and other styles
7

Witzky, Anne Marie. "The Regulation of Elongation Factor P Post-Translational Modification in Maintenance of Gene Expression in Bacillus subtilis." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1555069407990046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bone, E. J. "Biochemistry and genetics of sporulation in Bacillus subtilis." Thesis, University of Cambridge, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.377250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Brazier, P. "The genetic manipulation of Bacillus subtilis to lysine overproduction." Thesis, University of Westminster, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376542.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chaithong, Thararat. "A molecular genetic investigation of enterotoxigenic factors in Bacillus cereus." Thesis, University of Strathclyde, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Bacillus (Bacteria) – Genetics"

1

Takami, Hideto. Genomic diversity of Bacillus-related species. New York: Nova Science, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

T, Ganesan A., and Hoch James A, eds. Genetics and biotechnology of bacilli, volume 2. San Diego: Academic Press, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Middelkoop, Tsarina. Cloning and seqeucing of a thermophilic [alpha]-amylase. Dublin: University College Dublin, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Joset, Françoise. Prokaryotic genetics: Genome organization, transfer, and plasticity. Oxford: Blackwell Scientific Publications, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

O'Donnell, Dara J. E. Immobilisation as a strategy to improve plasmid stability in recombinant Bacillus subtilis. Dublin: University College Dublin, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bacillus. New York: Plenum Press, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Colin, Harwood, ed. Bacillus. London: Plenum, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

T, Ganesan A., Hoch James A, and International Conference on the Genetics and Biotechnology of Bacilli (3rd : 1985 : Stanford University), eds. Bacillus molecular genetics and biotechnology applications. Orlando, Fla: Academic Press, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Donald D. Regulating polysaccharide synthesis in bacteria. 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

H, Doi Roy, and McGloughlin Martina, eds. Biology of bacilli: Applications to industry. Boston: Butterworth-Heinemann, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Bacillus (Bacteria) – Genetics"

1

Henkin, Tina M. "Ribosomal Structure and Genetics." In Bacillus subtilis and Other Gram-Positive Bacteria, 669–82. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555818388.ch46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Villa, T. G., S. Sánchez, L. Feijoo, J. L. R. Rama, A. Sánchez-Pérez, T. de Miguel, and C. Sieiro. "Genetics and Biochemistry of Sporulation in Endospore-Forming Bacteria (Bacillus): A Prime Example of Developmental Biology." In Developmental Biology in Prokaryotes and Lower Eukaryotes, 71–124. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77595-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Burke, William F., and Karen A. Orzech. "Genetics of Bacillus sphaericus." In Bacterial Control of Mosquitoes & Black Flies, 256–71. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-5967-8_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sekar, Vaithilingam. "Genetics of Bacillus thuringiensis israelensis." In Bacterial Control of Mosquitoes & Black Flies, 66–77. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-5967-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dubnau, David. "Genetic Exchange and Homologous Recombination." In Bacillus subtilis and Other Gram-Positive Bacteria, 553–84. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555818388.ch39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vary, Patricia S. "The Genetic Map of Bacillus megaterium." In Bacillus subtilis and Other Gram-Positive Bacteria, 475–81. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555818388.ch32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Anagnostopoulos, C., Patrick J. Piggot, and James A. Hoch. "The Genetic Map of Bacillus subtilis." In Bacillus subtilis and Other Gram-Positive Bacteria, 423–61. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555818388.ch29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pattee, Peter A. "The Genetic Map of Staphylococcus aureus." In Bacillus subtilis and Other Gram-Positive Bacteria, 489–96. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555818388.ch34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Welker, Neil E. "The Genetic Map of Bacillus stearothermophilus NUB36." In Bacillus subtilis and Other Gram-Positive Bacteria, 483–87. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555818388.ch33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Perego, Marta. "Integrational Vectors for Genetic Manipulation in Bacillus subtilis." In Bacillus subtilis and Other Gram-Positive Bacteria, 615–24. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555818388.ch42.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Bacillus (Bacteria) – Genetics"

1

"Bacillus bacteria in the resistance of potato plants to viruses." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"Endophytic bacteria of the Bacillus induce resistance of potato plants to viruses." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"Lipopeptide producing endophytic bacteria of the genus Bacillus in the regulation of the expression of genes involved in the defense response of wheat against greenbug aphid Schizaphis graminum." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

"The mechanism of the additive action of bacterial compositions Bacillus spp. in the defense response of common wheat against greenbug aphid Schizaphis graminum." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pannekok, H., A. J. Van Zonneveid, C. J. M. de vries, M. E. MacDonald, H. Veerman, and F. Blasi. "FUNCTIONAL PROPERTIES OF DELETION-MUTANTS OF TISSUE-TYPE PLASMINOGEN ACTIVATOR." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643724.

Full text
Abstract:
Over the past twenty-five years, genetic methods have generated a wealth of information on the regulation and the structure-function relationship of bacterial genes.These methods are based on the introduction of random mutations in a gene to alter its function. Subsequently, genetic techniques cure applied to localize the mutation, while the nature of the impairedfunction could be determined using biochemical methods. Classic examples of this approach is now considered to be the elucidation of the structure and function of genes, constituting the Escherichia coli lactose (lac) and tryptophan (trp) operons,and the detailed establishment of the structure and function of the repressor (lacl) of the lac operon. Recombinant DNA techniques and the development of appropriate expression systems have provided the means both to study structure and functionof eukaryotic (glyco-) proteins and to create defined mutations with a predestinedposition. The rationale for the construction of mutant genes should preferentiallyrely on detailed knowledge of the three-dimensional structure of the gene product.Elegant examples are the application of in vitro mutagenesis techniques to substitute amino-acid residues near the catalytic centre of subtilisin, a serine proteasefrom Bacillus species and to substituteanamino acid in the reactive site (i.e. Pi residue; methionine) of α-antitrypsin, a serine protease inhibitor. Such substitutions have resulted into mutant proteins which are less susceptible to oxidation and, in some cases, into mutant proteins with a higher specific activity than the wild-type protein.If no data are available on the ternary structure of a protein, other strategies have to be developed to construct intelligent mutants to study the relation between the structure and the function of a eukaryotic protein. At least for a number of gene families, the gene structure is thought to be created by "exon shuffling", an evolutionary recombinational process to insert an exon or a set of exons which specify an additional structural and/or functional domain into a pre-existing gene. Both the structure of the tissue-type plasminogen activator protein(t-PA) and the t-PA gene suggest that this gene has evolved as a result of exon shuffling. As put forward by Gilbert (Science 228 (1985) 823), the "acid test"to prove the validity of the exon shuffling theory is either to delete, insert or to substitute exon(s) (i.e. in the corresponding cDNA) and toassay the properties of the mutant proteins to demonstrate that an exon or a set of adjacent exons encode (s) an autonomousfunction. Indeed, by the construction of specific deletions in full-length t-PA cDNA and expression of mutant proteins intissue-culture cells, we have shown by this approach that exon 2 of thet-PA gene encodes the function required forsecretion, exon 4 encodes the "finger" domain involved in fibrin binding(presumably on undegraded fibrin) and the set of exons 8 and 9 specifies kringle 2, containing a lysine-binding sit(LBS) which interacts with carboxy-terminal lysines, generated in fibrin after plasmic digestion. Exons 10 through 14 encode the carboxy-ter-minal light chain of t-PA and harbor the catalytic centre of the molecule and represents the predominant "target site" for the fast-acting endothelial plasminogen activator inhibitor (PAI-1).As a follow-up of this genetic approach to construct deletion mutants of t-PA, we also created substitution mutants of t-PA. Different mutants were constructed to substitute cDNA encoding thelight chain of t-PA by cDNA encoding the B-chain of urokinase (u-PA), in order to demonstrate that autonomous structural and functional domains of eitherone of the separate molecules are able toexert their intrinsic properties in a different context (C.J.M. de Vries et al., this volume). The possibilities and the limitations of this approach to study the structure and the function of t-PA and of other components of the fibrinolytic process will be outlined.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Bacillus (Bacteria) – Genetics"

1

Welker, N. E. Genetics of thermophilic bacteria. [Bacillus stearothermophilus:a2]. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/6057022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography